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Abstract. We consider the problem of optimal mixing control. Our objective is to best enhance
mixing by flow advection while the flow is optimized in the sense that it is almost steady and is
of the least magnitude and the least rotation. For this we define a mixing efficiency functional by
penalizing the average of variance of a diffusive scalar, the average of the flow, and the average of its
acceleration and strain tensor. By variational principles, we prove the existence of an optimal flow
and derive optimality conditions that consist of a system of nonlinear advection-diffusion equations,
wave equations, and Laplace’s equation.
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1. Introduction. A fluid mixture consists of diffusive physical quantities and
a fluid in which the physical quantities are immersed. Typical examples of such a
mixture include fuel and air in a combustor and chemical pollutants and water in the
environment. These physical quantities can be mathematically regarded as scalars.
If a scalar such as the fuel does not significantly influence the fluid motion, it is
called a passive scalar. If chemical reactions can be neglected, then the scalar usually
undergoes two processes: molecular diffusion and flow advection. These two processes
can be mathematically modeled by the advection-diffusion equation

∂c

∂t
+ (v · ∇)c = κ∇2c, c(x, 0) = c0(x) in Ω, and

∂c

∂n
= 0 on ∂Ω(1)

in the absence of a source or sink. In the above equation, c = c(x, t) denotes the
concentration of the scalar, c0(x) is an initial concentration, κ > 0 denotes the molec-
ular diffusivity of the scalar, Ω is a bounded domain in R

n, ∂
∂n denotes the normal

derivative along the boundary ∂Ω,v = v(x,t) denotes an incompressible velocity field
(∇·v = 0), ∇ = ( ∂

∂x1
, . . . , ∂

∂xn
), and ∇2 = ∂2

∂x2
1
+ · · ·+ ∂2

∂x2
n
. We assume that v satisfies

no-penetration boundary conditions on the boundary ∂Ω (n · v = 0 with n denoting
the unit normal on the boundary).

Often a certain level of homogeneity of a mixture is desired. For instance, before
fuel is burned in a combustor, it is required to be well mixed so that the combustor
can achieve its best efficiency. Hence, it is important to design efficient and practical
mixing enhancement techniques.

Because a turbulent flow can greatly enhance mixing [4, 10, 11, 12, 13, 15, 22, 26], a
useful mixing enhancement technique is to destabilize a flow so that it becomes as tur-
bulent or chaotic as possible. In the design of a stainless cylindrical microcombustor,
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a critical component for micropower systems using hydrogen and hydrocarbon fuels as
an energy source, Yang et al. [28] used the backward facing step to provide a simple yet
effective solution to enhance the mixing of the fuel mixture, prolong the residence time,
control the position of the flame, and widen the operational range of the flow rate and
H2/air ratio. Charyulu et al. [7] studied mixing enhancement with two-dimensional
(2D) lobed nozzles in a dual stream supersonic flow facility, and their results indicated
an enormous enhancement in mixing when a 2D lobed nozzle was employed in compar-
ison with a conventional plain 2D nozzle. The enhanced mixing performance could be
attributed to the large-scale axial vortices observed in the flow field. In addition to the
use of these passive control devices, a flow can be destabilized by open-loop active ex-
citations through flaps, wall-jets, or other devices [14] so that the flow is separated and
large-scale coherent structures are developed in the flow. Active feedback controllers
were developed by Aamo, Krstic, and Bewley [1] for destabilization of 2D channel
flows; by Balogh, Aamo, and Krstic [5] for destabilization of three-dimensional (3D)
pipe flows; by Yuan, Krstic, and Bewley [29] for destabilization of jet nozzle flows;
and by Wang et al. [27] for generation of flow separation in bluff body shear flows.

In these control designs, the optimization of control efforts is ignored. While we
try to enhance mixing by destabilizing a flow, it is desirable to minimize this desta-
bilization effort. For instance, after mixing has been enhanced, the destabilization
should be stopped to save the control efforts. The goal of this paper is to characterize
a flow that best enhances mixing and is optimized in some sense.

Mixing will be best enhanced if the scalar variance ‖c(t;v) − 〈c(t;v)〉 ‖ is made
as small as possible [19], where c(x, t;v) is the solution of (1) corresponding to the
velocity v and 〈c(t;v)〉 denotes the mean concentration. As for the control efforts,
we could say that the flow velocity v is optimal if the flow is almost steady and irro-
tational. This implies that the flow, its acceleration, and its strain tensor need to be
minimized. Therefore we define a mixing efficiency functional by penalizing the aver-
age of variance of the scalar, the average of the flow velocity, the average of the strain
tensor, and the average of the acceleration. We show that the functional is weakly
lower semicontinuous and then it attains its minimum. The minimizer of the func-
tional is called an optimal flow. By variational principles, we then derive optimality
conditions that consist of a system of nonlinear partial differential equations.

There are different measures for mixing efficiency such as Lagrangian and Eulerian
time averages of a flow [3], the mixing variance coefficient [6], and the Mix-Norm
defined by Mathew, Mezić, and Petzold [20]. For the convenience of treatment of
our optimal control problem, we use the L2 norm of a scalar variance as the mixing
efficiency measurement.

The optimal mixing problem has been studied in the literature. Using the en-
tropy of automorphisms of dynamical systems as the measure of mixing efficiency,
D’Alessandro, Dahleh, and Mezic [2] formulated an optimal mixing problem by max-
imizing the entropy among all permissible periodic sequences composed of two shear
flows orthogonal to each other. They derived the form of the protocol which maxi-
mizes the entropy by developing appropriate ergodic-theoretic tools. Another optimal
mixing problem was defined by Noack et al. [21], who used the flux across a recircula-
tion region as the measure of mixing efficiency and then maximized the flux among all
permissible controlled vortex motions. These optimal mixing problems are different
from the one discussed here. First, in our case, the advection-diffusion equation is
used to describe the fluid mixing, while a system of ordinary differential equations was
used in their studies. Second, the measures of mixing efficiency are different. Third,
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the optimal objectives are different. While mixing and flow are both optimized in
our case, the optimization of flow was not considered in their cases. Finally, because
of these differences, the characterizations of the optimal flow are different. In our
case, the optimal flow is characterized by a system of nonlinear partial differential
equations, while, in their cases, the optimal sequence of flow is given by the sequence
of period 2 of two matrices in [2], and the optimal vortex motion was identified in [21]
by finding the optimal flat output trajectory which maximizes the flux.

The paper is organized as follows. We define a mixing efficiency functional in
section 2 and prove the existence of an optimal flow in section 3. Optimality conditions
are presented in section 4 and are proved in sections 5 and 6.

2. Mixing efficiency functionals. Throughout this paper, Hs(Ω) denotes the
usual Sobolev space [9] for any s ∈ R. For s ≥ 0, Hs

0(Ω) denotes the completion
of C∞

0 (Ω) in Hs(Ω), where C∞
0 (Ω) denotes the space of all infinitely differentiable

functions on Ω with a compact support in Ω.
We will need the following vector function spaces:

L2(Ω) = {L2(Ω)}n,

H1(Ω) = {H1(Ω)}n,

H2(Ω) = {H2(Ω)}n,

H1
div(Ω) = {v ∈ H1(Ω) : div(v) = 0 in Ω},

L2
div(Ω) = the closure of H1

div(Ω) in L2(Ω).

The L2 norm of a function f(x) ∈ L2(Ω) is denoted by

‖f‖ =
(∫

Ω
|f(x)|2dV

)1/2

.

We will also need spaces involving time. Let X denote a Banach space with a
norm ‖ · ‖ and 0 < T . The space L2(0, T ; X) consists of all measurable functions
v : [0, T ] → X with

‖v‖L2(0,T ;X) =

(∫ T

0
‖v(t)‖2dt

)1/2

< ∞.

The Sobolev space H1(0, T ; X) consists of all functions v ∈ L2(0, T ; X) such that v′

exists in the weak sense and belongs to L2(0, T ; X). The norm is defined by

‖v‖H1(0,T ;X) =

(∫ T

0
(‖v(t)‖2 + ‖v′(t)‖2)dt

)1/2

.

We denote

H1
0 (0, T ; X) = {v ∈ H1(0, T ; X) | v(0) = v(T ) = 0}.

The space C([0, T ]; X) consists of all continuous functions v : [0, T ] → X with

‖v‖C([0,T ];X) = max
0≤t≤T

‖v(t)‖ < ∞.
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The strain tensor of the velocity v = (v1, v2, v3) is denoted by

∇v =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂v1

∂x1

∂v1

∂x2

∂v1

∂x3

∂v2

∂x1

∂v2

∂x2

∂v2

∂x3

∂v3

∂x1

∂v3

∂x2

∂v3

∂x3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The mean concentration of c(x, t;v) is defined by

〈c(t;v)〉 =
1

mes(Ω)

∫
Ω

c(x, t;v)dV.

Mixing will be best enhanced if the scalar variance ‖c(t;v) − 〈c(t;v)〉 ‖ is made
as small as possible. While mixing is best enhanced, the velocity v is desired to be
optimized in the sense that it is almost steady and is of the least magnitude ‖v‖ and
the least rotation. The least magnitude ensures that the cost of generating the flow
will be lowest, and the least rotation guarantees that the flow is not too turbulent
and chaotic. A development of rotation in a flow requires shear stress to be present
on a fluid particle surface. The shear stress depends on the strain tensor ∇v of
the velocity v [23]. Thus, to have the least rotation, the magnitude ‖∇v‖ needs to
be minimized. To make the flow almost steady, the acceleration magnitude ‖∂v(t)

∂t ‖
needs to be minimized. This motivates us to define the following mixing efficiency
functional:

J(v) =
∫ T

0

(
‖c(t;v) − 〈c(t;v)〉 ‖2 + α‖v(t)‖2 + β‖∇v(t)‖2 + γ

∥∥∥∥∂v(t)
∂t

∥∥∥∥
2
)

dt

+ μ‖c(T ;v) − 〈c(T ;v)〉 ‖2,(2)

where T > 0 is some desired time, and α > 0, β, γ, μ ≥ 0 are weight constants.
In optimal control theory, the first two terms ‖c(t;v) − 〈c(t;v)〉 ‖2, α‖v(t)‖2, which
penalize the averages of the scalar variance and the controlling cost, are standard
[8, 16]. The variance ‖c(T ;v) − 〈c(T ;v)〉 ‖2 at the final time is optional but included
in this functional to ensure that the highest level of homogenization of the scalar will
be achieved. Another standard functional in optimal control theory is the one over an
infinite time interval for a regulator problem. For the problem of mixing enhancement,
this functional is not appropriate since mixing needs to be enhanced in a desired finite
time.

The weight constants in (2) play an important role in determining the control
strength. For small values of α, β, γ, the functional will result in an optimal solution
with a small variance of the scalar but with big magnitudes of the velocity v, of the
strain tensor ∇v, and of the acceleration ∂v

∂t . This implies that the smaller the weights,
the more turbulent the optimal flow, and then the better the mixing enhancement.

We note that the mean is conserved. In fact, integrating (1) over Ω gives

d

dt
〈c〉 =

κ

mes(Ω)

∫
Ω

∇2c dV = 0,
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where we have used the boundary conditions on v and c. Therefore we can assume zero
mean without loss of generality. With the zero-mean assumption, the cost functional
reduces to

J(v) =
∫ T

0

(
‖c(t;v)‖2 + α‖v(t)‖2 + β‖∇v(t)‖2 + γ

∥∥∥∥∂v(t)
∂t

∥∥∥∥
2
)

dt

+ μ‖c(T ;v)‖2.(3)

Then the optimal control problem is to minimize J in an admissible velocity space
V = H1

0 (0, T ;H1
div(Ω)):

(4) J(v∗) = min
v∈V

J(v).

The minimizer v∗ is called an optimal flow.
In deriving optimality conditions for the optimal flow below, control flows are

required to satisfy the condition v(0) = v(T ) = 0. This mathematical condition, in
fact, is quite realistic because the control flows should start from the rest and return
back to the rest at the final time when the mixing has been enhanced. For instance,
before coffee is stirred, the flow is at rest.

In this theoretical study, we assume that an arbitrary unsteady flow can be gen-
erated. This may not be realistic. In a future work, we will consider specific velocity
fields such as v =

∑N
i=1 vi(x)ui(t), where vi(x) (i = 1, . . . , N) are given steady flows

which prescribe how the control action is distributed in the flow field.

3. Existence of optimal flows. For convenience, we state a well-known esti-
mate about the solution of (1) as follows.

Lemma 3.1. Let v ∈ L2(0, T ;L2
div(Ω)). Then the solution c of (1) satisfies the

following estimate:

(5) ‖c(t)‖2 + 2κ

∫ t

0
‖∇c(s)‖2

ds =
∥∥c0
∥∥2

.

Proof. Multiplying (1) by c and using the boundary conditions, we obtain the
equation

(6)
1
2

d

dt
‖c‖2 = −κ ‖∇c‖2

.

Integrating over [t0, t] gives (5).
To prove the existence of an optimal flow, we need the following weakly lower

semicontinuity of the function J .
Lemma 3.2. The functional J defined by (3) is weakly lower semicontinuous.

That is, if vn converges weakly to v0 in H1(0, T ;H1
div(Ω)), then

J(v0) ≤ lim inf
n→∞ J(vn).

Proof. Let vn converge weakly to v0 in H1(0, T ;H1
div(Ω)) and let cn(x, t;vn) be

the solution of

∂cn

∂t
+ (vn · ∇)cn = κ∇2cn, cn(x, 0) = c0(x) in Ω, and

∂cn

∂n
= 0 on ∂Ω.(7)
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Then vn converges strongly to v0 in L2(0, T ;L2
div(Ω)). Moreover, it follows from (5)

that there exists a subsequence of cn(x, t;vn), still denoted by itself for convenience,
that converges weakly to c∗

0 in L2(0, T ; H1(Ω)). Therefore we can pass to the limit in
(7) and obtain

∂c∗
0

∂t
+ (v0 · ∇)c∗

0 = κ∇2c∗
0, c∗

0(x, 0) = c0(x) in Ω, and
∂c∗

0

∂n
= 0 on ∂Ω.

Since any norm of a Banach space is weakly lower semicontinuous [17], it therefore
follows that

lim inf
n→∞ J(vn) ≥ lim inf

n→∞

∫ T

0

(
‖cn(t;vn)‖2 + α‖vn(t)‖2

+ β‖∇vn(t)‖2 + γ

∥∥∥∥∂vn(t)
∂t

∥∥∥∥
2
)

dt

+ μ lim inf
n→∞ ‖cn(T ;vn)‖2

≥
∫ T

0

(
‖c∗

0(t;v0)‖2 + α‖v0(t)‖2 + β‖∇v0(t)‖2 + γ

∥∥∥∥∂v0(t)
∂t

∥∥∥∥
2
)

dt

+ μ‖c∗
0(T ;v0)‖2

= J(v0).

So the functional J is weakly lower semicontinuous.
From this lemma, we can readily prove the following existence theorem.
Theorem 3.1. If β, γ > 0, then there exists an optimal flow v∗ ∈ V = H1(0, T ;

H1
div(Ω)) such that

(8) J(v∗) = min
v∈V

J(v).

Proof. Let vn be the minimizing sequence in H1(0, T ;H1
div(Ω)). That is,

lim
n→∞ J(vn) = min

v∈V
J(v).

Then vn is bounded in H1(0, T ;H1
div(Ω)). This implies that there exists a subse-

quence, still denoted by vn, that converges weakly to v∗ in H1(0, T ;H1
div(Ω)). It

therefore follows from Lemma 3.2 that

J(v∗) ≤ lim
n→∞ J(vn) = min

v∈V
J(v),

which implies (8).
If β = γ = 0, the existence is open. In this case, the minimizing sequence vn

is bounded only in L2(0, T ;L2
div(Ω)) and then may not converge strongly to v0 in

L2(0, T ;L2
div(Ω)). Thus passing to the limit in (7) cannot be guaranteed. Also the

uniqueness of the optimal flow is open because we could not prove that the functional
J is convex.
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4. Optimality conditions.
Theorem 4.1. If v∗ is an optimal flow under the cost functional J defined by

(3), then it satisfies the following equations:

∂c

∂t
+ (v∗ · ∇)c = κ∇2c,(9)

∂g

∂t
+ (v∗ · ∇)g = −κ∇2g + c(v∗),(10)

∇2p(x, t) = ∇g(x, t;v∗) · ∇c(x, t;v∗) + g(x, t;v∗)∇2c(x, t;v∗),(11)

−αv∗ + β∇2v∗ + γ
∂2v∗

∂t2
= g(x, t;v∗)∇c(x, t;v∗) − ∇p,(12)

∂c

∂n
=

∂g

∂n
=

∂p

∂n
= 0, v∗ = 0 on ∂Ω,(13)

v∗(x, 0) = v∗(x, T ) = 0 in Ω,(14)

c(x, 0) = c0(x), g(x, T ) = −μc(x, T ;v∗) in Ω.(15)

We will prove this theorem in the next two sections.
If β = 0, we can solve (12) to obtain

v∗ =
1
2

√
1

αγ

∫ t

0
(∇p(x, s) − g(x, s)∇c(x, s))

(
e
√

α/γ(s−t) − e
√

α/γ(t−s)
)

ds

+
1
2

√
1

αγ

e−t
√

α/γ − et
√

α/γ

e−T
√

α/γ − eT
√

α/γ

×
∫ T

0
(∇p(x, s) − g(x, s)∇c(x, s))

(
e
√

α/γ(T−s) − e
√

α/γ(s−T )
)

ds.

This control law shows that the optimal control flow depends on all the concentration
gradients during the whole time period from 0 to T .

Solving the system (9)–(15) numerically or analytically is a challenging problem
since it is highly nonlinear. As an initial attempt, we give a preliminary numerical
result.

One potential method for solving (9)–(15) could be the iteration method. We
first solve the advection-diffusion (9) with a given velocity v1. Then with this solution
c(v1), we solve (10) and then (11). Through (12), we obtain a new velocity v2. With
this v2, we repeat the above procedure, and so on.

To test whether or not this iteration method works, we consider a simplified case
where β = γ = μ = 0 and the system is considered in a 2D domain. Under this
simplification, this testing could be purely numerical, as real mixing may take place
only in the 3D space. Since β = γ = 0, the boundary condition (14) is not needed,
and then v∗(x, 0) may not be equal to zero in this case.

In our computations, the domain Ω = (0, 1)×(0, 1), the initial condition c0(x, y) =
sin(2πx) sin(2πy), the diffusivity κ = 0.01, the starting velocity v1 = 0, T = 2,
α = 0.5, and β = γ = μ = 0. All equations are solved by the finite element method
developed in [25] (with some modifications for this particular problem).
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0 5 10 15 20
0

0.05

0.1

0.15

0.2

v

J

Fig. 1. Starting with the velocity v1 = 0, the functional J reaches its minimum after a number
of iterations and then stays there.

Figure 1 shows that the functional J reaches its minimum after a number of
iterations and then stays there. The approximate optimal flow v∗ obtained via 20
iterations in this numerical experiment is shown in Figure 2. From this figure it can
be seen that the flow is decreasing to zero. This could imply that after the scalar is
well advected, no further advection is needed to save the control efforts.

To see how this optimal flow enhances mixing, we compare the variance decay in
the case of v1 = 0 with the variance decay in the case of the optimal flow, where the
variance is defined by

V (t) = ‖c(t;v) − 〈c(t;v)〉 ‖2.

Figure 3 shows that the variance of the scalar advected by the optimal flow decays
much faster than the one without advection.

To further test whether or not the functional J(v) really attains the minimum at
the optimal flow obtained above, we consider a couple of other model flows. One of
them is the following time-periodic velocity [18], denoted by vp1 :

v1(x, y, t) =

{
sin(πx) cos(πy) if n ≤ t < n + 0.5;
− sin(2πx) cos(πy) if n + 0.5 ≤ t < n + 1;

v2(x, y, t) =

{
− cos(πx) sin(πy) if n ≤ t < n + 0.5;
2 cos(2πx) sin(πy) if n + 0.5 ≤ t < n + 1.

(16)

As above, we can compute the value of the functional J(vp1) at this flow and obtain

J(vp1) = 1.0429,

which is greater than the value of the functional at the above optimal flow:

J(v∗) = 0.1731.

Another flow is the simplified model flow, denoted by vp2 , of time-aperiodic
Rayleigh–Bénard convection. The velocity field of the flow is derived from the stream
function

(17) Ψ =
A

n
sin(2πx) sin{n[x + B sin(ωt)]}W (y),



MIXING ENHANCEMENT 9

0

0.5

1

0

0.5

1
−2

−1

0

1

2

x

t = 0

y

v
1

0

0.5

1

0

0.5

1
−0.2

−0.1

0

0.1

0.2

x

t = 0.999

y

v
1

0

0.5

1

0

0.5

1
−1

−0.5

0

0.5

1

xy

t = 1.999

v
1

0

0.5

1

0

0.5

1
−2

−1

0

1

2

x

t = 0

y

v
2

0

0.5

1

0

0.5

1
−0.2

−0.1

0

0.1

0.2

x

t = 0.999

y

v
2

0

0.5

1

0

0.5

1
−1

−0.5

0

0.5

1

xy

v
2

t = 1.999

Fig. 2. The x-component v1 (top row and middle row (left)) and y-component v2 (middle row
(right) and bottom row) of the optimal flow v∗ at t = 0, 0.999, 1.999, obtained via 20 iterations
starting with the velocity v1 = 0.

where A is a positive constant, n is the wave number 2π/λ with a constant λ, and
W (y) is a function that satisfies the rigid boundary conditions at the top and bottom
surfaces. Here we use the following function W (y):

W (y) = (1 − y)y.

This stream function is obtained by adding the factor sin(2πx) to a stream function
used in [24] to make it satisfy the no-penetration boundary condition. In this com-
putation, A = 1.8, B = 0.06, ω = 2π, and λ = 2. The value of the functional at this
flow is

J(vp2) = 0.2801.

As before, it is also greater than J(v∗) = 0.1731.
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Fig. 3. The variance of a scalar advected by the optimal flow decays much faster than the one
without advection.

The above is a very preliminary attempt. The complete resolution of the problem
could require an extensive regularity analysis of solutions and applications of fixed
point theorems.

The asymptotic behavior of solutions of the system (9)–(15) in the zero limit of
the diffusivity κ is a singular perturbation problem. This problem is interesting but
difficult. The resolution of the problem will require extensive asymptotic analysis
such as the decomposition of inner and outer solutions and boundary layer analysis.
This is beyond the reach of the paper.

5. Gâteaux differentials. The space C(Ω) consists of all continuous functions
f on Ω with

‖f‖∞ = max
x∈Ω

|f(x)| < ∞.

The function vector space C(Ω) = {C(Ω)}n.
Theorem 5.1. Let the functional J be defined by (3). If v = (v1, v2, v3) ∈

H1(0, T ;H1
div(Ω)) and u = (u1, u2, u3) ∈ H1(0, T ;H1

div(Ω)∩C(Ω)), then the Gâteaux
differential of J is given by

〈J ′(v),u〉 = lim
ε→0

J(v + εu) − J(v)
ε

= 2
∫ T

0

∫
Ω

c(v)h(v,u)dV dt + 2μ

∫
Ω

c(T ;v)h(T ;v,u)dV

+ 2
∫ T

0

∫
Ω

(
αv · u + β∇v · ∇u + γ

∂v
∂t

· ∂u
∂t

)
dV dt,(18)

where ∇v · ∇u =
∑3

i,j=1
∂vi

∂xj

∂ui

∂xj
and h is the solution of

∂h

∂t
+ (v · ∇)h = κ∇2h − (u · ∇)c(v) in Ω,(19)

h(x, 0) = 0 in Ω, and
∂h

∂n
= 0 on ∂Ω.
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To prove this theorem, we need the following lemma. For a positive constant
ε and v,u ∈ L2(0, T ;L2

div(Ω)), we denote by c(v) and cε(v,u) the solutions of (1)
corresponding the velocities v and v + εu, respectively.

Lemma 5.1. Let u ∈ L2(0, T,L2
div(Ω) ∩ C(Ω)) and denote hε(v,u) = cε(v,u) −

c(v). Then the hε satisfies the following estimates:

max
0≤s≤t

‖hε(s)‖2 ≤ 2ε2

κ
‖c0‖2

∫ t

0
‖u(s)‖2

∞ds,(20)

1
2

‖hε(t)‖2 + κ

∫ t

0
‖∇hε(s)‖2

ds ≤ ε2

κ
‖c0‖2

∫ t

0
‖u(s)‖2

∞ds,(21)

max
0≤s≤t

∥∥∥∥hε(s)
ε

− h(s)
∥∥∥∥

2

≤ 4ε2

κ2 ‖c0‖2
(∫ t

0
‖u(s)‖2

∞ds

)2

.(22)

Proof. A direct calculation shows that hε satisfies

∂hε

∂t
+ (v · ∇)hε = κ∇2hε − ε(u · ∇)cε(v,u) in Ω,(23)

hε(x, 0) = 0 in Ω, and
∂hε

∂n
= 0 on ∂Ω.

Multiplying (23) by hε and using the boundary conditions, we obtain the equation

1
2

d

dt
‖hε(t)‖2 = −κ ‖∇hε‖2 − ε

∫
Ω

hε(u · ∇)cεdV

≤ ε‖u(t)‖∞‖hε(t)‖‖∇cε(t)‖.(24)

Integrating over [t0, t] gives

‖hε(t)‖2 ≤ 2ε max
0≤s≤t

‖hε(s)‖
∫ t

0
‖u(s)‖∞‖∇cε(s)‖ds

≤ 2ε max
0≤s≤t

‖hε(s)‖
(∫ t

0
‖u(s)‖2

∞ds

)1/2(∫ t

0
‖∇cε(s)‖2ds

)1/2

,

which implies that

max
0≤s≤t

‖hε(s)‖2 ≤ 2ε max
0≤s≤t

‖hε(s)‖
(∫ t

0
‖u(s)‖2

∞ds

)1/2(∫ t

0
‖∇cε(s)‖2ds

)1/2

≤ 1
2

(
max
0≤s≤t

‖hε(s)‖
)2

+ 2ε2
∫ t

0
‖u(s)‖2

∞ds

∫ t

0
‖∇cε(s)‖2ds.

It then follows from (5) that

max
0≤s≤t

‖hε(s)‖2 ≤ 4ε2
∫ t

0
‖u(s)‖2

∞ds

∫ t

0
‖∇cε(s)‖2ds

≤ 2ε2

κ
‖c0‖2

∫ t

0
‖u(s)‖2

∞ds.(25)
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This proves (20).
To prove (21), we use (24) again and derive that

1
2

‖hε(t)‖2 + κ

∫ t

0
‖∇hε(s)‖2

ds

≤ ε max
0≤s≤t

‖hε(s)‖
∫ t

0
‖u(s)‖∞‖∇cε(s)‖ds

≤ ε max
0≤s≤t

‖hε(s)‖
(∫ t

0
‖u(s)‖2

∞ds

)1/2(∫ t

0
‖∇cε(s)‖2ds

)1/2

.

It then follows from (5) and (20) that

1
2

‖hε(t)‖2 + κ

∫ t

0
‖∇hε(s)‖2

ds ≤ ε2

√
2√
κ

‖c0‖
∫ t

0
‖u(s)‖2

∞ds
‖c0‖√

2κ

≤ ε2

κ
‖c0‖2

∫ t

0
‖u(s)‖2

∞ds.(26)

To prove (22), we denote fε = hε

ε − h. A direction calculation shows that

∂fε

∂t
+ (v · ∇)fε = κ∇2fε − (u · ∇)hε in Ω,(27)

fε(x, 0) = 0 in Ω, and
∂fε

∂n
= 0 on ∂Ω.

In the same way as above, we can derive that

max
0≤s≤t

‖fε(s)‖2 ≤ 4
∫ t

0
‖u(s)‖2

∞ds

∫ t

0
‖∇hε(s)‖2ds

≤ 4ε2

κ2 ‖c0‖2
(∫ t

0
‖u(s)‖2

∞ds

)2

.

We are now ready to prove Theorem 5.1. Using the estimates (20) and (22), we
derive that

lim
ε→0

1
ε

∫ T

0

∫
Ω
[|c(v + εu)|2 − |c(v)|2]dV dt

= lim
ε→0

1
ε

∫ T

0

∫
Ω
[|c(v) + hε(v,u)|2 − |c(v)|2]dV dt

= lim
ε→0

1
ε

∫ T

0

∫
Ω
[2c(v)hε(v,u) + (hε(v))2]dV dt

= 2
∫ T

0

∫
Ω

c(v)h(v,u)dV dt.(28)
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In the same way, we can show that

lim
ε→0

1
ε

∫
Ω
[|c(T ;v + εu)|2 − |c(T ;v)|2]dV

= lim
ε→0

1
ε

∫
Ω
[|c(T ;v) + hε(T ;v,u)|2 − |c(v)|2]dV

= lim
ε→0

1
ε

∫
Ω
[2c(T ;v)hε(T ;v,u) + (hε(T ;v,u))2]dV

= 2
∫

Ω
c(T ;v)h(T ;v,u)dV.

Using these limits, we then readily prove Theorem 5.1.

6. Proof of Theorem 4.1. If the flow v∗ is an optimal flow under the functional
J defined by (3), then it satisfies

〈J ′(v),u〉 = 0

for all u ∈ H1
0 (0, T ;H1

div(Ω)). It then follows from (18) that∫ T

0

∫
Ω

c(x, t;v∗)h(x, t;u,v∗)dV dt + μ

∫
Ω

c(x, T ;v∗)h(x, T ;u,v∗)dV(29)

+
∫ T

0

∫
Ω

(
αv∗ · u + β∇v∗ · ∇u + γ

∂v∗

∂t
· ∂u

∂t

)
dV dt = 0

for all u ∈ H1
0 (0, T ;H1

div(Ω) ∩ C(Ω)). Consider the adjoint equation

∂g

∂t
+ (v∗ · ∇)g = −κ∇2g + c(v∗) in Ω,(30)

g(x, T ) = −μc(x, T ;v∗) in Ω, and
∂g

∂n
= 0 on ∂Ω.

Multiplying (30) by h and (19) by g and integrating over Ω × [0, T ], we obtain∫ T

0

∫
Ω

c(x, t;v∗)h(x, t;u,v∗)dV dt + μ

∫
Ω

c(x, T ;v∗)h(x, T ;u,v∗)dV(31)

=
∫ T

0

∫
Ω

(u · ∇c(x, t;v∗)) g(x, t;v∗)dV dt.

After integration by parts with respect to t, we deduce from (29) and (31) that

(32)
∫ T

0

∫
Ω

u ·
(

αv∗ − β∇2v∗ − γ
∂2v∗

∂t2
+ g(x, t;v∗)∇c(x, t;v∗)

)
dV dt = 0,

which implies that there exists a potential function p such that

(33) αv∗ − β∇2v∗ − γ
∂2v∗

∂t2
+ g(x, t;v∗)∇c(x, t;v∗) = ∇p.

To determine p, we apply the divergence operation to the above equation and then
obtain

(34) ∇2p = ∇g(x, t;v∗) · ∇c(x, t;v∗) + g(x, t;v∗)∇2c(x, t;v∗).

Thus we have proved Theorem 4.1.
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7. Conclusions. We have studied the problem of optimal mixing control whose
objective is to best enhance mixing by flow advection while the flow is optimized in
the sense that it is almost steady and is of the least magnitude and the least rotation.
In solving this problem, we defined a mixing efficiency functional by penalizing the
average of variance of the scalar, the average of the flow, and the average of the strain
tensor and acceleration of the flow. We showed that the functional is weakly lower
semicontinuous and then it attains its minimum. By variational principles, we then
derived optimality conditions that consist of a system of nonlinear partial differential
equations.

A number of issues are left open. Solving the optimality partial differential equa-
tions numerically or analytically is challenging since nonlinearity is presented in the
advection term, which, like in the study of Navier–Stokes equations, is difficult to
estimate. The resolution of the problem could require the regularity analysis of solu-
tions and applications of fixed point theorems. The uniqueness of the optimal flow is
open because we could not prove that the efficiency functional J is convex. Another
interesting problem is the singular perturbation problem for the optimality partial
differential equations in the zero limit of diffusivity. The resolution of the problem
will require an extensive asymptotic analysis such as the decomposition of inner and
outer solutions and boundary layer analysis.

Results presented in this paper could have potential applications in aerospace
engineering and mixing-related industry. Often a certain level of homogeneity of
a fluid mixture is desired. For instance, before fuel is burned in a combustor, it
is required to be well mixed so that the combustor has its best efficiency. Hence,
optimality conditions derived in this paper could serve as guidelines in implementing
an efficient and practical control technique for mixing enhancement.
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