
THE INCREMENTAL ONLINE K-MEANS CLUSTERING ALGORITHM
AND ITS APPLICATION TO COLOR QUANTIZATION

by

Amber Abernathy

A thesis presented to the Department of Computer Science and Engineering
and the Graduate School of the University of Central Arkansas

in partial fulfillment of the requirements for the degree of

Master of Science
in

Computer Science

Conway, Arkansas
May 2022

ii

© 2022 Amber Abernathy

iii

ACKNOWLEDGEMENT

First and foremost, I would like to express my sincerest thanks to my thesis and

research advisor Dr. Emre Celebi, professor and chairperson of the Department of

Computer Science and Engineering at the University of Central Arkansas. This research

would not have been possible without his dedication, leadership, and support.

I would also like to thank the members of my thesis committee, Dr. Yu Sun and

Dr. Sinan Kockara, for their support and positive experiences throughout my entire

educational journey at the University of Central Arkansas.

Finally, I would like to thank the remaining faculty of the Department of

Computer Science and Engineering for their time, influence, and support. Everyone has

played a major role in both influencing my future and education, all while engraving

positive memories along the way. Thank you all for all you do.

iv

VITA

 Amber Abernathy was raised in Morley, Missouri before moving to Little Rock,

Arkansas at the age of 5. In 2017, she graduated as class Valedictorian from Mayflower

High School. After high school, she attended the University of Central Arkansas and

graduated in May 2021 with a Bachelor of Science in Computer Science and minors in

Mathematics and Business Administration.

v

ABSTRACT

Color quantization (CQ) is a common image processing operation with various

applications in computer graphics, image processing, and computer vision. CQ is

essentially a large-scale combinatorial optimization problem in low dimensions. Many

clustering algorithms, both of hierarchical and partitional types, have been applied to the

CQ problem since the 1980s. In general, hierarchical CQ algorithms are faster, whereas

partitional ones produce better results provided that they are initialized properly. In this

thesis, we propose a novel partitional CQ algorithm based on a binary splitting

formulation of MacQueen’s online k-means algorithm. Experiments on a diverse set of

public test images demonstrate that the proposed algorithm is significantly faster than two

popular batch k-means algorithms while yielding nearly identical results. In addition,

unlike MacQueen’s original algorithm, the proposed algorithm is both deterministic and

free of initialization. The presented algorithm may be of independent interest as a

general-purpose clustering algorithm.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENT ... iii

VITA .. iv

ABSTRACT .. v

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

CHAPTER 1 INTRODUCTION .. 1

CHAPTER 2 K-MEANS AND ITS VARIANTS .. 3

CHAPTER 3 EXPERIMENTAL RESULTS AND DISCUSSION 13

CHAPTER 4 CONCLUSIONS AND FUTURE WORK ... 17

REFERENCES ... 18

vii

LIST OF TABLES

Table 1. BKM Algorithm .. 4

Table 2. IBKM Algorithm .. 5

Table 3. OKM Algorithm ... 7

Table 4. Maximin Algorithm .. 12

Table 5. MSE comparison of the CQ algorithms .. 30

Table 6. CPU time comparison of the CQ algorithms .. 34

viii

LIST OF FIGURES

Figure 1. Test Images .. 23

Figure 2. Baboon output images (K= 32) ... 24

Figure 3. Baboon error images (K =32) .. 25

Figure 4. Peppers output images (K = 64) .. 26

Figure 5. Peppers error images (K = 64) .. 27

Figure 6. Pills output images (K = 128) .. 28

Figure 7. Pills error images (K = 128) .. 29

1

CHAPTER 1 INTRODUCTION

True-color images have become truly ubiquitous over the past two decades. A

typical true-color image may contain hundreds of thousands of colors, which makes it

challenging to display, store, transmit, process, and analyze such an image. Color

Quantization (CQ) is a common image processing operation, which aims to reduce the

number of distinct colors in a true-color image with minimal distortion. Thus, CQ is

fundamentally a large-scale combinatorial optimization problem in low dimensions.

Recent applications of CQ include compression, segmentation, text

localization/detection, color analysis, watermarking, non- photorealistic rendering, and

content-based retrieval (Thompson, Celebi, & Buck 2020).

CQ consists of two main phases: palette design (the selection of a small set of

colors that represents the colors in the input image) and pixel mapping (the assignment of

each pixel in the input image to one of the palette colors). Since pixel mapping can be

accomplished using a straightforward linear-time algorithm that maps each input pixel to

the nearest palette color, most CQ studies deal with the computationally difficult palette

design phase.

Many clustering algorithms, both of hierarchical and partitional types, have been

applied to the palette design problem since the 1980s (Brun & Tremeau 2002). A

hierarchical algorithm partitions the input data set into a set of nested clusters that are

organized as a tree. These algorithms recursively find nested clusters in a top-down

(divisive) or bottom-up (agglomerative) manner (Jain, Murty, & Flynn 1999). A

partitional algorithm, on the other hand, partitions the input data set into a number of

mutually exclusive subsets. These algorithms find all clusters simultaneously without

2

imposing a hierarchical structure (Jain, Murty, & Flynn 1999). In the context of CQ,

hierarchical design algorithms are generally faster, whereas partitional ones often

produce better results as long that they are initialized properly. Classic hierarchical CQ

algorithms include median-cut (Heckbert 1982), octree (Gervautz & Purgathofer 1988),

Wan et al.’s algorithm (Wan, Prusinkiewicz, & Wong 1990), Wu’s algorithm (Wu 1991),

Orchard & Bouman’s algorithm (Orchard & Bouman 1991), center-cut (Joy & Xiang

1993), and rwm cut (Yang & Lin 1996). Partitional algorithms adapted to CQ include

competitive learning (Celebi, Hwang, & Wen 2014), fuzzy c-means (Schaefer & Zhou

2009; Wen & Celebi 2011), k-means (Hu & Lee 2007; Hu & Su 2008) (Celebi 2009;

Celebi 2011; Valenzuela, Celebi, & Schaefer 2018; Thompson, Celebi, & Buck 2020), k-

harmonic means (Frackiewicz & Palus 2011), maximin (Xiang 1997), rough c-means

(Schaefer, HU, Zhou, Peters, & Hassanien 2012), and self-organizing maps (Dekker

1994; Pei & Lo 1998; Chang, Xu, Xiao, & Srikanthan 2005; Wang, Lee, & Hsieh 2007;

Rasti, Monadjemi, & Vafaei 2011).

In this thesis, we present a novel partitional CQ algorithm based on an online

formulation of the celebrated k-means algorithm. The remainder of the thesis is organized

as follows. Chapter 2 describes three known variants of the k-means clustering algorithm

and the proposed fourth variant. Chapter 3 presents the experimental results and

compares the proposed algorithm to conventional as well as state-of-the-art CQ

algorithms. Finally, Chapter 4 gives the conclusions.

3

CHAPTER 2 K-MEANS AND ITS VARIANTS

This chapter describes four variants of the k-means clustering algorithm: batch k-

means, incremental batch k-means, online k-means, and incremental online k-means. The

first three algorithms are known, and the last one is new.

Batch K-Means

Batch k-means (BKM) (Forgy 1965), also known as Lloyd’s algorithm (Lloyd

1982), is the most widely used partitional clustering algorithm (Wu, Kumar, Quinlan, et

al. 2008). Given a data set 𝑋 ൌ ሼ𝒙ଵ, … , 𝒙ேሽ  ℝ஽ and a positive integer 𝐾 ൐ 1, BKM

divides 𝑋 into 𝐾 mutually exclusive and exhaustive clusters ሼ𝑃ଵ, … , 𝑃௄ሽ, where each

cluster 𝑃௜ is represented by a center 𝒄௜. The algorithm starts with an arbitrary set of initial

centers, customarily chosen uniformly at random from 𝑋. Each iteration is composed of

two steps: assignment and update. In the assignment step, each data point is assigned to

the nearest center. In the update step, each center is updated to be the centroid of the data

points assigned to it. Each iteration can be shown to either decrease the Sum of Squared

Error (SSE) defined as SSE ൌ ∑ 𝑑ୗ୉ሺ𝐱, ሼ𝐜ଵ, . . . , 𝐜௄ሽሻ𝐱∈௑ , where 𝑑ୗ୉ሺ𝐱, 𝐶ሻ denotes the

squared Euclidean ሺℓଶ
ଶሻ dissimilarity between data point 𝐱 and the nearest center in 𝐶, or

leave it unchanged (at which point the algorithm is considered to have converged).

Banerjee et al. (Banerjee, Merugu, Dhillon, Ghosh, & Lafferty 2005) proved that the

optimal center of a cluster is given by the centroid of the cluster only for Bregman

divergences (Bregman 1967), a family of nonmetric dissimilarity functions that includes

the ሺℓଶ
ଶሻ dissimilarity, squared Mahalanobis dissimilarity, Kullback–Leibler divergence,

and Itakura–Saito divergence.

4

Let 𝐼 be the input image in a CQ application. The data set 𝑋 then represents the

pixels of 𝐼, 𝑁 is the number of pixels in 𝐼, 𝐷 is the number of color channels (𝐷 ൌ 3 for

the RGB color model), and 𝐾 is the number of desired colors in the output (quantized)

image. The pseudocode for BKM is given in Table 1.

Table 1. BKM Algorithm

Step Description

1 Initialize the cluster centers ሼ𝒄ଵ , . . . , 𝒄௄ሽ.

 2 Assign each 𝐱 ∈ 𝑋 to the nearest center, i.e., 𝒄௜ with 𝑖 ൌ

 arg 𝑚𝑖𝑛
௞∈ሼଵ,…,௄ሽ

 ‖𝐱 െ 𝐜௞‖ଶ
ଶ, where ∥൉∥ଶ

ଶ denotes the ℓଶ
ଶ norm.

3

4

Update each cluster center 𝐜௜ to be the centroid of the data points

assigned to it, i.e., 𝐜௜ ൌ ሺ1/𝑛௜ሻ ∑ 𝐱𝐱∈௉೔
, where 𝑛௜ is the number of data

points assigned to 𝐜௜.

Repeat steps (2) and (3) until convergence.

BKM converges to a local minimum of its objective when the cluster

memberships of the data points stabilize (or, equivalently, when the cluster centers

stabilize). Step (1), initialization, is the most important step as the algorithm is highly

sensitive to the initialization of the centers. Adverse effects of poor initialization include

empty clusters, slower convergence, and a higher chance of getting stuck in a bad local

optimum (Celebi, Kingravi, & Vela 2013). Although it has a linear time complexity (in

N, D, and K), BKM is computationally demanding to do its iterative nature (Celebi 2011).

In general, the number of iterations cannot be predicted in advance and depends on the

5

number, dimensionality, and distribution of the data points as well as the number of

clusters sought.

Incremental Batch K-Means

Incremental batch k-means (IBKM) (Linde, Buzo, & Gray 1980) is a variant of BKM

that features a built-in initialization scheme. The original BKM algorithm assumes that

the algorithm is supplied with appropriate initial centers. IBKM, on the other hand, starts

with a single center and incrementally adds new centers until the number of centers

reaches K. The pseudocode for IBKM is given in Table 2.

Table 2. IBKM Algorithm

Step Description

1 Set 𝐜଴ ൌ 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑ሺ𝑋ሻ and iteration counter 𝑡 ൌ 0.

 2 For each 𝑘 ∈ ሼ2௧ െ 1, . . . , 2௧ାଵ െ 2ሽ, split node 𝐜௞ into nodes 𝐜ଶ௞ାଵ

and 𝐜ଶ௞ାଶ.

3

4

Refine centers ሺ2௧ାଵ െ 1ሻ, . . . , ሺ2௧ାଶ െ 2ሻ using BKM (the entire data

set 𝑋 is clustered.)

Set 𝑡 ൌ 𝑡 ൅ 1 and repeat steps (2) and (3) until 𝑡 ൌ logଶ 𝐾.

The algorithm begins by setting 𝐜଴ to the centroid of 𝑋 (for 𝐾 ൌ 1, this choice of 𝐜଴

is clearly optimal). It then adds 2௧ାଵ new centers in iteration 𝑡 ሺ𝑡 ∈ ሼ0, . . . , logଶ 𝐾 – 1ሽሻ

splitting each of the existing centers into two. When a center 𝐜௞ is split, the left child

inherits its parent’s attributes (i.e., 𝐜ଶ௞ାଵ ൌ 𝐜௞), whereas the right child becomes a

slightly perturbed version of its parent (i.e., 𝐜ଶ௞ାଵ ൌ 𝐜௞ ൅ 𝝐 where 𝝐 is an arbitrary

6

vector of small positive ℓଶ norm). Preserving the parent’s attributes in the next iteration

ensures that the SSE will not increase (Gray 1984). Note that in the IBKM pseudocode

above, for simplicity, we assumed that 𝐾 is a power of two. If this is not the case, we

perform ⌊logଶ 𝐾⌋ iterations as described above and then perform one last iteration in

which we split only 𝐾 െ 2ሾ୪୭୥మ ௄ሿof the centers from the previous iteration.

While BKM is well known in virtually all scientific disciplines where clustering is

employed (Celebi 2014), IBKM appears to be known primarily in the vector quantization

literature from which it originated.

Online K-Means

Online k-means (OKM) (MacQueen 1967), also known as sequential k-means or

Mac-Queen’s k-means, is an online variant of BKM. The two algorithms differ in how

often and how they update the cluster centers. BKM updates all 𝐾 cluster centers at once

after all data points are assigned to their respective nearest centers. OKM, on the other

hand, updates a single cluster center immediately after a data point is assigned to it. OKM

is considered a noisy version of BKM where the noise aids the algorithm in escaping bad

local optima (Bottou 1995). The pseudocode for OKM is given in Table 3.

7

Table 3. OKM Algorithm

Step Description

1 Initialize the cluster centers ሼ𝒄ଵ , . . . , 𝒄௄ሽ.

 2 Set 𝑛ଵ ൌ ൉൉൉ ൌ 𝑛௄ ൌ 0, where 𝑛௜ is the number of data points

assigned to center 𝐜௜.

3

4

5

6

Select a data point 𝐱 from 𝑋 uniformly at random.

Assign 𝐱 to the nearest center, say 𝐜௜ (refer to step (2) in the BKM

pseudocode).

Increment 𝑛௜ ሺ𝑖. 𝑒. , 𝑛௜ ൌ 𝑛௜ ൅ 1ሻ and then update 𝐜௜ to reflect the

newly added point as follows: 𝐜௜ ൌ 𝐜௜ ൅ ሺ1/𝑛௜ሻሺ𝐱 െ 𝐜௜ሻ.

Repeat steps (3) through (5) until convergence.

Note that, unlike BKM, OKM traverses the data points in random order, which

aims to reduce OKM’s sensitivity to the order in which the data points are processed.

Studies have shown that for online learning algorithms like OKM, random traversal is

preferable to cyclical traversal, which is used in BKM (Bermejo & Cabestany 2002). This

is because cyclical presentation may bias an online learning algorithm, especially when

dealing with redundant data sets such as image data.

OKM is an instance of the competitive learning paradigm, an unsupervised

learning scheme for discovering general features that can be used to classify a set of

patterns (Grossberg 1987; Rumelhart & Zipser 1985). In a basic competitive learning

algorithm, given a set of randomly distributed units, the units compete for assignment to a

given subset of inputs. After the presentation of each input, the closest unit is deemed the

8

winner and moved closer to the input. Hard competitive learning, also known as winner-

take-all learning, consists of algorithms where each input determines the adaptations of a

single winning unit. OKM is an instance of hard competitive learning, as only the

winning unit is moved towards the input presented in each iteration.

Let 𝐱ሺ௧ሻ be the input at time 𝑡 ሺ𝑡 ൌ 1, 2, … ሻ and 𝐜ሺ௧ሻ be the corresponding

nearest center (winning unit) with respect to the ℓଶ
ଶ
 dissimilarity (refer to step (2) in the

BKM pseudocode). The adaptation equation for 𝐜ሺ௧ሻ is given by

𝒄ሺ௧ାଵሻ ൌ 𝒄ሺ௧ሻ ൅ 𝑟ሺ𝑡ሻሺ𝑥ሺ௧ሻ െ 𝒄ሺ௧ሻሻ, (1)

where 𝑟 ∈ ሾ0,1ሿ is the learning rate, which is chosen to satisfy the Robbins–Monro

conditions (Robbins & Monro 1951)

 𝑙𝑖𝑚
௧→ஶ

𝑟ሺ𝑡ሻ ൌ 0, (2a)

෌ 𝑟ሺ𝑡ሻ ൌ ∞
ஶ

௧ୀଵ
, (2b)

෌ 𝑟ሺ𝑡ሻଶ ൌ ∞
ஶ

௧ୀଵ
. (2c)

These conditions ensure that the learning rate decreases at a rate that is fast

enough to suppress the noise, but not too fast to avoid premature convergence. By

rearranging the adaptation equation above, we obtain

 𝐜ሺ௧ାଵሻ ൌ 𝑟ሺ𝑡ሻ𝐱ሺ௧ሻ ൅ ሺ1 െ 𝑟ሺ𝑡ሻሻ𝐜ሺ௧ሻሻ, (3)

which shows that new center 𝐜ሺ௧ାଵሻ is a convex combination of the old center 𝐜ሺ௧ሻ and the

input data point 𝐱ሺ௧ሻ. Under mild regularity conditions, OKM converges almost surely to

a local minimum (Bottou 1998).

9

The original OKM algorithm employs a harmonic learning rate 𝑟ሺ𝑡ሻ ൌ 1/𝑡,

which can be generalized using a parameter 𝑝 ∈ ሺ0.5, 1ሿ, resulting in the hyperharmonic

rate 𝑟ሺ𝑡ሻ ൌ 𝑡ି௣. In theory, the harmonic rate decays too rapidly, while the

hyperharmonic rate with 𝑝 ൌ 0.5 gives much better results (Darken & Moody 1990; Wu

& Yang 2006; Thompson, Celebi, & Buck 2020).

OKM scans through the input image only once, as opposed to BKM, which scans

through the image multiple times. In our earlier work (Thompson, Celebi, & Buck 2020),

we showed that OKM obtains very similar results to BKM while being 41 to 300 times

faster. Unlike BKM, however, OKM has an element of randomness in it (refer to step (3)

in the OKM pseudocode). In our earlier work (Thompson, Celebi, & Buck 2020), we

sampled the input image quasirandomly using a low-discrepancy sequence (Bratley 1988)

and showed that such a sampling is not only deterministic, but also gives nearly identical

results to pseudorandom sampling on average. In this study, we adopt the same

quasirandom sampling approach (refer to Thompson, Celebi, & Buck 2020 for details.)

On a historical note, MacQueen (MacQueen 1967) developed the OKM algorithm

and coined the term “k-means” in the mid-1960s. However, in time, “k-means” came to

refer to the BKM algorithm rather than MacQueen’s OKM algorithm. In fact, a vast

majority of the clustering literature discusses only the BKM algorithm.

Incremental Online K-Means

Incremental online k-means (IOKM) is a binary splitting variant of OKM. IOKM

is identical to IBKM with two exceptions. First, IOKM uses OKM (rather than BKM) to

refine the newly generated centers in each iteration. Second, in IOKM we can safely take

‖𝝐‖ଶ ൌ 0, while in IBKM ‖𝝐‖ଶ must be a small positive number. Otherwise, if we set

10

‖𝝐‖ଶ ൌ 0 in IBKM, the left and right children will be identical and the subsequent BKM

run will not be able to separate these identical centers, resulting in an empty cluster.

Following our earlier work (Thompson, Celebi, & Buck 2020), we implement

OKM as a one-pass algorithm. In other words, we terminate the iterations once the

algorithm is presented with 𝑁 data points. In each iteration, 𝐾 centers compete to

represent the presented data point. Thus, OKM performs on the order of 𝑁𝐾

computations. IOKM, on the other hand, performs logଶ 𝐾 passes over the input image,

but the number of centers competing in each pass is different. In pass 𝑡 ሺ𝑡 ∈

 ሼ0, . . . , logଶ 𝐾 െ 1ሽሻ, 2௧ାଵ centers compete, resulting in a total of ෌ 2௧ାଵ୪୭୥మ ௄ିଵ

௧ୀ଴
ൌ

 2𝐾 െ 2 centers competing. Hence, for 𝐾 ≪ 𝑁, IOKM performs on the order of

roughly 2𝑁𝐾 computations. Consequently, for reasons of fairness, we terminate each call

to OKM inside IOKM after 𝑁/2 iterations rather than 𝑁.

As mentioned earlier, BKM is very popular in the clustering literature, whereas its

incremental version, IBKM, is popular particularly in the vector quantization literature.

Despite its significant computational efficiency over BKM, however, OKM does not

seem to be as widely used as its batch counterpart. Finally, to the best of our knowledge,

IOKM, which is the incremental version of OKM, has not been investigated in the

literature.

Initialization of BKM and OKM

Recall that both BKM and OKM include an initialization step wherein the initial

cluster centers are determined. It is well known that initialization is especially important

for a batch learning algorithm like BKM (Celebi 2013; Celebi 2015). In this study, we

address the initialization problem for BKM and OKM using the maximin algorithm

11

(Gonzalez 1985). This algorithm begins by taking an arbitrary data point to be the first

center 𝐜ଵ. The remaining ሺ𝐾 െ 1ሻ centers are determined iteratively as follows. For 𝑖 ∈

 ሼ2, . . . , 𝐾ሽ, center 𝐜௜ is chosen to be the point with the largest minimum-distance to the

previously selected ሺ𝑖 െ 1ሻ centers, i.e.,

𝒄௜ ൌ arg 𝑚𝑎𝑥𝐱∈௑ 𝑚𝑖𝑛 ሺ𝑑ሺ𝐱, 𝐜ଵ ሻ, . . . , 𝑑ሺ𝐱, 𝐜௜ିଵሻሻ, (4)

where 𝑑 is a metric distance (it is common to take 𝑑 ൌ ℓଶ). By using 𝒪ሺ𝑁ሻ additional

memory, maximin can be implemented in 𝒪ሺ𝑁𝐾ሻ time (see below). We should also

mention that Feder and Green (Feder & Greene 1988) described an elaborate

implementation of the maximin algorithm with 𝒪ሺ𝑁 𝑙𝑜𝑔 𝐾ሻ time complexity, which is

optimal under the algebraic computation tree model. However, this time-optimal

maximin formulation is quite complicated and thus primarily of theoretical interest.

The maximin algorithm calls for an arbitrary selection of the first center. Selecting

this center uniformly at random from 𝑋 is customary, but this makes the otherwise

deterministic algorithm randomized. In this study, we achieve determinism by taking the

first center as the centroid of 𝑋, which can be computed as 𝑋 is read from the disk. The

pseudocode for maximin is given in Table 4.

12

Table 4. Maximin Algorithm

Step Description

1 Set, 𝐜ଵ ൌ 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑ሺ𝑋ሻ. Let 𝑑௝ ሺ𝑗 ∈ ሼ1, . . . , 𝑁ሽሻ denote the distance of

𝐱௝ to its nearest center. Set the index of the next center to be found as

𝑖 ൌ 2. Initialize 𝑑௠௔௫ ൌ െ∞, the maximum distance between any

data point and its nearest center.

 2 For each 𝑗 ∈ ሼ1, . . . , 𝑁ሽ, if 𝑑ሺ𝐱௝, 𝐜௜ିଵሻ ൏ 𝑑௝, then set 𝑑௝ ൌ 𝑑ሺ𝐱௝, 𝐜௜ିଵሻ.

If 𝑑௠௔௫ ൏ 𝑑௝, then update 𝑑௠௔௫ and the index of the corresponding

point (i.e., 𝑑௠௔௫ ൌ 𝑑௝ and 𝑗∗ ൌ 𝑗).

3 Set 𝐜௜ ൌ 𝐱௝∗ and increment 𝑖 ሺ𝑖. 𝑒. , 𝑖 ൌ 𝑖 ൅ 1ሻ.

4 Repeat steps (2) and (3) for the remaining ሺ𝐾 െ 2ሻ centers.

An interesting and little known property of maximin is that it selects one and only

one center from each of the 𝐾 clusters provided that 𝑋 contains compact and separated

clusters, i.e., each of the possible intra-cluster distances is less than each of the possible

inter-cluster distances (Hathaway, Bezdek, & Huband 2006). In other words, maximin is

an ideal initializer for k-means for well-clusterable data sets.

13

CHAPTER 3 EXPERIMENTAL RESULTS AND DISCUSSION

Image Set and Parameter Configuration

The proposed IOKM algorithm was tested on eight popular 24-bit test images

shown in Fig. 1. Of these images, Baboon (512 × 512), Lenna (512 × 512), and Peppers

(512 × 512) are from the USC-SIPI Image Database (http://sipi.usc.edu/database);

Motocross (768 × 512) and Parrots (768 × 512) are from the Kodak Lossless True Color

Image Suite (http://r0k.us/graphics/kodak/); and Goldhill (720 × 576), Fish (300 × 200),

and Pills (800 × 519) are by Lee Crocker, Luiz Velho, and Karel de Gendre, respectively.

The effectiveness of a CQ algorithm was quantified by the Mean Squared Error

(MSE) measure given by

𝑀𝑆𝐸ሺ𝐼, 𝐼ሚሻ ൌ ଵ

ுௐ
∑ ∑ ฮ𝐼ሺ𝑟, 𝑐ሻ െ 𝐼ሚሺ𝑟, 𝑐ሻฮ

ଶ

ଶௐ
௖ୀଵ

ு
௥ୀଵ , (5)

where 𝐼 and 𝐼ሚ respectively denote the 𝐻 ൈ 𝑊 original input and quantized output

images. MSE represents the average color distortion with respect to ℓଶ
ଶ.

As mentioned in the Chapter 2 (Incremental Batch K-Means), when a center 𝐜௞ is

split, the left child inherits its parent’s attributes (i.e., 𝐜ଶ௞ାଵ ൌ 𝐜௞), while the right child

becomes a slightly perturbed version of its parent (i.e., 𝐜ଶ௞ାଶ ൌ 𝐜௞ ൅ 𝝐, where 𝝐 is an

arbitrary vector of small positive ℓଶ norm). Let 𝝐 ൌ ሺ𝜖, 𝜖, 𝜖ሻ with 𝜖 ൒ 0. Experiments

with 𝜖 ∈ ሼ0.0, 0.255, 1.02, 4.08, 16.32ሽ revealed that as long as 𝜖 is small, its precise

value makes little difference in the MSE obtained. Thus, we used 𝜖 ൌ 0 for IOKM and

𝜖 ൌ 0.255 for IBKM (recall that BKM, which is repeatedly called by IBKM, generates

empty clusters unless‖𝝐‖ଶ ൐ 0).

14

 Comparison Against Other CQ Algorithms

 The proposed IOKM algorithm (and the other k-means variants, i.e., BKM,

IBKM, and OKM) were compared to 13 well-known CQ algorithms, namely popularity

(POP) (Heckbert 1982), median-cut (MC) (Heckbert 1982), modified popularity (MPOP)

(Braudaway 1987), octree (OCT) (Gervautz & Purgathofer 1988), variance-based

algorithm (WAN) (Wan, Wong, & Prusinkiewicz 1990), greedy orthogonal bi-

partitioning (WU) (Wu 1991), center-cut (CC) (Joy 1993), self-organizing map (SOM)

(Dekker 1994), radius-weighted mean-cut (RWM) (Yang & Lin 1996), modified

maximin (MMM) (Xiang 1997), split and merge (SAM) (Brun & Mokhtari 2000),

variance-cut (VC) (Celebi, Wen, & Hwang 2015), and variance-cut with Lloyd iterations

(VCL) (Celebi, Wen, & Hwang 2015).

Among these, SOM, MMM, VCL, BKM, IBKM, OKM, and IOKM are

partitional algorithms, whereas the remaining ones are hierarchical algorithms.

Brief descriptions of these algorithms (except for IBKM, OKM, and IOKM,

which are described in this thesis) can be found in our previous work (Celebi

2009; Celebi 2011; Celebi, Hwang, & Wen 2014; Celebi, Wen, & Hwang 2015).

Table 1 compares the effectiveness of the CQ algorithms quantified by the MSE

measure, with the lowest/best values shown in bold. Table 2, on the other hand, compares

the efficiency of the four k-means based CQ algorithms on three of the test images:

Baboon, Lenna, and Peppers. These images were chosen as they have identical

dimensions (512 × 512), while the other images have varying dimensions. The efficiency

of a CQ algorithm was measured by CPU time in milliseconds (averaged over 10

independent runs). Each of the remaining CQ algorithms was excluded from the

15

efficiency comparisons for one of two reasons: 1) The algorithm is a hierarchical one that

trades effectiveness for efficiency, or 2) The algorithm is a partitional one that is neither

effective nor efficient (compared to the four k-means variants). All algorithms were

implemented in the C/C++ language and executed on a 1.8GHz Intel Core i7-8665U

CPU. The following observations are in order:

 As expected, the partitional algorithms are generally more effective, than the

hierarchical ones.

 In general, VC is the most effective hierarchical algorithm.

 Overall, IBKM is the most effective algorithm as it often attains the best MSE,

with IOKM usually attaining the second best MSE. IBKM often gives a

slightly lower MSE than IOKM, but this comes at a very high computational

cost (IOKM is 42 to 385 times faster than IBKM.) The superiority of IOKM

can be attributed to the online nature of IOKM and its integrated initialization

scheme.

 OKM is more efficient than IOKM for 𝐾 ൏ 128. At 𝐾 ൌ 128, the two

algorithms are almost equally efficient. For 𝐾 ൐ 128, IOKM is more

efficient than OKM.

 Compared to OKM, IOKM does not require initialization and attains better

MSE values, in general. On average, the two algorithms have about the same

efficiency.

 The execution time of BKM varies widely among the three images Baboon,

Lenna, and Peppers (all of which have the same number of pixels) for a given

𝐾 value as shown in Table 2. For example, for 𝐾 ൌ 64, clustering Baboon

16

with BKM took approximately 14.5s, while using the same algorithm to

cluster Peppers took approximately 6.5s. On the other hand, for 𝐾 ൌ 128,

clustering Baboon with BKM took approximately 27.5s while clustering

Peppers took longer to cluster with an approximate time of 34s. The execution

time of IBKM is also similarly unpredictable across the images. In contrast to

these batch algorithms, the online algorithms exhibit a very steady trend. In

other words, for any given K value, OKM and IOKM take nearly constant

time for each image.

Figures 2, 4, and 6 show sample quantization results for close-up sections of the

Baboon, Peppers, and Pills images, respectively. Figures 3, 5, and 7 show the full-scale

error images for the respective images. Given a pair of original and quantized images, the

error image was obtained by amplifying the pixelwise normalized ℓଶ differences by a

factor of four and then negating them for better visualization. It can be seen that the

proposed IOKM algorithm performs remarkably well, resulting in clean images with low

distortion. Combined with the MSE figures given in Table 1, these error images

demonstrate that the proposed algorithm and IBKM produce very similar results.

17

CHAPTER 4 CONCLUSIONS AND FUTURE WORK

 In this thesis, an effective, efficient, and deterministic CQ algorithm called

incremental online k-means (IOKM) was introduced. IOKM is based on Mac-Queen’s

online k-means (OKM) algorithm, but unlike OKM and many other partitional clustering

algorithms, IOKM does not require an explicit center initialization. In addition, unlike

OKM, IOKM is deterministic thanks to its quasirandom sampling scheme. This means

that one needs to run IOKM only once to obtain a high-quality quantization. The

performance of IOKM was examined on a diverse set of public test images and compared

to those of conventional as well as state-of-the-art CQ algorithms. The results showed

that IOKM is competitive with the best algorithm (incremental batch k-means, IBKM) in

terms of effectiveness, while being one to two orders of magnitude faster. IOKM is easy

to implement and very efficient (requiring about a third of a second to quantize a 512 ×

512 image to 256 colors). IOKM is also easy to use because it requires no user-defined

parameters other than 𝐾 (the number of output colors). Apart from the quasirandom

sampling part, nothing in the proposed IOKM algorithm makes it specific to image data.

Future work includes exploring the applicability of IOKM to higher-dimensional

clustering problems.

18

REFERENCES

Banerjee, A., Merugu, S., Dhillon, I. S., Ghosh, J., & Lafferty, J. (2005). Clustering with

Bregman divergences. Journal of machine learning research, 6(10), 1705–1749.

Bermejo, S., & Cabestany, J. (2002). The effect of finite sample size on on-line k-

means. Neurocomputing, 48(1–4), 511–539. doi: 10.1016/S0925-2312(01)00626-

9

Bottou, L., & Bengio, Y. (1995). Convergence properties of the k-means algorithms.

In Advances in neural information processing systems. 585–592.

Bottou, L. (1998). Online Learning and Stochastic Approximations. In D. Saad (Ed.), On-

Line Learning in Neural Networks, Cambridge University Press, 9–42.

Bratley, P., Fox, B. L. (1988). Algorithm 659: Implementing Sobol’s Quasirandom

Sequence Generator. ACM transactions on Mathematical Software, 14(1) 88–100.

doi: 10.1145/42288.214372

Braudaway, G. W. (1987). Procedure for Optimum Choice of a Small Number of Colors

from a Large Color Palette for Color Imaging. Proceedings of the Electronic

Imaging Conference, 71–75.

Bregman, L. M. (1967). The Relaxation Method of Finding the Common Point of

Convex Sets and its Application to the Solution of Problems in Convex

Programming. USSR computational mathematics and mathematical physics, 7(3),

200–217. doi: 10.1016/0041-5553(67)90040-7

Brun, L., & Mokhtari, M. (2000). Two High Speed Color Quantization Algorithms.

Proceedings of the 1st International Conference on Color in Graphics and Image

Processing, 116–121.

Brun, L., & Trémeau, A. (2003). Color Quantization. Digital Color Imaging Handbook

(G. Sharma, Ed.), CRC Press, 589–638. doi: 10.1201/9781420041484

Celebi, M. E. (2009). Fast Color Quantization Using Weighted Sort-Means Clustering.

Journal of the Optical Society of America A, 26(11), 2434–2443. doi:

10.1364/JOSAA.26.002434

Celebi, M. E. (2011). Improving the Performance of K-Means for Color Quantization.

Image and Vision Computing, 29(1), 260–271. doi: 10.1016/j.imavis.2010.10.002

19

Celebi, M. E., Kingravi, H., & Vela, P. A. (2013). A Comparative Study of Efficient

Initialization Methods for the K-Means Clustering Algorithm. Expert Systems

with Applications, 40(1), 200–210. doi: 10.1016/j.eswa.2012.07.021

Celebi, M. E., Hwang, S., & Wen, Q. (2014). Color Quantization Using the Adaptive

Distributing Units Algorithm. Imaging Science Journal, 62(2), 80–91. doi:

10.1179/1743131X13Y.0000000059

Celebi, M. E.(ed.) (2014) Partitional Clustering Algorithms. Springer. doi: 10.1007/978-

3-319-09259-1

Celebi, M.E., Wen, Q. & Hwang, S. (2015). An Effective Real-Time Color Quantization

Method Based On Divisive Hierarchical Clustering, Journal of Real- Time Image

Processing, 10(2), 329–344. doi: 10.1007/s11554-012-0291-4

Chang, C. H., Xu, P., Xiao, R., & Srikanthan, T. (2005). New adaptive color quantization

method based on self-organizing maps. IEEE transactions on neural

networks, 16(1), 237–249. doi: 10.1109/TNN.2004.836543

Darken, C., Moody, J. (1990) Fast adaptive K-means clustering: some empirical results.

Proceedings of the 1990 International Joint Conference on Neural Networks. 233–

238. doi: 10.1109/IJCNN.1990.137720

Dekker, A. (1994). Kohonen Neural Networks for Optimal Colour Quantization.

Network: Computation in Neural Systems, 5(3), 351–367. doi: 10.1088/0954-

898X/5/3/003

Feder, T., Greene, D. (1988). Optimal Algorithms for Approximate Clustering, in:

Proceedings of the 20th Annual ACM Symposium on Theory of Computing, 434–

444. doi: 10.1145/62212

Forgy, E. (1965) Cluster Analysis of Multivariate Data: Efficiency versus Interpretability

of Classifications. Biometrics, 21, 768–780.

Frackiewicz, M., & Palus, H. (2011). KM and KHM Clustering Techniques for Colour

Image Quantisation. In J. M. R. S. Tavares, R. N. Jorge (Eds.), Computational

Vision and Medical Image Processing: Recent Trends, 161–174. Springer,

Dordrecht. doi: 10.1007/978-94-007-0011-6_9

20

Gervautz, M., & Purgathofer, W. (1988). A Simple Method for Color Quantization:

Octree Quantization. In N. Magnenat-Thalmann & D. Thalmann (Eds.), New

Trends in Computer Graphics, 219–231. Berlin, Germany: Springer. doi:

10.1007/978-3-642-83492-9_20

Gonzalez, T. (1985). Clustering to Minimize the Maximum Intercluster Distance.

Theoretical Computer Science 38(2–3), 293–306. doi: 10.1016/0304-

3975(85)90224-5

Grossberg, S. (1987). Competitive learning: From interactive activation to adaptive

resonance. Cognitive science, 11(1), 23–63. doi: 10.1016/S0364-0213(87)80025-

3

Hathaway R.J., Bezdek J.C., Huband J.M. (2006). Maximin Initialization for Cluster

Analysis, in: Proceedings of the 11th Iberoamerican Congress in Pattern

Recognition, Springer, 14–26. doi: 10.1007/11892755_2

Heckbert, P. (1982). Color Image Quantization for Frame Buffer Display. ACM

SIGGRAPH Computer Graphics, 16(3), 297–307. doi: 10.1145/965145.801294

Hu, Y., & Lee, M. G. (2007). K-means-based color palette design scheme with the use of

stable flags. Journal of Electronic Imaging, 16(3), 033003. doi:

10.1117/1.2762241

Hu, Y. C., & Su, B. H. (2008). Accelerated k-means clustering algorithm for colour

image quantization. The Imaging Science Journal, 56(1), 29–40. doi:

10.1179/174313107X176298

Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). ACM Computing Surveys (CSUR).

Data Clustering: A Review 31(3), 264–323. doi: 10.1145/331499.331504

Joy, G., & Xiang, Z. (1993). Center-Cut for Color Image Quantization. Visual

Computing, 10(1), 62–66. doi: 10.1007/BF01905532

Linde Y., Buzo A., & Gray, R. (1980) An Algorithm for Vector Quantizer Design. IEEE

Transactions on Communications, 28(1), 84–95. doi:

10.1109/TCOM.1980.1094577

Lloyd, S. (1982). Least Squares Quantization in PCM. IEEE Transactions on Information

Theory, 28(2), 129–136. doi: 10.1109/TIT.1982.1056489

21

MacQueen, J. (1967) Some Methods for Classification and Analysis of Multivariate

Observations. Proceedings of the 5th Berkeley Symposium on Mathematical

Statistics and Probability 281–297. doi: 10.1.1.308.8619

Orchard, M. T., & Bouman, C. A. (1991). Color quantization of images. IEEE

transactions on signal processing, 39(12), 2677–2690. doi: 10.1109/78.107417

Pei, S. C., & Lo, Y. S. (1998). Color image compression and limited display using self-

organization Kohonen map. IEEE Transactions on circuits and systems for video

technology, 8(2), 191–205. doi: 10.1109/76.664104

Rasti, J., Monadjemi, A., & Vafaei, A. (2011). Color reduction using a multi-stage

Kohonen self-organizing map with redundant features. Expert Systems with

Applications, 38(10), 13188–13197. doi: 10.1016/j.eswa.2011.04.132

Robbins, H. & Monro, S. (1951) A Stochastic Approximation Method. Annals of

Mathematical Statistics, 22(3), 400–407. doi:10.1214/aoms/1177729586

Rumelhart, D. E., & Zipser, D. (1985). Feature discovery by competitive

learning. Cognitive science, 9(1), 75–112. doi: 10.1016/S0364-0213(85)80010-0

Schaefer, G., & Zhou, H. (2009). Fuzzy clustering for colour reduction in

images. Telecommunication Systems, 40(1), 17–25. doi: 10.1007/s11235-008-

9143-8

Schaefer, G., Hu, Q., Zhou, H., Peters, J. F., & Hassanien, A. E. (2012). Rough c-means

and fuzzy rough c-means for colour quantisation. Fundamenta

Informaticae, 119(1), 113–120. doi: 10.3233/FI-2012-729

Thompson, S., Celebi, M. E. & Buck, K. H. (2020) Fast color quantization using

MacQueen’s k-means algorithm. Journal of Real-Time Image Processing 17 (5),

1609–1624. doi:10.1007/s11554-019-00914-6

Valenzuela, G., Celebi, M. E., & Schaefer, G. (2018, October). Color quantization using

coreset sampling. In 2018 IEEE International Conference on Systems, Man, and

Cybernetics (SMC), 2096–210. IEEE. doi: 10.1109/SMC.2018.00361

Wan, S. J., Prusinkiewicz, P., & Wong, S. K. M. (1990). Variance-Based Color Image

Quantization for Frame Buffer Display. Color Research and Application, 15(1),

52–58. doi: 10.1002/col.5080150109

22

Wang, C. H., Lee, C. N., & Hsieh, C. H. (2007). Sample-size adaptive self-organization

map for color images quantization. Pattern Recognition Letters, 28(13), 1616–

1629. doi: 10.1016/j.patrec.2007.04.005

Wen, Q., & Celebi, M. E. (2011). Hard versus Fuzzy C-Means Clustering for Color

Quantization. EURASIP Journal on Advances in Signal Processing, 2011, 118–

129. doi: 10.1186/1687-6180-2011-118

Wu, X. (1991). Efficient Statistical Computations for Optimal Color Quantization. In: J.

Arvo (Ed.), Graphics Gems , 3, 126–133. Academic Press. doi: 10.1016/B978-0-

08-050754-5.50035-9

Wu, K. L., Yang, M. S. (2006). Alternative learning vector quantization. Pattern

Recognition, 39(3), 351–362. doi: 10.1016/j.patcog.2005.09.011

Wu, X., Kumar, V., Quinlan, J. R., et al. (2008). Top 10 Algorithms in Data Mining.

Knowledge and Information Systems, 14, 1–37. doi: 10.1007/s10115-007-0114-2

Xiang, Z. (1997). Color Image Quantization by Minimizing the Maximum Intercluster

Distance. ACM Transactions on Graphics, 16(3), 260–276. doi:

0.1145/256157.256159

Yair, E., Zeger, K., & Gersho, A. (1992). Competitive Learning and Soft Competition for

Vector Quantizer Design. IEEE Transactions on Signal Processing, 40(2), 294–

309. doi: 10.1109/78.124940

Yang, C. Y., & Lin, J. C. (1996). RWM-Cut for Color Image Quantization. Computers &

Graphics, 20(4), 577–588. doi: 10.1109/ICDAR.1995.601984

23

Figure 1. Test Images

(a) Baboon

(b) Fish

(c) Goldhill

(d) Lenna

(e) Motocross (f) Parrots

(g) Peppers (h) Pills

24

Figure 2. Baboon output images (K= 32)

(a) Original

(b) MC output (c) OCT output

(d) SOM output (e) VCL output

(f) BKM output (g) IBKM output

(h) OKM output (i) IOKM output

25

Figure 3. Baboon error images (K =32)

(a) MC error (b) OCT error

(c) SOM error (d) VCL error

(e) BKM error (f) IBKM error

(g) OKM error (h) IOKM error

26

Figure 4. Peppers output images (K = 64)

(a) Original

(b) MC output (c) MMM output

(d) SAM output (e) VCL output

(f) BKM output (g) IBKM output

(h) OKM output (i) IOKM output

27

Figure 5. Peppers error images (K = 64)

(a) MC error (b) MMM error

(c) SAM error (d) VCL error

(e) BKM error (f) IBKM error

(g) OKM error (h) IOKM error

28

Figure 6. Pills output images (K = 128)

(a) Original

(b) POP output (c) MPOP output

(d) RWM output (e) VCL output

(f) BKM output (g) IBKM output

(h) OKM output (i) IOKM output

29

Figure 7. Pills error images (K = 128)

(a) POP error (b) MPOP error

(c) RWM error (d) VCL error

(e) BKM error (f) IBKM error

(g) OKM error (h) IOKM error

30

Table 5. MSE comparison of the CQ algorithms

Algo K K

 32 64 128 256 32 64 128 256

 Baboon Fish

POP 1679.5 849.5 330.7 170.4 2827.6 482.5 105.2 69.8

MC 643.0 445.6 307.4 213.0 282.3 189.4 121.2 75.9

MPOP 453.1 290.4 195.0 109.3 198.4 145.5 66.2 47.7

OCT 530.2 306.6 203.6 125.0 218.4 125.1 77.8 44.3

WAN 528.3 385.7 266.0 178.0 311.6 209.0 124.5 77.1

WU 468.3 288.3 186.5 118.6 187.6 111.6 69.0 43.8

CC 473.1 299.7 202.5 144.7 189.8 127.3 82.3 56.5

RWM 459.0 301.6 188.1 120.2 176.7 109.0 68.9 44.4

SAM 464.9 293.9 188.8 119.8 198.5 120.1 74 48.5

VC 450.6 273.5 179.9 117.6 168.1 106.5 67.4 43.4

VCL 425.6 264.0 173.1 115.3 169.9 102.5 65.1 43.1

SOM 433.6 268.9 163.9 108.2 180.4 114.1 60.4 45.1

MMM 510.0 368.4 230.4 147.5 223.4 144.2 81.7 53.7

BKM 374.2 234.3 149.3 95.6 142.6 90.2 57.3 34.8

IBKM 372.6 234.0 149.2 95.3 138.1 84.6 51.2 31.8

OKM 375.7 235.2 152.2 97.7 144.5 93.1 59.0 35.9

IOKM 376.2 237.8 153.0 98.7 139.0 85.0 52.3 33.1

31

Table 6. MSE comparison of the CQ algorithms cont.

Algo K K

 32 64 128 256 32 64 128 256

 Goldhill Lenna

POP 576.7 199.3 101.8 73.1 347.2 199.5 84.5 65.3

MC 293.9 188.8 132.3 86.5 214.0 146.1 112.4 80.3

MPOP 200.2 140.7 66.7 48.6 194.5 138.9 60.0 47.8

OCT 230.3 130.3 79.0 45.7 186.7 110.0 66.0 40.6

WAN 229.0 141.2 94.5 64.4 216.5 140.8 87.6 56.7

WU 196.0 114.2 71.4 45.2 158.2 99.1 61.7 39.4

CC 202.0 134.9 87.9 57.9 189.1 125.5 80.6 52.2

RWM 179.8 118.3 71.0 44.5 161.2 94.6 60.1 39.2

SAM 179.3 111.2 70.4 46.7 158.0 102.0 65.0 45.4

VC 174.8 109.5 68.3 42.4 145.6 91.7 60.7 38.9

VCL 169.3 104.3 66.2 42.0 146.3 89.2 59.2 38.6

SOM 182.1 104.2 59.5 38.4 140.2 87.4 50.5 33.9

MMM 239.9 143.1 95.4 61.0 183.3 114.2 73.5 48.5

BKM 143.8 83.0 52.0 34.2 130.8 74.7 46.8 30.3

IBKM 143.1 84.0 52.1 33.7 117.5 71.7 45.4 29.6

OKM 144.1 84.3 52.8 35.5 131.3 75.1 47.5 31.1

IOKM 141.8 83.7 52.5 34.1 119.4 72.1 46.2 30.5

32

Table 7. MSE comparison of the CQ algorithms cont.

Algo K K

 32 64 128 256 32 64 128 256

 Motocross Parrots

POP 1288.6 474.3 201.6 93.5 4086.8 371.7 180.6 104.0

MC 437.6 254.0 169.4 114.3 441.0 265.1 153.6 112.3

MPOP 287.5 177.9 84.1 53.3 379.8 212.1 104.7 59.4

OCT 300.5 158.9 96.2 54.2 342.4 191.2 111.2 63.8

WAN 445.6 292.1 168.7 92.4 376.0 233.4 153.4 92.2

WU 268.1 147.2 86.7 51.0 299.2 167.3 95.4 58.3

CC 335.1 202.0 122.6 74.9 398.8 246.5 148.7 78.9

RWM 251.4 150.1 83.7 51.0 296.5 171.0 99.8 60.6

SAM 238.1 138.5 81.8 53.5 282.4 157.5 92.4 58.8

VC 253.2 144.5 79.6 48.8 290.6 166.4 98.0 58.5

VCL 240.6 131.5 77.1 47.9 263.7 157.5 96.6 57.2

SOM 301.7 134.7 70.3 44.2 279.4 151.5 82.2 47.7

MMM 407.9 276.9 138.2 85.6 352.1 194.8 128.7 68.5

BKM 197.5 115.0 68.0 42.9 230.7 129.5 73.2 44.3

IBKM 187.9 107.8 62.3 37.0 235.0 127.7 72.4 42.3

OKM 197.3 116.4 72.4 44.9 241.0 128.5 75.4 45.0

IOKM 190.2 108.6 62.2 37.3 230.3 126.0 72.7 42.7

33

Table 8. MSE comparison of the CQ algorithms cont.

Algo K K

 32 64 128 256 32 64 128 256

 Peppers Pills

POP 1389.3 367.7 218.3 129.1 788.2 222.9 124.0 85.3

MC 377.6 238.9 173.8 121.9 324.2 233.8 159.5 100.4

MPOP 338.7 204.9 112.1 69.3 277.5 175.2 88.4 55.1

OCT 317.4 193.1 113.9 68.9 281.9 159.8 99.1 56.9

WAN 348.1 225.7 157.2 106.4 294.9 197.7 133.1 87.7

WU 278.9 165.5 102.2 66.1 261.2 150.1 89.5 55.0

CC 418.4 256.8 160.7 107.9 285.9 171.7 111.9 77.4

RWM 295.6 178.8 107.1 69.2 260.4 149.7 88.8 55.6

SAM 275.7 159.2 100.8 65.9 246.2 141.2 85.0 53.7

VC 294.8 169.3 108.0 69.5 234.4 146.6 90.2 54.2

VCL 261.1 160.3 103.8 68.4 229.8 141.4 85.7 53.8

SOM 270.9 160.5 89.9 69.1 226.4 137.8 72.4 46.0

MMM 341.5 213.3 136.5 85.2 276.2 174.9 117.2 75.6

BKM 248.7 148.1 87.7 55.0 198.4 111.1 66.3 41.0

IBKM 228.9 131.8 82.7 53.1 202.4 111.7 65.5 40.1

OKM 260.8 148.9 89.3 57.3 200.1 112.7 66.9 42.0

IOKM 231.5 134.0 84.3 54.6 198.3 111.9 66.3 41.0

34

Table 9. CPU time comparison of the CQ algorithms

Algorithm

K

32 64 128 256

Baboon

BKM 4432 14450 27452 39083

IBKM 5573 16674 73407 126005

OKM 89 139 220 409

IOKM 132 175 232 328

Lenna

BKM 4529 9690 27149 33139

IBKM 5787 14229 37642 72996

OKM 90 140 226 401

IOKM 129 172 230 332

Peppers

BKM 2744 6525 34149 30483

IBKM 5610 16215 45464 91373

OKM 92 137 228 403

IOKM 123 169 230 324

