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ABSTRACT 

 As medical and technological advancements are made, newer collections of 

information are made available from more diverse sources. Not only have testing 

methods become more refined over time, but in some cases multiple tests have been 

developed to aid in the precision and authenticity of diagnostic processes. However, 

though more information is made available using multiple tests, there exists the desire to 

find relevant information and connections between these tests. This study took 

information collected from four different tests used in the diagnosis of diabetic 

neuropathy and, using data normalization and unsupervised learning methods, analyzed 

the collected information to find relevant patterns. Specifically, patterns relating to the 

grouping of patients based on the similarities that exist within their test results and 

possible redundancy detection between the tests used were expected. 

 To test these expectations, the unsupervised method of clustering was performed 

on a multi-view dataset containing test results from 40 diabetic neuropathy patients. This 

collected information was cleaned, and, following the data cleaning, normalized utilizing 

min-max normalization. Afterwards the dataset was placed through the K-Means 

clustering algorithm, a weighted K-means algorithm based on the validity of the K-means 

clusters formed in each view, and through agglomerative hierarchical clustering. Through 

internal validation, the optimal number of clusters for the dataset was found to be two, 

and the weighted method, after minor alterations to the determined weights were 

performed, did alter the results of the algorithm. Hierarchical clustering also revealed that 

in a smaller dataset, such as the diabetic neuropathy dataset, the patterns found in K-

means clustering are less apparent when compared on a step-by-step level. 
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CHAPTER 1: INTRODUCTION 

1.1 Data Science and Machine Learning 

Data Science has evolved considerably over the last 50 years [1]. Many fields 

now rely on data science to sift through the large amounts of data available to find 

meaningful information. Many examples of this exist in day-to-day life, such as Amazon 

utilizing data science to suggest products that would appeal to an individual based on 

previous views/purchases made by said individual, video streaming services such as Hulu 

and Netflix showing recommended shows/movies based on what an individual has 

watched previously, or in video games where multiplayer compatibility between players 

can be decided based on the skills of all individuals involved. Modern data science 

utilizes computer technology to automate and manage the data processing involved.  

Commonality that exists in the above examples as well as in many other applications of 

data science is the concept of finding similarities in the data. Programs are created to 

learn these similarities by creating groupings or models to reference when addressing 

later samples of data. This is machine learning. When referencing machine learning the 

concept is fairly straightforward: it should create ways for computers to mimic human 

thought processes. For example: when someone sees a new kind of animal for the first 

time, they notice distinct features that make that animal different from other animals seen 

before or features that label the animal based on previously seen animals.  

When we look at Figure 1 [2], we see that there are two distinct types of machine 

learning: Supervised and Unsupervised machine learning. The best way to summarize the 

difference between these types of machine learning is to acknowledge labels in the 

information. If one is given a photo album of labeled pictures of cats and dogs, their mind 
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now has a categorical model that can be used. Later when the animal is seen out on the 

side of the road or at a friend’s house their mind will reference the photo album to 

decisively label the animal as a cat or dog (assuming it falls within these categories). This 

is supervised learning. It is supervised due to the fact that a dataset, in this case the photo 

album, is used to create a model that can be referenced in further samples of data. In 

contrast, unsupervised machine learning uses unlabeled data to identify patterns. 

Unsupervised machine learning is especially useful when a data set is available and it is 

inferred that patterns in the data exist but there exists no current label to corroborate this 

inference.  

 

 

Figure 1: Machine learning applied to animals 

1.2 Data Clustering 

A common method of unsupervised machine learning is clustering. Clustering is 

the process of grouping datasets such that the groups, also called clusters, consist of 

objects where objects within the same cluster are more similar to each other than to 

objects in other clusters. Looking back to Figure 1, the unsupervised machine learning 

algorithm shown is an example of clustering. The animals that are grouped together share 
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more similarities with each other than they share with the other animal groups. Clustering 

can be used in cases where companies want to find patterns in their customers, or for use 

in the medical field where patient data is collected and finding possible patterns could 

assist in the efficiency of diagnostic procedure selection, such as the procedures utilized 

for the detection of diabetic neuropathy, which is the basis for this thesis. 

1.3 Diabetic Neuropathy 

Diabetes is a disease that occurs when your blood glucose, also called blood 

sugar, is too high [3]. Essentially this means that the body can have a built up amount of 

glucose and not enough insulin to send the glucose to the cells for energy. This can lead 

to further issues such as cardiovascular disease, skin conditions, hearing impairment, eye 

damage (retinopathy), kidney damage (nephropathy), or nerve damage (neuropathy). In 

particular, this thesis focused on diabetic neuropathy in diabetic patients. The dataset 

utilized was provided by a preliminary work of a more detailed project on the diagnosis 

and monitoring of diabetic neuropathy [4].  

Diabetic neuropathy is a type of nerve damage that can occur in those who have 

diabetes [5, 6]. The high levels of glucose caused by diabetes can lead to injured nerves 

throughout the body as shown in Figure 2 [7], resulting in symptoms ranging from 

numbness and pain in the legs and feet to more severe problems involving the digestive 

system, blood vessels, heart, or the urinary tract. There exists four main types of diabetic 

neuropathy: peripheral neuropathy (affecting the arms, legs, feet, and hands), autonomic 

neuropathy (affecting the autonomic nervous system such as the heart, bladder, stomach, 

intestines, sex organs, and eyes), proximal neuropathy (affecting the thighs, hips, 

buttocks, or legs), and mononeuropathy (with two types: cranial and peripheral, which 
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refer to damage to a specific nerve). Given the varying types and severety of diabetes 

and, specifically, diabetic neuropathy, there are different tests that can be employed to 

diagnose the condition. 

 

 

Figure 2: Glucose causes damage to neurons 

Blood tests may be done in the general diagnosis of diabetes, with particular focus 

on the Hb1ac levels (A1C) [8]. The A1C test provides the average level of glucose over 

the past three months [9]. The values of this type of test are given as a percentage where 

values between 5.7 and 6.4 indicate prediabetes and values of 6.5 or higher indicate 

diabetes. Other values in a blood test can provide indication for diabetes such as the 

triglyceride amount (where high triglycerides can act as an indicator of diabetes or 

prediabetes). When moving into the diagnosis of diabetic neuropathy, further testing of 

blood count and glucose levels is utilized. Another test performed in the diagnosis and 

testing for neuropathy is the Electromyography (EMG) procedure [10]. This procedure 

assesses the health of muscles and the nerve cells that control them. EMG procedures 
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measure the responses muscles give to signals provided by the nerves by inserting a 

needle electrode into the muscle and prompting the patient to contract and rest the 

muscle. Someone who has neuropathy will not record substantial responses from the 

muscles as the nerve damage will result in unclear signals being sent from the nerves. 

EMG tests are performed on the motor and sensory nerves. Another test that can provide 

a closer idea of the extent of diabetic neuropathy is the Michigan Neuropathy Screening 

(MNS) [11]. When conducting this test, two different items are used. The first part of the 

MNS is a self-administered 15 item questionnaire. Following the questionnaire is the 

Michigan Neuropathy Screening Instrument (MNSI) Examination. This second portion of 

the MNS is conducted by a physician in a non-invasive procedure. The questionnaire and 

examination are then scored and assigned numerical values based on the answers given. 

The final examination utilized in this thesis is the Cortical Metrics (CM4) test [12]. This 

test is performed by the Brain Gauge, a device that uses the sense of touch to measure 

brain activity.  

Brain Gauge devices, such as those depicted in Figure 3 [13], send vibrations to 

the two buttons on the device. The device is shaped similarly to a computer mouse where 

the patient simply places their hand on the device with their fingers placed on the buttons 

and, based on the type of test being conducted, different levels of vibrations are sent to 

the buttons for the user to identify. As diabetic neuropathy can cause numbness which 

can affect reflexes, this test can serve to further identify damage in the hands, arms, or the 

brain. As stated above, different tests can be conducted to produce the needed results. 

These tests include Static Threshold Detection Tests with varying thresholds (the user 

receives a faint vibration to one of the two fingers, followed by the user pressing the 
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button where the vibration occurred), Double Sided Adaptation Tests, Dynamic 

Threshold Detection Tests (the user receives a single, very faint vibration to one of the 

two fingers, then identifies which button the vibration came from), and Reaction Time 

Tests (the user will receive a single pulse to the right finger which will start a timer, and 

the user will then click the left button when they feel the vibration which will stop the 

timer and record the results). 

 

  

Figure 3: Examples of Brain Gauge devices used 

1.4 Goals of This Work 

 The goal of this thesis was to apply unsupervised machine learning techniques in 

an effort to identify existing patterns within a small set of diabetic neuropathy data. A 

secondary goal of this thesis was to possibly identify the necessity of the tests utilized in 

diabetic neuropathy diagnoses. For example: if the MNS test and CM4 test provide 

similar grouping results, then it may be asserted that using both tests may be unnecessary. 

This thesis serves as an introductory analysis of diabetic neuropathy data in an 

unsupervised environment as further testing should follow when a larger dataset is 

available. This thesis also serves as a test in multi-view data analysis and how the results 

gathered from different views can be compared and used without increasing the 

complexity of the base clustering algorithm. To address these concepts, 1025 lines of 

C++ code were written to perform the clustering algorithms with increased flexibility 
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regarding clustering multiple views, perform internal validation testing on the formed 

clusters, compare the resulting clusters formed based on the individual views, and 

perform a final clustering test with calculated weights based on the importance of each 

view being applied to the distance calculations. 
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CHAPTER 2: DATA 

2.1 Multi-View Datasets 

 As discussed, all the tests conducted on the patients are unique. They produce 

results based on their own criteria. However, all the tests seem to offer a connection in 

terms of diabetic neuropathy information. This type of collected data is referred to as 

multi-view data. What is important about multi-view data is that the different views 

exhibit heterogonous features but hold potential connections [14].  

What defines a view can be better illustrated by Figure 4 [15]. On the left, it 

shows that the news can be divided into four different sources of information. This shows 

that a multi-view dataset can be divided into its different views where each view has its 

own version of information while still containing information that can connect it to the 

other views. On the right, it shows how different types of information can also be used to 

create a multi-view dataset. Each of the possible types of information, the images and the 

textual information, are two distinct types of information. But in this case, they are both 

related to the same topic: dogs. What is important to note in these cases is that each of the 

different forms of data, the views, can provide sufficient information on their own. You 

can look at a single news source or only view pictures of dogs and you can sufficiently 

gather what information the news covered and what dogs are, respectively. Multi-view 

datasets are not used to create a basic model. Rather, they are used to reinforce a model 

that can be created by an individual view. 



 9 

 

Figure 4: Examples of multi-view data 

  

2.2 Data Collection 

 The data employed in the research of this thesis was collected over a three-month 

period (January to April 2013) from 40 diabetic patients with ages ranging from 32 to 71 

(10 male and 30 female) at the Department of Endocrinology in the Medical Faculty 

Hospital of Bezmialem Foundation University [4]. Before the data is given for each 

patient, the patient is labeled with a unique ID, their age, and their gender. The data 

following these labels consist of four separate tests conducted for each patient: first a 

blood sample is taken from the patient for blood testing. Second the MNS test is applied 

to the subject (2 columns of information recorded based on the self-administered 

questionnaire and the instrument test), then five different protocols of cortical metrics 

tests are performed on the subject, and the last step is the data collected from EMG tests 

performed by a neurologist (eight columns of information recorded from this test). From 

Tables 1-4 it is shown that the data is separated based on the tests performed. However, it 

is also shown that there is missing information in two separate forms: missing individual 
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patient data and missing test information. As such the first step in the utilization of this 

information is to perform data cleaning.  

MNS 

Michigan 
Neuropathy 

Screening 
Instrument: 

QUEST. 

Michigan 
Neuropathy 

Screening 
Instrument: 

EXAMINATION 

mnt-semp mnt-mua 
6 3 
-1 -1 
9 5 

Table 1: Example of MNS data collection 

 

EMG 

emg-pol 
binary 
value 

indicating 
existence 

of 
neuropathy  

kps: 
binary 
value 

indicating 
the 

existence 
of karpal 

tunnel 
syndrome MOTOR SENSORY 

emg-pol kps latency amplitude 
conduction 

velocity latency amplitude 
conduction 

velocity 
1 1 3.1 6 53.5 2.6 17 60 
-1 -1 -1 -1 -1 -1 -1 -1 
1 1 3 8.9 57.7 2.6 27 57.1 

Table 2: Example of EMG data collection 
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DIABETIC 

BLOOD TESTS 
hb1ac ldl trig mik creatinine ted alt 

6.9 102 103 4.5 0.6 1 12 
6.7 154 143 3.5 0.5 1 20 
7.6 103 118 4.2 0.6 0.1 21 

Table 3: Example of blood test data collection 

 

CM4 

Static 
Threshold 
Detection 

Test 

Static 
Threshold 
Detection 
Test (with 
different 

threshold) 

Double 
side 

adaptation 
test 

Dynamic 
Threshold 
Detection 

Test 

Reaction 
Time 
Test 

#100_1 #100_2 #109 #713 #801 
10.6 96 9 29.9333 688.8 
14.4 40 180 20.8 585.4 
16.8 212 -1 34.2285 562.2 

Table 4: Example of Cortical Metrics data collection 
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2.3 Data Cleaning 

 As stated above, the dataset utilized for this thesis is a small collection of 

information. In three of the 40 patients utilized in the tests, information is missing 

entirely for both the MNS and EMG test results. One of said patients can be observed in 

Tables 1 and 2. Without knowledge of the necessity of these tests, it can be assumed that 

these patients with missing information would be detrimental to the outcome of 

unsupervised data analysis. This results in the three patients being removed from the 

dataset for testing purposes. While removal of these patients is deemed necessary, it does 

cause further challenge in terms of building meaningful clusters as there is less available 

information to work with overall. 

 Another detrimental feature of the dataset is that multiple columns of test results 

contain missing information as well. The columns in question all relate to the Cortical 

Metrics tests performed using the Brain Gauge. Of the above-specified tests shown in 

Table 4, only two of the columns contained data for all patients. These columns are 

labeled as “Static Threshold Detection Test” and “Dynamic Threshold Detection Test”. 

The remaining three columns are removed as without a larger set of data, no safe 

assumptions can be made for the possible values of these tests.  
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2.5 Data Normalization 

 Feature normalization is required to approximately equalize ranges of the features 

and make them have approximately the same effect in the computation of similarity [16]. 

Min-max normalization is defined as  

𝑣𝑣′ = 𝑣𝑣−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

(𝑛𝑛𝑛𝑛𝑛𝑛_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑛𝑛𝑛𝑛𝑛𝑛_𝑚𝑚𝑚𝑚𝑛𝑛𝑚𝑚) + 𝑛𝑛𝑛𝑛𝑛𝑛_𝑚𝑚𝑚𝑚𝑛𝑛𝑚𝑚, 

where F is the feature, v is the current value of feature F, minF and maxF refer to the 

overall minimum and maximum values of feature F respectively, and new_maxF and 

new_minF refer to the new maximum and minimum values desired for feature F. A 

feature refers to a single column of information. For the sake of simplicity, the desired 

maximum value is set to one and the desired minimum values is set to zero.  

For machine learning, every dataset does not require normalization. It is required 

only when features have different ranges [17]. This is important in that when you have 

different ranges for the columns of a dataset, you want to minimize the possible bias 

caused by these different ranges. This can be illustrated in Tables 5 and 6, where each 

column has a seemingly different scale for their respective values. In min-max 

normalization, the scaling of each individual column matters only regarding the 

proportional values that are calculated, as the minimum and maximum can be pre-defined 

in the program. Using the defined minimum and maximum values for Table 6, the unique 

columns can now be seen as appearing similar, but the actual scaling between minimum 

and maximum values for each column is different. The defined minimum and maximum 

values ensure that no column has a stronger influence in the results of machine learning 

algorithms, regardless of the original scale of the values. This is even more important 

when there are different views to consider. Different views can have a different number 
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of columns, and each of these individual columns can have an independent scale. The 

normalization of each column of each view is used to minimize a possible view bias 

where one or more columns of a view can have a larger effect on the result of machine 

learning methods. In clustering methods, this bias can affect the distance calculations 

utilized in the calculation of which cluster a sample best belongs to.  

 

 Feature 1 Feature 2 Feature 3 

Sample 1 -12 8 50 

Sample 2 15 5 275 

Sample 3 40 7 80 

Table 5: Standard data before min-max normalization 

 Feature 1 Feature 2 Feature 3 

Sample 1 0 1 0 

Sample 2 0.5192 0 1 

Sample 3 1 0.6667 0.1333 

Table 6: Results of min-max normalization on Table 5 with a preset minimum of 0 and a 
preset maximum of 1 
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CHAPTER 3: CLUSTERING METHODS 

3.1 K-Means Clustering 

 K-means clustering is one of the simplest and most popular unsupervised machine 

learning algorithms used in unsupervised machine learning [18, 19, 20, 21]. K-means is a 

method of clustering that follows the concept of determining partitions of patterns into K 

groups, or clusters, such that the patterns in a cluster are more similar to each other than 

to patterns in different clusters [22]. These centroids are typically samples selected from 

the existing dataset. In most cases the Euclidean distance formula, the most commonly 

used distance formula, is applied for every sample to determine which centroid said 

sample is closest to. After the closest centroid is found, the sample is grouped, or 

clustered, together with that centroid. This is repeated on all samples until every sample 

has been clustered. Afterwards, the sum of the squared estimate of due errors (SSE) 

formula is calculated using the formula 

𝑆𝑆𝑆𝑆𝑆𝑆 =  ∑ ∑ �𝑚𝑚𝑚𝑚(𝑗𝑗) − 𝑐𝑐𝑗𝑗�
2𝑚𝑚

𝑚𝑚=1
𝑘𝑘
𝑗𝑗=1 , 

where k is the number of clusters, n is the number of samples, xi is the ith sample, and cj 

refers to the centroid for cluster j. The centroids are then re-calculated using the averages 

of the features of all samples within each cluster respectively, and all samples are re-

clustered based on the new centroids. The SSE value is then re-calculated as well. This 

SSE value is then compared to the SSE value from the previous iteration to get a 

convergence value as follows: 

𝐶𝐶𝐶𝐶𝑛𝑛𝑣𝑣𝑚𝑚𝑗𝑗 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖−𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗
𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖

, 

where SSEi is the SSE value from the previous iteration and SSEj is the SSE value 

calculated from the current iteration. If the convergence value is less than or equal to a 
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preset convergence threshold, then it is determined that the samples have not changed 

clusters significantly between these iterations and the algorithm is concluded for that run. 

This can be repeated for multiple runs with different, randomly selected centroids to find 

the lowest possible SSE value.  

3.2 Agglomerative Hierarchical Clustering 

While k-means clustering is a popular method, there are a few drawbacks in the 

method. In k-means, the number of clusters must be pre-determined, and the visualization 

of the results can be complex. Hierarchical clustering addresses the visualization issue by 

building a representative model, called a dendrogram, that shows how all samples are 

grouped together. Hierarchical cluster analysis forms clusters iteratively, by successively 

joining or splitting groups [23, 24]. Hierarchical clustering can initially be separated into 

two distinct types: agglomerative, which works “from the ground up”, and divisive, 

which works “from the top down” [25]. The main difference in these methods is that in 

agglomerative clustering all samples are placed into their own distinct clusters which are 

then combined based on their closest cluster, while divisive clustering places all sample 

into one large cluster which is then split in each iteration. However, for both methods, the 

results can be illustrated using dendrograms. 

Dendrograms, such as the one in Figure 5 [26], show each step of the hierarchical 

clustering process. The horizontal connection lines indicate which step in the process 

correlates to the clustering of these points. In Figure 5, when addressed from an 

agglomerative approach, points E and F are the first points that are clustered, followed by 

points A and B. These connections are based on a distance calculation, similarly to k-

means clustering. Also, similarly to k-means clustering, Euclidean distance is a common 
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method of distance calculation for hierarchical clustering. But following these first two 

steps, the next point, point D, is connected to the already formed cluster formed from 

points E and F. This leads to the secondary distinction in hierarchical clustering, the 

method of cluster linkage. There are multiple methods used to determine the closest 

clusters, such as single linkage, which determines the two closest clusters by finding the 

two closest objects within these clusters, or complete linkage, which operates similarly to 

single linkage but utilizes the two farthest objects as opposed to the two closest objects. 

There is also centroid linkage, which creates a centroid for each cluster based on all 

points in said cluster and calculates which two centroids are closest together for 

combination. While these methods are all valid, this project utilizes the average linkage 

method. This method uses the average distance of all points in one cluster and all points 

in another cluster. This method ensures that all points in each cluster are represented in 

the calculation for cluster combination.  

 

 
Figure 5: A simple dendrogram using graphed points 
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3.2 Clustering Validation Measures 

When determining the goodness of clustering results, there are two main styles of 

validation checking: internal validation and external validation. External validation is 

typically based on the presence of the true partitioning of the samples, meaning that a 

dataset has already been optimally clustered, and the best clusters have been determined 

and listed. If the true partitioning is present, then external validation can be performed to 

estimate if the current results presented by the algorithm used are similar to the optimal 

results previously gathered. Without the presence of the true partitioning, internal 

validation must be used to estimate if the clustering results are optimal. Internal 

validation is useful when working with datasets that have not been fully tested and 

labeled, while external validation is useful to test the reliability of the created algorithm 

utilized for clustering, as well as comparing different clustering results. 

A method of internal validation that considers the similarity of each sample to all 

other samples belonging to its cluster (cohesion) as well as accounting for the similarity 

between said sample and samples belonging to other clusters (separation) is the silhouette 

coefficient (also known as the silhouette score) which is used to study the separation 

distance between the resulting clusters [27]. The silhouette score of a single sample is 

defined as 

𝑠𝑠(𝑚𝑚)  =  𝑏𝑏(𝑚𝑚) − 𝑚𝑚(𝑚𝑚)
𝑚𝑚𝑚𝑚𝑚𝑚(𝑏𝑏(𝑚𝑚),𝑚𝑚(𝑚𝑚))

, 

where a(i) is the average distance of sample i to all points in the same cluster and b(i) is 

the average distance of sample i to all samples in the closest cluster. Using this 

information, a value is recorded for each sample falling on a range from -1 to 1. A value 

closer to 1 indicates that the sample in question is accurately clustered, a value close to 0 
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indicates possible overlap between clusters for that sample, and a value closer to -1 

indicates that the sample is most likely clustered incorrectly. The main usefulness of 

silhouettes lies in the interpretation and validation of cluster analysis results [28]. In a 

singular view dataset, the silhouette values can be used to estimate the best number of 

clusters for a dataset, but in multi-view datasets this can be an issue when comparing 

views, as each view could have a different optimal number of clusters. 

A standard method of external validation is the rand index. The use of the Rand 

index was proposed by William R. Rand as a method of comparing how well clustering 

methods perform [29]. This is done using 

𝑅𝑅 =  𝑚𝑚+𝑏𝑏
𝑚𝑚+𝑏𝑏+𝑐𝑐+𝑑𝑑

, 

where a is the number of pairs of elements in the same subset in the first clustering and 

the number of pairs of elements in the same subset in the second clustering, b is the 

number of pairs of elements in a different subset in the first clustering and the number of 

pairs of elements in a different subset in the second clustering, c is the number of pairs of 

elements in the same subset in the first clustering and the number of pairs of elements in 

a different subset in the second clustering, and d is the number of pairs of elements in a 

different subset in the first clustering and the number of pairs of elements of elements in 

the same subset in the second clustering. This can also be referenced as the number of 

true positives, true negatives, false positives, and false negatives, respectively. A value 

closer to 1 indicates that the clustering results are similar, while a value closer to 0 

indicates that the clustering results are different. This value can be used to test the 

validity of the algorithm being used when tested on a dataset where the true partition is 

already known.  
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While the rand index is often used to compare results of a clustering algorithm to 

the true clusters to which each sample belongs, it can also be used to compare the 

similarity between two separate clustering results for the same dataset without having a 

true partition. This can compare the results between two distinct clustering algorithms as 

well. In multi-view data clustering, this comparison measure can be used as a method of 

finding similar results between optimal clusters formed from each view.  

3.3 Adapting Clustering Methods for Multi-View Data 

 While many clustering methods are reliable and well-documented, most of them 

are only suitable to single view data [14]. The brute-force method to address this without 

altering the actual algorithms is to concatenate all views together and treat the dataset as a 

single-view dataset. The issue with this method is that, although it does address all 

features in the dataset, it does not address the importance of each view in the dataset. In 

the diabetic neuropathy dataset, there are four distinct views. These views, while all 

relating to the same condition, are distinct in the testing method utilized. What is 

unknown from these different tests is the correlation between the results of each test as 

well as the order of importance regarding each test. 

 Research into the field of multi-view clustering is still young. Some methods 

involve more complex processes such as the creation of multiple graphs that are then 

combined into a graph built on the similarities between them [30], or the use of each view 

to create labels that are then utilized in a semi-supervised method to build the best model. 

Still, these methods have the disadvantages of either being very specific in the use-case 

scenario or that these require some more involved changes to popular clustering 

algorithms. However, methods have been tested that attempt to weigh the views and 
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perform the clustering method using these weights. This can be seen on a smaller scale 

already, where a single-view dataset may need to have different features counted as more 

important than others. These weights can either be calculated, or pre-determined by a 

user of the program, but the results are still expected to show some variation in result 

where the more important features cause the samples to cluster more similarly regarding 

the important features than the lesser features. The use of weights can be applied in either 

the distance calculation or in the new centroid calculations. But, above all, the intention 

of this project is to test a simplistic method of view weighting to cause some variation in 

the clustering of the samples without re-inventing the popular clustering algorithms.  

 A variation of Euclidean distance can be utilized by setting each feature distance 

to be multiplied by its respective weight as 

𝑑𝑑𝑚𝑚𝑠𝑠𝑑𝑑(𝑑𝑑𝑚𝑚 ,𝑑𝑑𝑗𝑗)  =  �∑ 𝑛𝑛𝑘𝑘(𝑚𝑚𝑚𝑚,𝑘𝑘 −  𝑚𝑚𝑗𝑗,𝑘𝑘)2𝐾𝐾 , 

where K is the feature number, wk is the weight of feature K, ai,k refers to feature a of 

sample i, and aj,k refers to feature a of sample j. If we apply the distances as a distance 

between each sample and each centroid while attaching the weights of each respective 

view to the features within said view, we can attempt to pull the cluster results in favor of 

the important views without necessarily disqualifying the other views. The issue that 

exists in this method is the determination of view weights. 

 The issue of view importance is one that is continuously mentioned in multi-view 

data research. Assumptions can be made as to which views are important, but this can 

potentially harm the results of clustering without a basis for the assumptions. Assessing 

how important a view is can take on different meanings, such as which view(s) is/are 

recommended by professionals in the respective field to which the dataset belongs. 
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Addressing this from an unsupervised learning approach involves the assessment of 

which view performs best. Utilizing the silhouette value calculations mentioned above, a 

ranking of views based on these calculations can be made, and these rankings can be used 

to build the weights for the dataset. These weights can then be applied to the weighted 

Euclidean distance formula and, using the combination of views into a single dataset with 

the weights applied, the effects of view weighting can be compared. The rand index can 

also be used here to better detect patterns that may exist between the clusters formed in 

each view. 
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CHAPTER 4: RESULTS 

4.1 K-Means Individual View Comparison 

 When addressing a single view, the silhouette values can be utilized in assessing 

the optimum K value for K-means clustering. This is another aspect of K-means that can 

be complicated when addressing multiple views: different views could have different 

optimal K values. The comparison of individual view silhouette results is given in 

Figures 6-15. 

 

Figure 6: Variation of silhouette values based on Michigan Neuropathy Screening data 

when K equals 2. 

 

Figure 7: Variation of silhouette values based on Michigan Neuropathy Screening data 

when K equals 3. 
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Figure 8: Variation of silhouette values based on Electromyography data when K equals 

2. 

 
Figure 9: Variation of silhouette values based on Electromyography data when K equals 

3. 
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Figure 10: Variation of silhouette values based on Blood Test data when K equals 2. 

 

Figure 11: Variation of silhouette values based on Blood Test data when K equals 3. 
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Figure 12: Variation of silhouette values based on Cortical Metrics data when K equals 

2. 

 

Figure 13: Variation of silhouette values based on Cortical Metrics data when K equals 

3. 
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Figure 14: Average silhouette values from all tests when number of clusters (K) equals 2. 

 

Figure 15: Average silhouette values from all tests when number of clusters (K) equals 3. 
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as the optimal number of clusters regardless of using all or one view to make the 

decision. A higher average silhouette score, coupled with samples showing higher 

silhouette scores in cases where K = 2 (Figures 6, 8, 10, and 12) support this case. 

Knowing the optimal number of clusters is useful in looking at the individual views, but 

it does not necessarily indicate that the clusters that are formed follow the same pattern. 

While the clusters formed from the EMG test data could suggest clusters based on 

severity, the clusters formed from the blood test data could be based on a different 

criterion. Knowing that the optimal number of clusters is the same between each test, 

further comparison testing can be performed between the cluster results from each view 

to find if the optimal number of clusters reveals any patterns between the results. 

 While the silhouette values can be used to show how well the samples are 

clustered as well as identifying the optimal number of clusters, it is not the most efficient 

method to find similarities between the cluster results. To further test the patterns 

provided by K-means clustering on each view, the rand index provides a better measure 

of the similarities between results on each view.  

When comparing cluster results with a true partition, a value close to 1 indicates 

that the results are close to identical to the clusters they should be. But when comparing 

two separate cluster results with neither of them being a true partition, the result of the 

rand index values indicates similar patterns in the results. When the optimal cluster 

results in each of the diabetic neuropathy tests are compared, as shown in Table 7, the 

results show something interesting. Additionally, the rand index comparisons of the 

combined views method of K-means clustering are given, which shows that combining 
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the views without using any weighting method produces results identical to the blood test 

view results. 
 

Combined MNS EMG Blood CM4 
Combined 1 0.474 0.563 1 0.513 
MNS 0.474 1 0.506 0.474 0.543 
EMG 0.563 0.506 1 0.563 0.587 
Blood 1 0.474 0.563 1 0.513 
CM4 0.513 0.543 0.587 0.513 1 

Table 7: Comparison of cluster results (K = 2) using rand index values 

  Only one comparison result gives a value greater than 0.6, and that result is a 1. 

While this does give great insight into the importance, or the bias, that blood test data 

provides, it does not show very significant patterns. A rand index value of 0.5 indicates 

that the cluster results being compared are similar for half of the samples. Given the 

limited number of samples in the diabetic neuropathy dataset, this would indicate that 18 

or 19 of the samples are clustered similarly in most cases. This can still be useful when 

the results are compared to each other rather than compared to expecting ideal matches. 

Given the data provided, it is shown that clusters formed from the Cortical Metrics 

dataset are most similar to the cluster results formed from the Electromyography test. 

This is the second highest rand index value in all comparisons, but this can be further 

extended to find the best possible combinations of views according to the most similar 

results gathered. Regarding the results in Table 7, this indicates that Michigan 

Neuropathy Screening cluster results are most similar to Cortical Metrics cluster results, 

Electromyography cluster results are most similar to Cortical Metrics cluster results, 

Blood Test cluster results are most similar to Electromyography cluster results, and 

Cortical Metrics cluster results are most similar to Electromyography cluster results. 

Using this information, further work within the field can build on the possible 
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relationships between these different views, or the connections can be revisited once 

more samples become available. 

4.2 Testing Influence of View Weights on K-Means Clustering 

 Given the silhouette scores from the individual results of each view in the diabetic 

neuropathy dataset, a ranking of the views can be created based on the average silhouette 

score for each view. The rankings provided show that if the goodness of the clusters is 

utilized as the measure for the importance of a view, then the rankings from most to least 

important are Blood Test, Michigan Neuropathy Screening, Cortical Metrics, and 

Electromyography. Using these rankings, weights can be determined for each view. A 

simple way to address these weights is to assign the weights as the opposite of the 

ranking for the views. So, Blood Test, while being rank number one, would have a 

weight value of four applied. MNS would be assigned a weight of three. Essentially, any 

weight higher than one indicates a larger amount of influence given to that view in the 

clustering result. What is interesting about these determined weights, due to either the 

limited number of samples or the reflection of the silhouette scores, is that the results of 

weighting the views based on these ranks showed identical results to the combined-view 

approach. Even if the view rankings were swapped to allow for the least-represented view 

to have the most pull on the results (Electromyography being given the weight of four, 

Cortical Metrics given three, etc.), the resulting silhouette scores were still identical. If a 

multiplier is applied to the weight scheme, however, the results are impacted. Figure 16 

shows the silhouette score results when the original rank is used as a simple weighting 

metric, the results when this simple weight metric is swapped, and when the swapped 

metric is utilized with a 10-times multiplier added to amplify the weight effects. 
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Figure 16: Comparison of weight results on silhouette scores when K = 2 

 Although the original and reverse weighted methods are shown, the results 

overlap entirely so only one appears to be visible. When the multiplier is given to the 

reverse scheme, however, the results are altered. In most samples the patterns remain 
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This shows that a simple weighting method can be applied to alter the results of this 

dataset, but the differences in smaller datasets require an increase in the size of the 

applied weights to show any significant effects on the clusters formed using K-means 

clustering.  
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4.3 Agglomerative Hierarchical Clustering View Results 

 Hierarchical clustering provides the opportunity to view cluster formations at the 

individual level. While K-means clustering relies on the predetermination of the number 

of desired clusters as well as having results that vary based on the centroids selected, 

hierarchical clustering benefits from providing a result that can show how each sample 

relates to all others. Utilizing the average linkage method mentioned above, all samples 

in each formed cluster will be used to find the best combinations. When applying 

hierarchical clustering to multi-view datasets, not many methods currently exist due to 

the time complexity of O(n3) when applying hierarchical clustering on standard datasets. 

However, in datasets with fewer samples, this increase in time complexity is not 

significant when compared to the results that can be gathered.  

 Where comparisons between samples in K-means clustering can be difficult to 

visualize, dendrograms created from hierarchical clustering analysis can be used in the 

diabetic neuropathy dataset to visualize the distinct patterns created from each view. 

Using the formed dendrograms shown in Figures 17-21, these patterns can be visualized 

in a step-by-step fashion. 
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Figure 17: Dendrogram formed from Michigan Neuropathy Screening hierarchical 

clustering. 
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Figure 18: Dendrogram formed from Electromyography hierarchical clustering. 
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Figure 19: Dendrogram formed from Blood Test hierarchical clustering. 
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Figure 20: Dendrogram formed from Cortical Metrics hierarchical clustering. 
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Figure 21: Dendrogram formed from combined-views approach hierarchical clustering. 
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The resulting clusters formed from the Michigan Neuropathy Screening data 

shown in Figure 17 provide a strong correlation to the conditions of the patients involved. 

The data from the MNS tests is formed in two columns, with one being based on the 

patient’s own perspective of their condition and the other being based on the observations 

of a physician. These scores do not have extreme variations, causing the cases such as in 

samples 0, 10, and 34, or in samples 4, 18, and 19, where the scores were exactly the 

same. Given that these scores vary on a scale of 0-10, the results would suggest that the 

clusters formed from the MNS examinations could be highly useful in comparing the 

conditions of patients. However, given that the first part of the MNS examination is self-

administered, user error is much more likely to affect the results.  

Looking into Figure 18, the clusters formed do not follow the same pattern as in 

Figure 17. Specifically, where the MNS examination results are general scores that have 

a higher chance of being equivalent, the results of the electromyography test have much 

more diverse measurements and more recorded columns of information. As is the nature 

of hierarchical clustering, all features are linked to those that are the most similar, but 

these similarities are not as strong compared to the MNS results. In cases such as the 

cluster formed from samples 10, 36, and 13, the samples are grouped not due to how 

similar they are to each other, but how different they are from all other samples. Given 

the larger amount of information gathered from this examination, it is still important to 

note that the more immediate connections found, such as the cluster formed from samples 

0, 30, and 32, arguably show more revealing connections between patients. The 

electromyography tests are administered by professionals and are less likely to contain 
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user error. These tests also measure the nerves more directly, so the connections found 

can indicate a similar level of nerve damage caused by diabetes. 

K-means results performed on the blood test information indicated that the blood 

test clusters formed were the most internally valid clusters out of all tests in the dataset. 

Similar to the electromyography tests, there are multiple columns of diverse information 

involved in the blood tests, and no two patients had the exact same result. Even the most 

similar clusters shown in Figure 19 (0, 31 and 6, 7 and 27, or 11 and 35) had more 

diverse values in each feature than in any of the clusters formed from the other tests 

performed on the patients. Similar to the electromyography test, the blood tests are less 

likely to be affected by user error. Given the diversity of the clusters formed, even on an 

individual level, the individual connections and lower-level clusters may be less useful in 

further testing than observations on the larger clusters formed later in the clustering 

process.  

 Cortical Metrics examinations group the patients together based on their reaction 

time. Knowing this, the clustering of the patients is best addressed as how similar the 

reaction times between the patients are. Similar to the EMG and blood tests, the values 

are diverse, causing no two patients to have exactly the same values across all recorded 

features. However, similar to the MNS tests, only two columns of usable information are 

present. From these observations, the resulting clusters in Figure 20 mimic the closeness 

of the MNS results where two different patient results have the capacity to be extremely 

similar (such as samples 5 and 18, 27 and 33, or 13 and 36) while still not containing 

identical values. Cortical Metrics examinations are newer forms of examination and do 

involve the chance for user error, but also provide the chance to better measure the 
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severity of the neuropathy condition without invasive procedure. Data cleaning resulted 

in three of the five examinations being excluded from testing due to lack of available 

information, so the current results should be revisited when more material from the 

excluded tests becomes available. 

Comparing Figures 17-20, it is most noticeable that no two dendrograms follow 

the same pattern. The only true similarities to note are that in each dendrogram, outliers 

become apparent when only two distinct clusters remain. However, these outliers do not 

contain the same patients in each dendrogram. When combining all views into a singular 

view for clustering, as shown in Figure 21, the results appear more evenly distributed 

when 2 clusters remain. When compared to the K-means clustering performance, the 

distribution of samples into clusters based on the combined approach in hierarchical 

clustering does not match the fact that the Blood Test view had the exact same clusters 

formed as the combined method K-means clusters. Further comparisons between Figure 

21 to Figures 17-20 show that no one view perfectly matches the results of the combined 

approach. On the perspective of multi-view clustering this indicates that the unique 

properties from each individual neuropathy test did have a significant influence on the 

clusters formed in each step of the hierarchical clustering process. This lends to the 

credibility of each test, suggesting that each test provides results that, though relating to 

the same overall diagnosis, gives unique information and the exclusion of any test could 

be detrimental to any comparison procedure. 

4.4 Comparing K-Means and Hierarchical Results 

 While K-means clustering identified the optimal number of clusters and the 

possible patterns between the tests results, and hierarchical clustering helped to visualize 
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the connections between samples on an individual scale, it is also important to note the 

similarities between the cluster results in each method. K-means relies on certain presets, 

such as the convergence threshold value and the number of desired centroids, and this can 

cause variation in the results gathered from the clustering algorithm. Hierarchical 

clustering tends to be more consistent and does not heavily rely on presets, but it does 

vary depending on the linkage method utilized and tends to be more time complex than 

the standard K-means algorithm. Given the results from both clustering algorithms, a 

comparison between the methods can be used to test if the results remain consistent 

across methods.  

The results gathered are based on the observation that two is the optimal number 

of clusters according to K-means. The dendrogram shown in Figure 22 shows the direct 

comparison between the clusters formed in K-means clustering and the results formed in 

hierarchical clustering applied to the combined-view approach. The clusters formed in 

both methods are similar, but seven samples are grouped in different clusters when 

different methods are used. What is unique about these seven samples is that they are all 

clustered together before being combined with the first cluster. This observation can 

mean several things. This could indicate that the K-means algorithm clustered this group 

of patients incorrectly, but the average silhouette scores for these samples indicate that 

the clusters formed in K-means are clustered correctly, although no average value 

exceeded 0.8, indicating that no sample is clustered perfectly in K-means. This could also 

indicate that these samples are overlapping and could belong in either cluster. Finally, the 

results in Figure 22 could be varied based on the differences within the clustering 

method. 
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Figure 22: Cluster results regarding the combined-view clustering approach, different 

colors indicate the two clusters formed in K-means clustering   
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  In K-means clustering centroids are pre-determined initially and recalculated in 

each iteration, but in agglomerative hierarchical clustering all distances between samples 

are considered with each iteration. K-means clustering also relies on a convergence 

measurement to estimate when all samples are clustered completely, while agglomerative 

hierarchical clustering runs until either one cluster remains or a predetermined cut-off 

point is reached for the number of clusters. While these seven samples are interesting to 

note, what is also interesting is that the clusters are otherwise identical. All samples 

belonging to the same cluster in K-means clustering, specifically the red cluster, also 

belong to the same cluster in hierarchical clustering. Seven of the twenty samples in the 

green cluster are placed with the red cluster, but thirteen samples are still clustered 

similarly. Overall, the resulting similarity between these results shows that 81% of the 

samples are clustered similarly. This shows sufficient agreement between the cluster 

results, so the desired method of clustering will not significantly change the result. 
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CHAPTER 5: CONCLUSIONS 

 The unsupervised learning methods applied to the diabetic neuropathy data did 

not reveal any definitive results in regard to the possible connections that exist between 

each test. However, comparisons between the clustering results of K-means clustering on 

each view reveal that possible similarities exist between results gathered from the 

Electromyography tests and the Cortical Metrics test. When more data becomes readily 

available, this similarity can be further investigated utilizing the cluster comparisons used 

in this thesis. Another insight is gained from the comparison of how well-formed the 

clusters are when based on each view and different cluster numbers are utilized. Based on 

each view, the internal validation indicates that two clusters provide the best average 

result for the samples overall.  

 If the agglomerative hierarchical clustering algorithm is applied, the clusters 

formed by the different views do not show any significant similarities. The results do, 

however, show the smaller patient groupings formed when different tests are emphasized. 

These groupings are less significant in assessing the overall view importance, but they are 

significant in possibly finding what significant groups are formed within each test 

conducted. These groups can possibly be applied in a supervised manner based on the 

individual tests to predict the group for which a newly introduced patient is most likely to 

belong.  

 The use of a more simplistic weighting method for views in a multi-view 

clustering algorithm did not prove to show significant changes to the resulting K-means 

clusters when compared to concatenating the views into a singular dataset. This could be 

based on the simplistic method of weighting, as the multiplier applied to the weights did 
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provide some more notable changes to the silhouette scores. Noting that the use of 

weights based on the internal validation of each view can affect the outcome when the 

weight values are intensified, this can be a simpler start to addressing multi-view datasets 

than the methods that either involve major alterations to the algorithm or alterations to the 

dataset being tested.  

 As described, the method of view importance used in this thesis relies on the 

internal validation of the individual views as opposed to the combination of results 

between views. While the research in the topic of multi-view datasets may be complex in 

terms of clustering algorithm variation, these methods can be applied to diabetic 

neuropathy data when more samples become available. This thesis sought to find a less 

intensive method of combining cluster results between views, seeking to alter the popular 

clustering algorithms very little and focusing, instead, on the validity of the views to 

reinforce clustering results. Other methods of multi-view clustering tend to focus on 

creating a fusion graph of all cluster results, which also implies the alteration of the 

dataset to fit into a two-dimensional space to allow for this, or by delving deeper into the 

weighting of views through cluster-weighting [30] and self-weighting schemes [31]. 

Another common issue addressed in multi-view research is the increased time 

complexity, as most research intends to adapt the view importance calculation to be 

applied to large datasets with as minimal a change in computation time as possible. In the 

Diabetic Neuropathy dataset in this thesis, the time complexity proves inconsequential as 

all view clusters are calculated in seconds. Testing the simple weighting method on large 

datasets does prove to be very time consuming, and this will need to be addressed if the 

use of internal validation is to be applied in further testing on view importance. 
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