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ABSTRACT  

Color quantization (CQ) is a common image processing operation with various 

applications in computer graphics, image processing, and computer vision. CQ is 

essentially a large-scale combinatorial optimization problem in low dimensions. Many 

clustering algorithms, both of hierarchical and partitional types, have been applied to the 

CQ problem since the 1980s. In general, hierarchical CQ algorithms are faster, whereas 

partitional ones produce better results provided that they are initialized properly. In this 

thesis, we propose a novel partitional CQ algorithm based on a binary splitting 

formulation of MacQueen’s online k-means algorithm. Experiments on a diverse set of 

public test images demonstrate that the proposed algorithm is significantly faster than two 

popular batch k-means algorithms while yielding nearly identical results. In addition, 

unlike MacQueen’s original algorithm, the proposed algorithm is both deterministic and 

free of initialization. The presented algorithm may be of independent interest as a 

general-purpose clustering algorithm. 
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CHAPTER 1 INTRODUCTION  

True-color images have become truly ubiquitous over the past two decades. A 

typical true-color image may contain hundreds of thousands of colors, which makes it 

challenging to display, store, transmit, process, and analyze such an image. Color 

Quantization (CQ) is a common image processing operation, which aims to reduce the 

number of distinct colors in a true-color image with minimal distortion. Thus, CQ is 

fundamentally a large-scale combinatorial optimization problem in low dimensions. 

Recent applications of CQ include compression, segmentation, text 

localization/detection, color analysis, watermarking, non- photorealistic rendering, and 

content-based retrieval (Thompson, Celebi, & Buck 2020). 

CQ consists of two main phases: palette design (the selection of a small set of 

colors that represents the colors in the input image) and pixel mapping (the assignment of 

each pixel in the input image to one of the palette colors). Since pixel mapping can be 

accomplished using a straightforward linear-time algorithm that maps each input pixel to 

the nearest palette color, most CQ studies deal with the computationally difficult palette 

design phase.  

Many clustering algorithms, both of hierarchical and partitional types, have been 

applied to the palette design problem since the 1980s (Brun & Tremeau 2002). A 

hierarchical algorithm partitions the input data set into a set of nested clusters that are 

organized as a tree. These algorithms recursively find nested clusters in a top-down 

(divisive) or bottom-up (agglomerative) manner (Jain, Murty, & Flynn 1999). A 

partitional algorithm, on the other hand, partitions the input data set into a number of 

mutually exclusive subsets. These algorithms find all clusters simultaneously without 
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imposing a hierarchical structure (Jain, Murty, & Flynn 1999). In the context of CQ, 

hierarchical design algorithms are generally faster, whereas partitional ones often 

produce better results as long that they are initialized properly. Classic hierarchical CQ 

algorithms include median-cut (Heckbert 1982), octree (Gervautz & Purgathofer 1988), 

Wan et al.’s algorithm (Wan, Prusinkiewicz, & Wong 1990), Wu’s algorithm (Wu 1991), 

Orchard & Bouman’s algorithm (Orchard & Bouman 1991), center-cut (Joy & Xiang 

1993), and rwm cut (Yang & Lin 1996). Partitional algorithms adapted to CQ include 

competitive learning (Celebi, Hwang, & Wen 2014), fuzzy c-means (Schaefer & Zhou 

2009; Wen & Celebi 2011), k-means (Hu & Lee 2007; Hu & Su 2008) (Celebi 2009; 

Celebi 2011; Valenzuela, Celebi, & Schaefer 2018; Thompson, Celebi, & Buck 2020), k-

harmonic means (Frackiewicz & Palus 2011), maximin (Xiang 1997), rough c-means 

(Schaefer, HU, Zhou, Peters, & Hassanien 2012), and self-organizing maps (Dekker 

1994; Pei & Lo 1998; Chang, Xu, Xiao, & Srikanthan 2005; Wang, Lee, & Hsieh 2007; 

Rasti, Monadjemi, & Vafaei 2011).  

In this thesis, we present a novel partitional CQ algorithm based on an online 

formulation of the celebrated k-means algorithm. The remainder of the thesis is organized 

as follows. Chapter 2 describes three known variants of the k-means clustering algorithm 

and the proposed fourth variant. Chapter 3 presents the experimental results and 

compares the proposed algorithm to conventional as well as state-of-the-art CQ 

algorithms. Finally, Chapter 4 gives the conclusions.  
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CHAPTER 2 K-MEANS AND ITS VARIANTS  

This chapter describes four variants of the k-means clustering algorithm: batch k-

means, incremental batch k-means, online k-means, and incremental online k-means. The 

first three algorithms are known, and the last one is new.  

Batch K-Means 

Batch k-means (BKM) (Forgy 1965), also known as Lloyd’s algorithm (Lloyd 

1982), is the most widely used partitional clustering algorithm (Wu, Kumar, Quinlan, et 

al. 2008). Given a data set 𝑋 ൌ  ሼ𝒙ଵ, … , 𝒙ேሽ  ℝ஽ and a positive integer 𝐾 ൐  1, BKM 

divides 𝑋 into 𝐾 mutually exclusive and exhaustive clusters ሼ𝑃ଵ, … ,  𝑃௄ሽ, where each 

cluster 𝑃௜ is represented by a center 𝒄௜. The algorithm starts with an arbitrary set of initial 

centers, customarily chosen uniformly at random from 𝑋. Each iteration is composed of 

two steps: assignment and update. In the assignment step, each data point is assigned to 

the nearest center. In the update step, each center is updated to be the centroid of the data 

points assigned to it. Each iteration can be shown to either decrease the Sum of Squared 

Error (SSE) defined as SSE ൌ ∑ 𝑑ୗ୉ሺ𝐱, ሼ𝐜ଵ, . . . , 𝐜௄ሽሻ𝐱∈௑  , where 𝑑ୗ୉ሺ𝐱, 𝐶ሻ denotes the 

squared Euclidean ሺℓଶ
ଶሻ dissimilarity between data point 𝐱 and the nearest center in 𝐶, or 

leave it unchanged (at which point the algorithm is considered to have converged). 

Banerjee et al. (Banerjee, Merugu, Dhillon, Ghosh, & Lafferty 2005) proved that the 

optimal center of a cluster is given by the centroid of the cluster only for Bregman 

divergences (Bregman 1967), a family of nonmetric dissimilarity functions that includes 

the ሺℓଶ
ଶሻ dissimilarity, squared Mahalanobis dissimilarity, Kullback–Leibler divergence, 

and Itakura–Saito divergence.  
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Let 𝐼 be the input image in a CQ application. The data set 𝑋 then represents the 

pixels of 𝐼, 𝑁 is the number of pixels in 𝐼, 𝐷 is the number of color channels (𝐷 ൌ  3 for 

the RGB color model), and 𝐾 is the number of desired colors in the output (quantized) 

image. The pseudocode for BKM is given in Table 1.  

Table 1. BKM Algorithm 

Step   Description  

1   Initialize the cluster centers ሼ𝒄ଵ , . . . , 𝒄௄ሽ. 

  2   Assign each 𝐱 ∈ 𝑋 to the nearest center, i.e., 𝒄௜ with 𝑖 ൌ

 arg 𝑚𝑖𝑛
௞∈ሼଵ,…,௄ሽ

 ‖𝐱 െ 𝐜௞‖ଶ
ଶ, where ∥൉∥ଶ

ଶ denotes the ℓଶ
ଶ norm.  

3  

 

 

4  

Update each cluster center 𝐜௜ to be the centroid of the data points 

assigned to it, i.e., 𝐜௜ ൌ ሺ1/𝑛௜ሻ ∑ 𝐱𝐱∈௉೔
, where 𝑛௜ is the number of data 

points assigned to 𝐜௜.  

Repeat steps (2) and (3) until convergence. 

  

BKM converges to a local minimum of its objective when the cluster 

memberships of the data points stabilize (or, equivalently, when the cluster centers 

stabilize). Step (1), initialization, is the most important step as the algorithm is highly 

sensitive to the initialization of the centers. Adverse effects of poor initialization include 

empty clusters, slower convergence, and a higher chance of getting stuck in a bad local 

optimum (Celebi, Kingravi, & Vela 2013). Although it has a linear time complexity (in 

N, D, and K), BKM is computationally demanding to do its iterative nature (Celebi 2011). 

In general, the number of iterations cannot be predicted in advance and depends on the 
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number, dimensionality, and distribution of the data points as well as the number of 

clusters sought.  

Incremental Batch K-Means 

Incremental batch k-means (IBKM) (Linde, Buzo, & Gray 1980) is a variant of BKM 

that features a built-in initialization scheme. The original BKM algorithm assumes that 

the algorithm is supplied with appropriate initial centers. IBKM, on the other hand, starts 

with a single center and incrementally adds new centers until the number of centers 

reaches K. The pseudocode for IBKM is given in Table 2. 

Table 2. IBKM Algorithm 

Step   Description  

1   Set 𝐜଴ ൌ  𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑ሺ𝑋ሻ and iteration counter 𝑡 ൌ  0. 

  2   For each 𝑘 ∈ ሼ2௧ െ  1, . . . , 2௧ାଵ  െ  2ሽ, split node 𝐜௞ into nodes 𝐜ଶ௞ାଵ 

and 𝐜ଶ௞ାଶ. 

3  

 

4  

Refine centers ሺ2௧ାଵ  െ  1ሻ, . . . , ሺ2௧ାଶ െ  2ሻ using BKM (the entire data 

set 𝑋 is clustered.) 

Set 𝑡 ൌ 𝑡 ൅ 1 and repeat steps (2) and (3) until 𝑡 ൌ logଶ 𝐾. 

 

The algorithm begins by setting 𝐜଴  to the centroid of 𝑋 (for 𝐾 ൌ  1, this choice of 𝐜଴ 

is clearly optimal). It then adds 2௧ାଵ new centers in iteration 𝑡 ሺ𝑡 ∈  ሼ0, . . . , logଶ 𝐾 –  1ሽሻ 

splitting each of the existing centers into two. When a center 𝐜௞ is split, the left child 

inherits its parent’s attributes (i.e., 𝐜ଶ௞ାଵ  ൌ  𝐜௞), whereas the right child becomes a 

slightly perturbed version of its parent (i.e., 𝐜ଶ௞ାଵ  ൌ  𝐜௞ ൅ 𝝐 where 𝝐 is an arbitrary 
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vector of small positive ℓଶ norm). Preserving the parent’s attributes in the next iteration 

ensures that the SSE will not increase (Gray 1984). Note that in the IBKM pseudocode 

above, for simplicity, we assumed that 𝐾 is a power of two. If this is not the case, we 

perform ⌊logଶ 𝐾⌋ iterations as described above and then perform one last iteration in 

which we split only 𝐾 െ 2ሾ୪୭୥మ ௄ሿof the centers from the previous iteration.  

While BKM is well known in virtually all scientific disciplines where clustering is 

employed (Celebi 2014), IBKM appears to be known primarily in the vector quantization 

literature from which it originated.  

Online K-Means 

Online k-means (OKM) (MacQueen 1967), also known as sequential k-means or 

Mac-Queen’s k-means, is an online variant of BKM. The two algorithms differ in how 

often and how they update the cluster centers. BKM updates all 𝐾 cluster centers at once 

after all data points are assigned to their respective nearest centers. OKM, on the other 

hand, updates a single cluster center immediately after a data point is assigned to it. OKM 

is considered a noisy version of BKM where the noise aids the algorithm in escaping bad 

local optima (Bottou 1995). The pseudocode for OKM is given in Table 3.  
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Table 3. OKM Algorithm 

Step   Description  

1   Initialize the cluster centers ሼ𝒄ଵ , . . . , 𝒄௄ሽ. 

  2   Set 𝑛ଵ ൌ ൉൉൉ ൌ  𝑛௄ ൌ  0, where 𝑛௜ is the number of data points 

assigned to center 𝐜௜. 

3  

4 

 

5  

 

6 

Select a data point 𝐱 from 𝑋 uniformly at random.  

Assign 𝐱 to the nearest center, say 𝐜௜ (refer to step (2) in the BKM 

pseudocode). 

Increment 𝑛௜ ሺ𝑖. 𝑒. , 𝑛௜ ൌ  𝑛௜ ൅  1ሻ and then update 𝐜௜ to reflect the 

newly added point as follows: 𝐜௜  ൌ  𝐜௜  ൅ ሺ1/𝑛௜ሻሺ𝐱 െ 𝐜௜ሻ. 

Repeat steps (3) through (5) until convergence. 

 
Note that, unlike BKM, OKM traverses the data points in random order, which 

aims to reduce OKM’s sensitivity to the order in which the data points are processed. 

Studies have shown that for online learning algorithms like OKM, random traversal is 

preferable to cyclical traversal, which is used in BKM (Bermejo & Cabestany 2002). This 

is because cyclical presentation may bias an online learning algorithm, especially when 

dealing with redundant data sets such as image data.  

OKM is an instance of the competitive learning paradigm, an unsupervised 

learning scheme for discovering general features that can be used to classify a set of 

patterns (Grossberg 1987; Rumelhart & Zipser 1985). In a basic competitive learning 

algorithm, given a set of randomly distributed units, the units compete for assignment to a 

given subset of inputs. After the presentation of each input, the closest unit is deemed the 
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winner and moved closer to the input. Hard competitive learning, also known as winner-

take-all learning, consists of algorithms where each input determines the adaptations of a 

single winning unit. OKM is an instance of hard competitive learning, as only the 

winning unit is moved towards the input presented in each iteration.  

Let 𝐱ሺ௧ሻ  be the input at time 𝑡 ሺ𝑡 ൌ  1, 2, … ሻ and 𝐜ሺ௧ሻ   be the corresponding 

nearest center (winning unit) with respect to the ℓଶ
ଶ
 dissimilarity (refer to step (2) in the 

BKM pseudocode). The adaptation equation for 𝐜ሺ௧ሻ  is given by  

𝒄ሺ௧ାଵሻ ൌ 𝒄ሺ௧ሻ ൅ 𝑟ሺ𝑡ሻሺ𝑥ሺ௧ሻ െ 𝒄ሺ௧ሻሻ,               (1) 

where 𝑟 ∈ ሾ0,1ሿ is the learning rate, which is chosen to satisfy the Robbins–Monro 

conditions (Robbins & Monro 1951)  

    𝑙𝑖𝑚
௧→ஶ

𝑟ሺ𝑡ሻ ൌ 0,                (2a) 

෌ 𝑟ሺ𝑡ሻ ൌ  ∞
ஶ

௧ୀଵ
,                            (2b) 

෌ 𝑟ሺ𝑡ሻଶ ൌ  ∞
ஶ

௧ୀଵ
.                         (2c) 

These conditions ensure that the learning rate decreases at a rate that is fast 

enough to suppress the noise, but not too fast to avoid premature convergence. By 

rearranging the adaptation equation above, we obtain  

  𝐜ሺ௧ାଵሻ ൌ 𝑟ሺ𝑡ሻ𝐱ሺ௧ሻ ൅ ሺ1 െ 𝑟ሺ𝑡ሻሻ𝐜ሺ௧ሻሻ,                 (3) 

which shows that new center 𝐜ሺ௧ାଵሻ is a convex combination of the old center 𝐜ሺ௧ሻ and the 

input data point 𝐱ሺ௧ሻ. Under mild regularity conditions, OKM converges almost surely to 

a local minimum (Bottou 1998).  
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The original OKM algorithm employs a harmonic learning rate 𝑟ሺ𝑡ሻ  ൌ  1/𝑡, 

which can be generalized using a parameter 𝑝 ∈ ሺ0.5, 1ሿ, resulting in the hyperharmonic 

rate 𝑟ሺ𝑡ሻ  ൌ  𝑡ି௣. In theory, the harmonic rate decays too rapidly, while the 

hyperharmonic rate with 𝑝 ൌ 0.5 gives much better results (Darken & Moody 1990; Wu 

& Yang 2006; Thompson, Celebi, & Buck 2020).  

OKM scans through the input image only once, as opposed to BKM, which scans 

through the image multiple times. In our earlier work (Thompson, Celebi, & Buck 2020), 

we showed that OKM obtains very similar results to BKM while being 41 to 300 times 

faster. Unlike BKM, however, OKM has an element of randomness in it (refer to step (3) 

in the OKM pseudocode). In our earlier work (Thompson, Celebi, & Buck 2020), we 

sampled the input image quasirandomly using a low-discrepancy sequence (Bratley 1988) 

and showed that such a sampling is not only deterministic, but also gives nearly identical 

results to pseudorandom sampling on average. In this study, we adopt the same 

quasirandom sampling approach (refer to Thompson, Celebi, & Buck 2020 for details.) 

On a historical note, MacQueen (MacQueen 1967) developed the OKM algorithm 

and coined the term “k-means” in the mid-1960s. However, in time, “k-means” came to 

refer to the BKM algorithm rather than MacQueen’s OKM algorithm. In fact, a vast 

majority of the clustering literature discusses only the BKM algorithm.  

Incremental Online K-Means 

Incremental online k-means (IOKM) is a binary splitting variant of OKM. IOKM 

is identical to IBKM with two exceptions. First, IOKM uses OKM (rather than BKM) to 

refine the newly generated centers in each iteration. Second, in IOKM we can safely take 

‖𝝐‖ଶ  ൌ  0, while in IBKM ‖𝝐‖ଶ must be a small positive number. Otherwise, if we set 
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‖𝝐‖ଶ ൌ  0 in IBKM, the left and right children will be identical and the subsequent BKM 

run will not be able to separate these identical centers, resulting in an empty cluster.  

Following our earlier work (Thompson, Celebi, & Buck 2020), we implement 

OKM as a one-pass algorithm. In other words, we terminate the iterations once the 

algorithm is presented with 𝑁 data points. In each iteration, 𝐾 centers compete to 

represent the presented data point. Thus, OKM performs on the order of 𝑁𝐾 

computations. IOKM, on the other hand, performs logଶ 𝐾  passes over the input image, 

but the number of centers competing in each pass is different. In pass 𝑡 ሺ𝑡 ∈

 ሼ0, . . . , logଶ 𝐾 െ 1ሽሻ, 2௧ାଵ centers compete, resulting in a total of ෌ 2௧ାଵ୪୭୥మ ௄ିଵ

௧ୀ଴
ൌ

 2𝐾 െ  2 centers competing. Hence, for 𝐾 ≪  𝑁, IOKM performs on the order of 

roughly 2𝑁𝐾 computations. Consequently, for reasons of fairness, we terminate each call 

to OKM inside IOKM after 𝑁/2 iterations rather than 𝑁. 

As mentioned earlier, BKM is very popular in the clustering literature, whereas its 

incremental version, IBKM, is popular particularly in the vector quantization literature. 

Despite its significant computational efficiency over BKM, however, OKM does not 

seem to be as widely used as its batch counterpart. Finally, to the best of our knowledge, 

IOKM, which is the incremental version of OKM, has not been investigated in the 

literature.  

Initialization of BKM and OKM 

Recall that both BKM and OKM include an initialization step wherein the initial 

cluster centers are determined. It is well known that initialization is especially important 

for a batch learning algorithm like BKM (Celebi 2013; Celebi 2015). In this study, we 

address the initialization problem for BKM and OKM using the maximin algorithm 
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(Gonzalez 1985). This algorithm begins by taking an arbitrary data point to be the first 

center 𝐜ଵ. The remaining ሺ𝐾 െ  1ሻ centers are determined iteratively as follows. For 𝑖 ∈

 ሼ2, . . . , 𝐾ሽ, center 𝐜௜ is chosen to be the point with the largest minimum-distance to the 

previously selected ሺ𝑖 െ  1ሻ centers, i.e.,  

𝒄௜ ൌ arg 𝑚𝑎𝑥𝐱∈௑ 𝑚𝑖𝑛 ሺ𝑑ሺ𝐱, 𝐜ଵ ሻ, . . . , 𝑑ሺ𝐱, 𝐜௜ିଵሻሻ,                 (4) 

where 𝑑 is a metric distance (it is common to take 𝑑 ൌ ℓଶ). By using 𝒪ሺ𝑁ሻ additional 

memory, maximin can be implemented in 𝒪ሺ𝑁𝐾ሻ time (see below). We should also 

mention that Feder and Green (Feder & Greene 1988) described an elaborate 

implementation of the maximin algorithm with 𝒪ሺ𝑁 𝑙𝑜𝑔 𝐾ሻ time complexity, which is 

optimal under the algebraic computation tree model. However, this time-optimal 

maximin formulation is quite complicated and thus primarily of theoretical interest.  

The maximin algorithm calls for an arbitrary selection of the first center. Selecting 

this center uniformly at random from 𝑋 is customary, but this makes the otherwise 

deterministic algorithm randomized. In this study, we achieve determinism by taking the 

first center as the centroid of 𝑋, which can be computed as 𝑋 is read from the disk. The 

pseudocode for maximin is given in Table 4.  
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Table 4. Maximin Algorithm 

Step   Description  

1   Set, 𝐜ଵ ൌ  𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑ሺ𝑋ሻ. Let 𝑑௝ ሺ𝑗 ∈ ሼ1, . . . , 𝑁ሽሻ denote the distance of 

𝐱௝ to its nearest center. Set the index of the next center to be found as 

𝑖 ൌ 2. Initialize 𝑑௠௔௫ ൌ  െ∞, the maximum distance between any 

data point and its nearest center. 

  2   For each 𝑗 ∈ ሼ1, . . . , 𝑁ሽ, if 𝑑ሺ𝐱௝, 𝐜௜ିଵሻ  ൏  𝑑௝, then set 𝑑௝ ൌ  𝑑ሺ𝐱௝, 𝐜௜ିଵሻ. 

If 𝑑௠௔௫  ൏  𝑑௝, then update 𝑑௠௔௫ and the index of the corresponding 

point (i.e., 𝑑௠௔௫ ൌ 𝑑௝ and 𝑗∗  ൌ  𝑗). 

3   Set 𝐜௜ ൌ  𝐱௝∗ and increment 𝑖 ሺ𝑖. 𝑒. , 𝑖 ൌ  𝑖 ൅ 1ሻ. 

4  Repeat steps (2) and (3) for the remaining ሺ𝐾 െ 2ሻ centers. 

  

An interesting and little known property of maximin is that it selects one and only 

one center from each of the 𝐾 clusters provided that 𝑋 contains compact and separated 

clusters, i.e., each of the possible intra-cluster distances is less than each of the possible 

inter-cluster distances (Hathaway, Bezdek, & Huband 2006). In other words, maximin is 

an ideal initializer for k-means for well-clusterable data sets.  

  



 

13 

CHAPTER 3 EXPERIMENTAL RESULTS AND DISCUSSION 

Image Set and Parameter Configuration  

The proposed IOKM algorithm was tested on eight popular 24-bit test images 

shown in Fig. 1. Of these images, Baboon (512 × 512), Lenna (512 × 512), and Peppers 

(512 × 512) are from the USC-SIPI Image Database (http://sipi.usc.edu/database); 

Motocross (768 × 512) and Parrots (768 × 512) are from the Kodak Lossless True Color 

Image Suite (http://r0k.us/graphics/kodak/); and Goldhill (720 × 576), Fish (300 × 200), 

and Pills (800 × 519) are by Lee Crocker, Luiz Velho, and Karel de Gendre, respectively.  

The effectiveness of a CQ algorithm was quantified by the Mean Squared Error 

(MSE) measure given by  

𝑀𝑆𝐸ሺ𝐼, 𝐼ሚሻ ൌ  ଵ

ுௐ
∑ ∑ ฮ𝐼ሺ𝑟, 𝑐ሻ െ  𝐼ሚሺ𝑟, 𝑐ሻฮ

ଶ

ଶௐ
௖ୀଵ

ு
௥ୀଵ ,          (5) 

where 𝐼 and  𝐼ሚ respectively denote the 𝐻 ൈ  𝑊 original input and quantized output 

images. MSE represents the average color distortion with respect to ℓଶ
ଶ.  

As mentioned in the Chapter 2 (Incremental Batch K-Means), when a center 𝐜௞ is 

split, the left child inherits its parent’s attributes (i.e., 𝐜ଶ௞ାଵ ൌ 𝐜௞), while the right child 

becomes a slightly perturbed version of its parent (i.e., 𝐜ଶ௞ାଶ ൌ 𝐜௞ ൅ 𝝐, where 𝝐 is an 

arbitrary vector of small positive ℓଶ norm). Let 𝝐 ൌ  ሺ𝜖, 𝜖, 𝜖ሻ with  𝜖 ൒  0. Experiments 

with 𝜖 ∈ ሼ0.0, 0.255, 1.02, 4.08, 16.32ሽ revealed that as long as 𝜖 is small, its precise 

value makes little difference in the MSE obtained. Thus, we used 𝜖 ൌ  0 for IOKM and 

𝜖 ൌ 0.255 for IBKM (recall that BKM, which is repeatedly called by IBKM, generates 

empty clusters unless‖𝝐‖ଶ ൐ 0).  
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 Comparison Against Other CQ Algorithms  

 The proposed IOKM algorithm (and the other k-means variants, i.e., BKM, 

IBKM, and OKM) were compared to 13 well-known CQ algorithms, namely popularity 

(POP) (Heckbert 1982), median-cut (MC) (Heckbert 1982), modified popularity (MPOP) 

(Braudaway 1987), octree (OCT) (Gervautz & Purgathofer 1988), variance-based 

algorithm (WAN) (Wan, Wong, & Prusinkiewicz 1990), greedy orthogonal bi-

partitioning (WU) (Wu 1991), center-cut (CC) (Joy 1993), self-organizing map (SOM) 

(Dekker 1994), radius-weighted mean-cut (RWM) (Yang & Lin 1996), modified 

maximin (MMM) (Xiang 1997), split and merge (SAM) (Brun & Mokhtari 2000), 

variance-cut (VC) (Celebi, Wen, & Hwang 2015), and variance-cut with Lloyd iterations 

(VCL) (Celebi, Wen, & Hwang 2015). 

Among these, SOM, MMM, VCL, BKM, IBKM, OKM, and IOKM are 

partitional algorithms, whereas the remaining ones are hierarchical algorithms. 

Brief descriptions of these algorithms (except for IBKM, OKM, and IOKM, 

which are described in this thesis) can be found in our previous work (Celebi 

2009; Celebi 2011; Celebi, Hwang, & Wen 2014; Celebi, Wen, & Hwang 2015).  

Table 1 compares the effectiveness of the CQ algorithms quantified by the MSE 

measure, with the lowest/best values shown in bold. Table 2, on the other hand, compares 

the efficiency of the four k-means based CQ algorithms on three of the test images: 

Baboon, Lenna, and Peppers. These images were chosen as they have identical 

dimensions (512 × 512), while the other images have varying dimensions. The efficiency 

of a CQ algorithm was measured by CPU time in milliseconds (averaged over 10 

independent runs). Each of the remaining CQ algorithms was excluded from the 



 

15 

efficiency comparisons for one of two reasons: 1) The algorithm is a hierarchical one that 

trades effectiveness for efficiency, or 2) The algorithm is a partitional one that is neither 

effective nor efficient (compared to the four k-means variants). All algorithms were 

implemented in the C/C++ language and executed on a 1.8GHz Intel Core i7-8665U 

CPU. The following observations are in order:  

 As expected, the partitional algorithms are generally more effective, than the 

hierarchical ones.  

 In general, VC is the most effective hierarchical algorithm. 

 Overall, IBKM is the most effective algorithm as it often attains the best MSE, 

with IOKM usually attaining the second best MSE. IBKM often gives a 

slightly lower MSE than IOKM, but this comes at a very high computational 

cost (IOKM is 42 to 385 times faster than IBKM.) The superiority of IOKM 

can be attributed to the online nature of IOKM and its integrated initialization 

scheme. 

 OKM is more efficient than IOKM for 𝐾 ൏  128. At 𝐾 ൌ  128, the two 

algorithms are almost equally efficient. For 𝐾 ൐  128, IOKM is more 

efficient than OKM. 

 Compared to OKM, IOKM does not require initialization and attains better 

MSE values, in general. On average, the two algorithms have about the same 

efficiency. 

 The execution time of BKM varies widely among the three images Baboon, 

Lenna, and Peppers (all of which have the same number of pixels) for a given 

𝐾 value as shown in Table 2. For example, for 𝐾 ൌ  64, clustering Baboon 
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with BKM took approximately 14.5s, while using the same algorithm to 

cluster Peppers took approximately 6.5s. On the other hand, for 𝐾 ൌ  128, 

clustering Baboon with BKM took approximately 27.5s while clustering 

Peppers took longer to cluster with an approximate time of 34s. The execution 

time of IBKM is also similarly unpredictable across the images. In contrast to 

these batch algorithms, the online algorithms exhibit a very steady trend. In 

other words, for any given K value, OKM and IOKM take nearly constant 

time for each image. 

Figures 2, 4, and 6 show sample quantization results for close-up sections of the 

Baboon, Peppers, and Pills images, respectively. Figures 3, 5, and 7 show the full-scale 

error images for the respective images. Given a pair of original and quantized images, the 

error image was obtained by amplifying the pixelwise normalized ℓଶ differences by a 

factor of four and then negating them for better visualization. It can be seen that the 

proposed IOKM algorithm performs remarkably well, resulting in clean images with low 

distortion. Combined with the MSE figures given in Table 1, these error images 

demonstrate that the proposed algorithm and IBKM produce very similar results. 

 

  



 

17 

CHAPTER 4 CONCLUSIONS AND FUTURE WORK  

 In this thesis, an effective, efficient, and deterministic CQ algorithm called 

incremental online k-means (IOKM) was introduced. IOKM is based on Mac-Queen’s 

online k-means (OKM) algorithm, but unlike OKM and many other partitional clustering 

algorithms, IOKM does not require an explicit center initialization. In addition, unlike 

OKM, IOKM is deterministic thanks to its quasirandom sampling scheme. This means 

that one needs to run IOKM only once to obtain a high-quality quantization. The 

performance of IOKM was examined on a diverse set of public test images and compared 

to those of conventional as well as state-of-the-art CQ algorithms. The results showed 

that IOKM is competitive with the best algorithm (incremental batch k-means, IBKM) in 

terms of effectiveness, while being one to two orders of magnitude faster. IOKM is easy 

to implement and very efficient (requiring about a third of a second to quantize a 512 × 

512 image to 256 colors). IOKM is also easy to use because it requires no user-defined 

parameters other than 𝐾 (the number of output colors). Apart from the quasirandom 

sampling part, nothing in the proposed IOKM algorithm makes it specific to image data. 

Future work includes exploring the applicability of IOKM to higher-dimensional 

clustering problems.  
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Figure 1. Test Images 

 

   
(a) Baboon 

 
(b) Fish 

   
(c) Goldhill 

 
(d) Lenna 

   
(e) Motocross  (f) Parrots 

 

   
(g) Peppers  (h) Pills 
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Figure 2. Baboon output images (K= 32) 

 

(a) Original 

   

(b) MC output  (c) OCT output 

   

(d) SOM output  (e) VCL output 

   

(f) BKM output  (g) IBKM output 

   

(h) OKM output  (i) IOKM output 
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Figure 3. Baboon error images (K =32) 

   
(a) MC error  (b) OCT error 

   
(c) SOM error  (d) VCL error 

   
(e) BKM error  (f) IBKM error 

   

(g) OKM error  (h) IOKM error 
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Figure 4. Peppers output images (K = 64) 

 

(a) Original 

(b) MC output  (c) MMM output 

(d) SAM output  (e) VCL output 

(f) BKM output  (g) IBKM output 

(h) OKM output  (i) IOKM output 
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Figure 5. Peppers error images (K = 64) 

 
 

 
 

(a) MC error  (b) MMM error 

 
   

 
(c) SAM error  (d) VCL error 

 
 

 
 

(e) BKM error  (f) IBKM error 

 
 

 
 

(g) OKM error  (h) IOKM error 
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Figure 6. Pills output images (K = 128) 

 

(a) Original 

   

(b) POP output  (c) MPOP output 

   

(d) RWM output  (e) VCL output 

   

(f) BKM output  (g) IBKM output 

   

(h) OKM output  (i) IOKM output 
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Figure 7. Pills error images (K = 128) 

   

(a) POP error  (b) MPOP error 

   

(c) RWM error  (d) VCL error 

   

(e) BKM error  (f) IBKM error 

   

(g) OKM error  (h) IOKM error 
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Table 5. MSE comparison of the CQ algorithms 

Algo   K    K  

 32 64 128 256 32 64 128 256 

  Baboon   Fish  

POP 1679.5 849.5 330.7 170.4 2827.6 482.5 105.2 69.8 

MC 643.0 445.6 307.4 213.0 282.3 189.4 121.2 75.9 

MPOP 453.1 290.4 195.0 109.3 198.4 145.5 66.2 47.7 

OCT 530.2 306.6 203.6 125.0 218.4 125.1 77.8 44.3 

WAN 528.3 385.7 266.0 178.0 311.6 209.0 124.5 77.1 

WU 468.3 288.3 186.5 118.6 187.6 111.6 69.0 43.8 

CC 473.1 299.7 202.5 144.7 189.8 127.3 82.3 56.5 

RWM 459.0 301.6 188.1 120.2 176.7 109.0 68.9 44.4 

SAM 464.9 293.9 188.8 119.8 198.5 120.1 74 48.5 

VC 450.6 273.5 179.9 117.6 168.1 106.5 67.4 43.4 

VCL 425.6 264.0 173.1 115.3 169.9 102.5 65.1 43.1 

SOM 433.6 268.9 163.9 108.2 180.4 114.1 60.4 45.1 

MMM 510.0 368.4 230.4 147.5 223.4 144.2 81.7 53.7 

BKM 374.2 234.3 149.3 95.6 142.6 90.2 57.3 34.8 

IBKM 372.6 234.0 149.2 95.3 138.1 84.6 51.2 31.8 

OKM 375.7 235.2 152.2 97.7 144.5 93.1 59.0 35.9 

IOKM 376.2 237.8 153.0 98.7 139.0 85.0 52.3 33.1 
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Table 6. MSE comparison of the CQ algorithms cont. 

Algo   K    K  

 32 64 128 256 32 64 128 256 

  Goldhill   Lenna  

POP 576.7 199.3 101.8 73.1 347.2 199.5 84.5 65.3 

MC 293.9 188.8 132.3 86.5 214.0 146.1 112.4 80.3 

MPOP 200.2 140.7 66.7 48.6 194.5 138.9 60.0 47.8 

OCT 230.3 130.3 79.0 45.7 186.7 110.0 66.0 40.6 

WAN 229.0 141.2 94.5 64.4 216.5 140.8 87.6 56.7 

WU 196.0 114.2 71.4 45.2 158.2 99.1 61.7 39.4 

CC 202.0 134.9 87.9 57.9 189.1 125.5 80.6 52.2 

RWM 179.8 118.3 71.0 44.5 161.2 94.6 60.1 39.2 

SAM 179.3 111.2 70.4 46.7 158.0 102.0 65.0 45.4 

VC 174.8 109.5 68.3 42.4 145.6 91.7 60.7 38.9 

VCL 169.3 104.3 66.2 42.0 146.3 89.2 59.2 38.6 

SOM 182.1 104.2 59.5 38.4 140.2 87.4 50.5 33.9 

MMM 239.9 143.1 95.4 61.0 183.3 114.2 73.5 48.5 

BKM 143.8 83.0 52.0 34.2 130.8 74.7 46.8 30.3 

IBKM 143.1 84.0 52.1 33.7 117.5 71.7 45.4 29.6 

OKM 144.1 84.3 52.8 35.5 131.3 75.1 47.5 31.1 

IOKM 141.8 83.7 52.5 34.1 119.4 72.1 46.2 30.5 
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Table 7. MSE comparison of the CQ algorithms cont. 

Algo   K    K  

 32 64 128 256 32 64 128 256 

  Motocross   Parrots  

POP 1288.6 474.3 201.6 93.5 4086.8 371.7 180.6 104.0 

MC 437.6 254.0 169.4 114.3 441.0 265.1 153.6 112.3 

MPOP 287.5 177.9 84.1 53.3 379.8 212.1 104.7 59.4 

OCT 300.5 158.9 96.2 54.2 342.4 191.2 111.2 63.8 

WAN 445.6 292.1 168.7 92.4 376.0 233.4 153.4 92.2 

WU 268.1 147.2 86.7 51.0 299.2 167.3 95.4 58.3 

CC 335.1 202.0 122.6 74.9 398.8 246.5 148.7 78.9 

RWM 251.4 150.1 83.7 51.0 296.5 171.0 99.8 60.6 

SAM 238.1 138.5 81.8 53.5 282.4 157.5 92.4 58.8 

VC 253.2 144.5 79.6 48.8 290.6 166.4 98.0 58.5 

VCL 240.6 131.5 77.1 47.9 263.7 157.5 96.6 57.2 

SOM 301.7 134.7 70.3 44.2 279.4 151.5 82.2 47.7 

MMM 407.9 276.9 138.2 85.6 352.1 194.8 128.7 68.5 

BKM 197.5 115.0 68.0 42.9 230.7 129.5 73.2 44.3 

IBKM 187.9 107.8 62.3 37.0 235.0 127.7 72.4 42.3 

OKM 197.3 116.4 72.4 44.9 241.0 128.5 75.4 45.0 

IOKM 190.2 108.6 62.2 37.3 230.3 126.0 72.7 42.7 
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Table 8. MSE comparison of the CQ algorithms cont. 

Algo   K    K  

 32 64 128 256 32 64 128 256 

  Peppers   Pills  

POP 1389.3 367.7 218.3 129.1 788.2 222.9 124.0 85.3 

MC 377.6 238.9 173.8 121.9 324.2 233.8 159.5 100.4 

MPOP 338.7 204.9 112.1 69.3 277.5 175.2 88.4 55.1 

OCT 317.4 193.1 113.9 68.9 281.9 159.8 99.1 56.9 

WAN 348.1 225.7 157.2 106.4 294.9 197.7 133.1 87.7 

WU 278.9 165.5 102.2 66.1 261.2 150.1 89.5 55.0 

CC 418.4 256.8 160.7 107.9 285.9 171.7 111.9 77.4 

RWM 295.6 178.8 107.1 69.2 260.4 149.7 88.8 55.6 

SAM 275.7 159.2 100.8 65.9 246.2 141.2 85.0 53.7 

VC 294.8 169.3 108.0 69.5 234.4 146.6 90.2 54.2 

VCL 261.1 160.3 103.8 68.4 229.8 141.4 85.7 53.8 

SOM 270.9 160.5 89.9 69.1 226.4 137.8 72.4 46.0 

MMM 341.5 213.3 136.5 85.2 276.2 174.9 117.2 75.6 

BKM 248.7 148.1 87.7 55.0 198.4 111.1 66.3 41.0 

IBKM 228.9 131.8 82.7 53.1 202.4 111.7 65.5 40.1 

OKM 260.8 148.9 89.3 57.3 200.1 112.7 66.9 42.0 

IOKM 231.5 134.0 84.3 54.6 198.3 111.9 66.3 41.0 
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Table 9. CPU time comparison of the CQ algorithms 

 
Algorithm

K 

32  64  128  256 

 
Baboon 

BKM  4432  14450  27452  39083 

IBKM  5573  16674  73407  126005 

OKM  89  139  220  409 

IOKM  132  175  232  328 

 
Lenna 

BKM  4529  9690  27149  33139 

IBKM  5787  14229  37642  72996 

OKM  90  140  226  401 

IOKM  129  172  230  332 

 
Peppers 

BKM  2744  6525  34149  30483 

IBKM  5610  16215  45464  91373 

OKM  92  137  228  403 

IOKM  123  169  230  324 

 
 


