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ABSTRACT 

Canonical Correlation Analysis (CCA) is a multi-view feature extraction method 

that aims at finding correlated features (similarities) across multiple datasets (also called 

views or modalities). CCA characterizes these similarities by learning linear 

transformations of each view such that their extracted features have a maximal mutual 

correlation. As CCA is a linear method, the features are computed by a weighted sum of 

each view's variables. With the learned weights, CCA can be applied to test examples and 

serve in cross-modal prediction by inferring the target-view variables of an example from 

its given variables in a source (query) view. Being a linear method, CCA’s applicability 

on unstructured datasets in cross-modal prediction is limited. Although kernel extensions 

of CCA theoretically generalize it to learn nonlinear transformations, combining CCA 

with deep learning is the state-of-the-art method for mining cross-modal correlations 

among unstructured data, such as images, audio, and text/tags. Moreover, as the 

traditional cryptographic tools block the ability of CCA to explore the similarities among 

encrypted views, with multiple correlated datasets involving multiple organizations, 

privacy-preserving extensions of CCA have been recently proposed. This thesis proposes 

a CCA-based method for cross-modal prediction on two datasets: Multi-View Digits, a 

structured dataset used as a proof-of-concept, and CIFAR-100, an unstructured dataset 

used to demonstrate the mining of image-tag correlations. The proposed method is 

designed to take advantage of deep learning solutions for feature extraction to deal with 

unstructured data. This thesis also describes a procedure that incorporates the solutions to 

Yao’s Millionaires’ problem, which is studied in the cybersecurity field to support 

privacy preservation, into the proposed CCA-based cross-modal prediction method.  
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CHAPTER 1: INTRODUCTION 

Cross-modal learning refers to the synthesis/prediction of information in one 

view/modality from the information in another. Based on emphasizing mutual 

information among modalities, cross-modal prediction has straightforward applications in 

machine learning and recommendation systems (Chen et al., 2017; Chen et al., 2010; 

Hardoon et al., 2004; Sakar & Kursun, 2017; Zhou et al., 2020) as well as more 

fundamental/theoretical importance in deep learning at the intersection of AI and 

neuroscience (Becker & Hinton, 1992; Favorov & Ryder, 2004; Körding & König, 2000; 

Kursun et al., 2021; Kursun & Favorov, 2019; Phillips & Singer, 1997). Cross-modal 

learning is an extremely crucial component in daily living. Humans are very good at 

integrating various sources of information, and the cortex is a powerful discoverer of 

regularities reflected in multiple modalities (Favorov & Ryder, 2004; Hawkins & 

Blakeslee, 2004). Actions such as learning to grasp and manipulate objects, to speak and 

understand a language all require the integration of visual, auditory, tactile, and other 

modalities. In many real-world problems, where data is observed/measured in multiple 

modalities, cross-modal learning plays an important role in feature extraction and 

prediction. Throughout the thesis, the terms modality and view are used interchangeably: 

A modality/view is a specific representation of a phenomenon. 

In the context of cross-modal prediction, the thrust of machine learning is multi-

view feature extraction. Cross-modal learning involves the extraction of descriptive and 

discriminative features from multiple modalities. These features can be used for 

subsequent learning (e.g. classification and clustering), better visualization, and 

interpretation. These features can be powerful as part of predictive models because they 



 2 

can help eliminate view-specific noise (Sakar & Kursun, 2017). Moreover, as the 

instances that belong to the same class can reflect their class-specific features in all 

modalities, extraction of mutual information between the modalities helps feature 

extraction methods to tune to class-specific features. Simply merging the features of all 

views and then performing a single-view feature extraction is not a promising direction. 

Although extracting/preserving complementary information from different 

sources/modalities is also important in machine learning, extracting a common space of 

features for all modalities/views allows one view’s samples to be predicted by projecting 

other views’ samples onto the space, which would be heavily related to the underlying 

sources of correlations and class-related features (Bilenko & Gallant, 2016; Hardoon et 

al., 2004; Kursun et al., 2011). Unlike the single-view feature extraction, the theory and 

application areas of multi-view feature extraction are more complex and less understood.  

One approach to model the correlation between different modalities is Canonical 

Correlation Analysis (CCA). CCA aims at maximizing the correlation between 

modalities (Gong et al., 2014), which enables the ability to represent different modalities 

using a common feature subspace that can be mutually computed. The original 

formulation of CCA handles two views and maximizes linear correlations between them. 

Many novel CCA approaches have been introduced to tackle more than two views and 

complex nonlinear relationships, for example, multi-view CCA (Kettenring, 1971), tensor 

CCA (Luo et al., 2015), kernelized CCA (Hardoon, 2004), discriminative CCA (Sakar & 

Kursun, 2017), ensemble CCA (Sakar et al., 2014), deep neural networks based 

generalized CCA (Benton et al., 2017; Guo & Wu, 2019; Sun et al., 2008).  
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Although, as reviewed by Bilenko and Gallant (2016), the (pseudo) inverse of the 

CCA’s transformation can be used for cross-modal prediction, in this thesis, a novel 

framework is proposed and tested for using the features learned by CCA to perform a 

search for highly matching examples in the target view. Two experimental datasets are 

used in this thesis: A multi-view digits dataset with modalities corresponding to different 

sets of features extracted from digit images; and a labeled image dataset, where one 

modality was image features extracted by a deep learning method, and the other was the 

set of noisy tags describing the class/superclass of the images. The proposed method is 

designed to achieve cross-modal recommendation without having to reconstruct the target 

view (as explained in Section 2.1). Taking advantage of the mutually correlated features 

that CCA learns to extract, the proposed cross-modal method performs its nearest 

neighbors search in the canonical subspace common to both the query and the target 

views. The thesis also looked into feature extraction with deep learning for preprocessing 

image features and touched on the issue of privacy preservation during the CCA training.   

The thesis is organized as follows. The materials and methods used in the thesis 

are reviewed in Chapter 2. The proposed CCA-based method for cross-modal prediction 

is described in Chapter 3. The experimental results on some exemplary benchmark 

datasets are presented in Chapter 4. Finally, the conclusions and potential future work are 

discussed in Chapter 5.  
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CHAPTER 2: MATERIALS & METHODS 

 This chapter provides brief descriptions of the materials and methods used in the 

thesis: The explanation of the role CCA plays in the cross-modal prediction method, the 

definition of a multi-view dataset, an introduction of the experimental datasets, and an 

overview of the convolutional neural networks used for image feature extraction. 

2.1 CCA For Cross-Modal Prediction  

The standard approach of CCA is a linear dimensionality reduction method that 

requires two views as inputs, which are used to guide each other in the feature extraction 

process (Hotelling, 1992; Sakar & Kursun, 2017; Sakar et al., 2014; Yuan & Sun, 2013), 

which is illustrated in Figure 2.1.1. The two input views have different sets of features 

and N examples, ! ∈ ℝ%	×	( and " ∈ ℝ)	×	(. They can be of different dimensionality 

(View-1 can have p features, and View-2 can have q features). CCA aims at finding 

component pairs to link these views. 

 
Figure 2.1.1. A general schematic for Canonical Correlation Analysis (CCA) learning of 

two-view data. 

As CCA is linear, extracting maximally correlated features of the views can be 

expressed as finding K pairs of canonical weights #! ∈ ℝ%	×	# and #" ∈ ℝ)	×	#, such 
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that when the two sets of feature vectors are projected onto the canonical space, their K 

component pairs, or canonical variates/projections scores, are maximally correlated. For 

example, take $! ∈ ℝ%	×	* and $" ∈ ℝ)×	* as the canonical weight vectors of View-1 

and View-2, respectively. CCA maximizes the correlation between the canonical variates 

% = $!+! and & = $"+", where the superscript T denotes transpose. The pair of 

canonical variates with the maximal correlation is the principal component, and if 

multiple components are sought (K > 1), within each view the canonical weight vectors 

must be orthogonal. Theoretically, the maximum number of components is equal to the 

minimum of the ranks of the two views; however, K components can be extracted such 

that the correlation coefficient (# is  greater than a given correlation threshold T and 

(#$*, or such that (#$* is sufficiently low (refer to Eq. 1). 

 (, = ,-.	01(( 2$!,
+!,$",

+"4 ,						51(	1 ≤ 8 ≤ '	 

$!,
+$!- =	$",

+$"- = 0,																	51(	1 ≤ 8, : ≤ ', 8 ≠ :       

 (#	 ≥ 	= > (#$*	                                                                      (1) 

After using CCA to transform two or more datasets, Bilenko and Gallant (2016) 

suggested that a dataset’s samples could be predicted as the dot product between the 

inverse of its canonical weights and the projected samples of the remaining dataset’s 

samples onto the canonical space. This thesis refers to this prediction method as the 

pseudoinverse method, because: 

"%./0 = #"
$ ∙ (#!

+!)	 (2)	

Where "%./0 Where is View-2’s feature vectors to be predicted; #"
$ is the 

pseudoinverse of canonical weights of View-2; X is View-1’s query feature vectors; and 

#! is the canonical weights of View-1. 
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Bilenko and Gallant (2016) assessed the efficiency of this method by the total 

correlation coefficient of the predicted and the actual samples (sum of q correlation 

coefficients, as View-2 is q-dimensional). 

                         B1B-C	01((DC-B81E	01D55808DEB	 = ∑ 01((G",%./0 , ",123415H)
,   (3) 

2.2 Multi-View Datasets 

 A dataset is commonly defined as a tabular collection of data used for an analysis 

question. In real-world applications, however, it is not possible to include every aspect of 

interest in a single table simply because of the vast number of features that might involve. 

Instead, there can be multiple datasets that provide diverse and complementary 

information from distinct perspectives of the same phenomenon. A collection of such 

individual datasets makes a multi-view dataset. Depending on the subject of analysis, 

publicly available datasets may come with an intentional separation of views, while 

others only present one table of data, which can then be split into views based on the 

variables and data information given.   

The multi-view datasets used in this thesis were Multi-View Digits and CIFAR-

100. These choices were motivated by two considerations. First, the datasets were 

publicly available and they included rich data. The former had six different views and the 

latter was a well-known dataset for deep learning image classification.  

Multi-View Digits dataset: Originally named Multiple Feature in the UC Irvine 

Machine Learning Repository, this dataset is referred to as Multi-View Digits here to 

better represent the information that it provides. The dataset includes features of 

handwritten numerals (0-9), which are extracted from a collection of Dutch utility maps 

and digitized into binary images. For each digit, 200 patterns are being considered, 
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totaled to 2,000 patterns. The digits are represented by six feature sets: 76 Fourier 

coefficients of the character shapes (fou), 216 profile correlations (fac), 64 Karhunen-

Love coefficients (kar), 240 pixel averages in 2 x 3 windows (pix), 47 Zernike moments 

(zer), and 6 morphological features (mor) (Dua & Graff, 2019). 

The Multi-View Digits dataset was used for the demonstration of querying one 

modality to acquire similar examples from another. Among the feature sets, some display 

a much higher correlation than others. For example, the relationship between Karhunen-

Love coefficients and the pixel averages is prominent because both of them perform 

linear weighted sums of the pixels and thus are easily convertible to each other (the 

former keeps the high variance components and the latter simply takes averages of local 

groups of pixels). Therefore, CCA could easily find a linear transformation of the views 

that highly correlate. For this thesis, trials were performed for all 15 pairwise feature sets. 

CIFAR-100 dataset (Krizhevsky & Hinton, 2009): This dataset contains labeled images 

collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton (Figure 2.2.1). The 

images are categorized into 100 classes with 6,000 images each, and the classes are 

further grouped into 20 superclasses (Table 2.2.1). 
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Figure 2.2.1. Some exemplary images of the CIFAR-100 dataset. 

Superclass Class 
aquatic mammals beaver, dolphin, otter, seal, whale 
fish aquarium fish, flatfish, ray, shark, trout 
flowers orchids, poppies, roses, sunflowers, tulips 
food containers bottles, bowls, cans, cups, plates 
vehicles 2 lawn-mower, rocket, streetcar, tank, tractor 

Table 2.2.1. Five exemplary superclasses and their corresponding classes in the CIFAR-
100 dataset.  

Theoretically, CIFAR-100 does come with two views, where one view is the 

image-view and the second view is the class label of that image. Typically, such datasets 

are used for supervised classification/discrimination. CCA and linear discriminant 

analysis (a form of linear dimensionality reduction performable by a linear classifier such 

as perceptrons and logistic regression) are equivalent when the class label is used as the 

second view (Bartlett, 1938; Kursun et al., 2011). With that background and the existence 

of classes and superclasses in the CIFAR dataset, a more sophisticated version of the 

class-label information was created. Each image belongs to a superclass, which will not 

be directly serving as its tag. With the class and superclass information, a binary 600x100 
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dataset was constructed, where a 0 value in the dataset means that an image does not 

belong to a particular class and 1 otherwise. The encoding scheme was not simply a one-

hot encoding operation – A probabilistic approach was used to ensure the uncertainty of 

an image’s true tag and enforce the superclass information. In other words, for a 

particular image, the highest probability of getting a 1 was applied for its true class, a 

fairly high probability for classes in the same superclass, and a low probability for the 

rest of the classes. With these specifications, for instance, if an image was known to be 

labeled beaver (aquatic mammals superclass) a possible set of entries for it in the binary 

dataset would be: 

Beaver Dolphin Otter Seal Whale … Bottle … Rabbit … Tractor 
1 0 1 1 0 … 0 … 1 … 0 

Although ideally, such tagging task should be performed as part of a survey with 

human subjects, for simplicity, the described noisy encoding scheme was used. If the 

beaver entry had a 1, and everything else was 0, it would be more suitable for a 

supervised classification problem, not for multi-view feature extraction and/or cross-

modal prediction problem. It has been shown that when the class label is used as the 

second view, CCA is equivalent to linear discriminant analysis (Bartlett, 1938; Kursun et 

al., 2011). When using the proposed noisy encoding scheme that favors but not exactly 

identifies the class and the superclass, the demand on CCA would be to find the most 

matching linear combinations of image features with linear combinations of these noisy 

tags. As multiple 1’s are associated with an image (with more probability of being 1 for 

the classes that belong to the superclass of the image), CCA captures superclass 

information, and the proposed CCA-based cross-modal prediction learns to suggest 

which superclass the given query image belongs to. Note that this cross-modal prediction 
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is achieved without explicitly training a supervised classifier for predicting the 

superclasses. Furthermore, this dataset offers a controlled data set that can be used for 

sensitivity analysis, for example, to explore how much noise can be tolerated, or to test 

the robustness of various deep learning methods against factors such as noise and the 

number of CCA components.  

In this thesis, the tag-related dataset is referred to as CIFAR-100-tag and the 

image dataset as CIFAR-100-image. Deep learning models were used as feature 

extractors for images in the CIFAR-100-image dataset. The CIFAR-100-tag data and the 

deep-learning features were the two modalities fed to the cross-modal prediction model. 

2.3 Convolutional Neural Networks 

Part of the analysis using CIFAR-100-image is feature extraction with deep 

learning models based on the convolutional neural networks (CNNs). Similar to neural 

networks, CNNs consist of several neurons with learnable weights and biases. A neuron 

is connected to and receives inputs from other neurons in the network. It then takes a 

weighted sum over the inputs, passes the result through an activation function, and 

outputs its response. 

O'Shea and Nash (2015) provided a thorough explanation of how CNNs differ 

from neural networks. A CNN processes an input image with a set of convolutional 

layers, each of which comprises independent filters. Convolving the whole image with a 

filter results in a feature map. Following this procedure, feature maps created from 

convolving the image with all filters combine into a convolutional layer. The 

initialization of filters is random, and the CNNs learn them subsequently. CNNs involve 

pooling layers, whose function continuously reduces the spatial size of an image’s 
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representation to decrease the number of parameters and the amount of computation in 

the network. CNNs use the rectified linear activation function (ReLU), which returns the 

input directly if it is positive and zero otherwise. Figure 2.3.1 shows the typical 

architecture of a CNN: An input image goes into the network where its features are 

extracted at each convolutional layer, and the outputs are inputs to the next layer. The 

fully-connected (FC) layer has connections to all activations from the previous layer, and 

its outputs are fed into a softmax activation function to calculate the probability of the 

input image being labeled as a specific tag, hence the class classification for the image. 

 
Figure 2.3.1. An example of CNN architecture. 

In this thesis, the image feature extractors used were pre-trained CNN models. 

Their abilities in discovering distinguishable patterns in images were compared. The 

application of pre-trained CNNs is part of transfer learning, a subfield of machine 

learning and artificial intelligence that exercises the knowledge gained from a source task 

to a different but similar target task, which is one of the benefits of deep learning systems 

(Goodfellow, 2016; Kursun et al., 2021; Yosinski et al., 2014). Pre-trained CNNs are 

models that are already built on very large datasets for image classification. These models 
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are then made public to be repurposed and fine-tuned with regards to the learned layers, 

features, weights, and biases, thus achieve higher accuracy and generate the intended 

output format (Shin et al., 2016). Pre-trained CNN models provide a shortcut to training a 

CNN from scratch, which may take up time and resources depending on the size of the 

dataset. 

Three pre-trained CNNs were investigated: AlexNet, ResNet, and VGG (Paszke 

et al., 2019). All three models were trained on the ImageNet database, which has more 

than 14 million images grouped into about 22 thousand classes (according to statistics 

recorded on ImageNet’s homepage). AlexNet architecture includes eight layers, five of 

which are convolutional layers, and three are fully connected layers. The input to 

AlexNet must be RGB images of size 256×256 (Krizhevsky et al., 2012). ResNet (short 

for Residual Network) was built and trained on one million 224x224 colored images from 

ImageNet (He et al., 2016). There have been multiple versions of ResNet depending on 

the number of layers. For this thesis, ResNet101 was used (101 layers). VGG requires 

RGB images of dimensions 224x224 (Simonyan & Zisserman, 2014). Similar to ResNet, 

there are multiple versions of VGG. This thesis used VGG11_bn, which is a batch-norm 

version.  
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CHAPTER 3: CCA-BASED CROSS-MODAL PREDICTION PROCEDURE 

Section 2.1 reviewed a cross-modal prediction approach that worked by inverting 

the canonical weight matrix of the target view. This essentially means transforming the 

query view to the canonical subspace and then, using the inverted weights, converting the 

canonical subspace to obtain the most fitting (but artificial) representations in the target 

view. This thesis proposes that for cross-modal prediction, performing the search within 

the canonical subspace is better than generating artificial representations. Even if the 

sample reconstruction generates a realistic target-view example, it is not a real example in 

the target-view dataset. To find the real examples, a nearest neighbors search would be 

performed for the retrieval task of relevant items from the target view. Therefore, instead 

of inverting the CCA features of the query to obtain a reasonable representation in the 

target-view space, the proposed approach applies a nearest neighbors search within the 

canonical subspace. As the CCA features are generally much fewer than the original 

dimensionality, the proposed approach offers higher performance in the accuracy rate, 

which will be reported in Chapter 4. 

The proposed cross-modal prediction process involved transforming the data with 

CCA and applied an unsupervised nearest neighbors model to acquire similar examples 

from one view given the features from another view. The performance of the proposed 

prediction process was addressed based on three performance metrics: cross-modal 

classification error, cross-modal-top-3 classification error, and within-/cross-modal 

intersection error. These errors also provided a basis to assess the benefits of using 

canonical variates in the nearest neighbors model, as opposed to reconstructing them 
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back to their original space (the pseudoinverse method). This chapter explains the 

procedure to demonstrate the proposed method of cross-modal prediction with CCA. 

3.1 Application of CCA & Nearest Neighbors Model 

Cross-modal learning was performed with an n-component CCA model: CCA 

found the weights that maximize the correlation between the two views while limiting to 

n components in the final model equation. The steps to train a CCA model and obtain the 

canonical space for two views appear in Table 3.1.1. 

Step Description 

1 Subsequently split the two views’ data and their labels into train and 

test sets, respectively. 

2 Trained a CCA model using the training data of the two views. 

3 Transformed the training and testing data of both views into canonical 

variates using the trained CCA model. 

Table 3.1.1. Steps to train a CCA model and obtain the canonical space for two 
views. 

With the training canonical variates from the query view, an unsupervised nearest 

neighbors model (Ball Tree algorithm) was trained and used to query the test canonical 

variates from the target view. The model returned target view representations (neighbors) 

whose features correlated most to the query’s features. A summary of this cross-modal 

prediction process is illustrated in Figure 3.1.1. 
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Figure 3.1.1. Proposed cross-modal prediction process with CCA and evaluation method 
using within-/cross-modal intersection error, cross-modal classification error, and cross-

modal-top-3 classification error. 

The within-/cross-modal intersection error evaluated how much CCA helped in 

the cross-modal learning. This is a value adapted from the Jaccard similarity coefficient - 

a similarity measure between finite sample sets (Jaccard, 1912): 

                                                I(J, K) = 	 |7∩9||7∪9|  (4) 

 As used in this thesis, A was the set of target-view examples recommended by 

CCA, and B represented the target-view examples that would be returned by a search that 

queried the target-view directly if the true target-domain examples were available. In 

other words, B represented the ideal neighbors of a test example found by a standard 

single-view nearest neighbors search if the target-view of the test example was actually 

known. With both sets defined, the within-/cross-modal intersection error returns the 
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percentage of the test example with A and B sets having a non-empty intersection. For 

example, if most test examples had empty intersection between their A and B sets, then 

the recommendations and the ideal neighbors were not matching at all, thus leading to a 

high within-/cross-modal intersection error.  

3.2 Classification Accuracy Evaluation Method 

Good recommended neighbors would share similar features to the query 

examples, but their class labels might not match the expected recommendations due to 

biases in the data. For example, the extracted features of handwritten numerals in the 

Multi-View Digits dataset might be affected by noises such as handwriting styles (some 

digits might be written by the same person, so they have the same stroke strength, 

straightness, etc.). As CCA was projecting the features onto a common latent space, its 

results might be biased by these noises. The nearest neighbors model would then return 

neighbors with the same biased features but are not of the same digits. 

Figure 3.1.1 also illustrates the proposed method to verify CCA’s ability to retain 

enough classification-related information (i.e., features or dimensions). The cross-modal 

classification error was computed to report the mismatched recommended labels from 

querying examples in a different view. After the search within the canonical space 

returned recommended target-view representations, their labels were then compared to 

the target view’s actual test labels to get the cross-modal classification error. 

Additionally, the top-3 most recommended labels (based on their majorities among the 

found neighbors in the target view) gave the cross-modal-top-3 classification error, which 

offers a softer measure of performance to evaluate the accuracy of the cross-modal 

prediction. 
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3.3 Privacy Preservation Based On Millionaires' Problem & Alternating Regression 

The training process of the CCA model requires data from all modalities 

involved. However, this might not be practical in real-world use cases because the 

availability of data depends on privacy constraints. The progress of e-commerce 

platforms and data mining comes with the continuously increasing volume of sensitive 

information. Inevitably, means for secure and private information transactions and 

computation come in great demand. This is where the Yao’s Millionaires’ problem finds 

its application. Introduced in 1982 by Andrew Yao, a computer scientist and 

computational theorist, the problem discusses secure multi-party computation (SMC) by 

presenting an example of two millionaires who want to know which of them is richer 

without revealing their actual wealth. In a larger sense, SMC asks for protocols to enable 

a computational function that can be used by several parties without the need to expose 

their input (Yao, 1982). The Millionaires’ problem is an important factor to consider in 

commercial applications, where a comparison between confidential parties occurs. 

Any solutions to the Millionaires’ problem can be used in the training of the 

canonical correlation algorithm when considering the concept of alternating regression 

(AR) for CCA’s implementation as in (Lai & Fyfe, 1998; Sakar & Kursun, 2017; Wold, 

1966). The AR method for CCA training randomly initializes $! and $" of Eq. 1. It then 

uses an iterative approach based on backpropagation to update $! and $" as opposed to 

an analytic solution based on cross-covariance matrix computation. At every iteration of 

alternating regression, the neural networks of each view try to produce an output that 

maximally agrees with the outputs of the other views. The weights, $! and $", are 

updated via backpropagation (Alpaydin, 2014; Favorov & Ryder, 2004; Sakar & Kursun, 
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2017). Although the error to be minimized is based on the differences of the outputs, a 

privacy-preserving algorithm can be obtained by making small updates to increase the 

agreement without loss of generality, where the extraction of one CCA covariate is 

outlined, and the other covariates can be found by the deflation or symmetric lateral 

inhibition (Alpaydin, 2014; Girolami & Fyfe, 1997). The proposed procedure for the 

privacy-preserving algorithm appears in Table 3.3.1. 

Randomly initialize $! and $" 

Repeat 

Compute the projection scores for each training example as: 

% = $!+! and & = $"+" (as in Eq. 1) 

Feed the projection scores to the privacy preserving solution of the Millionaire 

problem 

If |%| > 	 |&| 
             Apply the backpropagation algorithm to update $" such that a similar 

example would produce a & with a higher magnitude 

Else 

             Apply the backpropagation algorithm to update $! such that a similar 

example would produce an % with a higher magnitude 

Until convergence 

Table 3.3.1. Proposed CCA-privacy-preserving algorithm in cross-modal prediction. 

 Some solutions to the Millionaire’s problem are based on homomorphic 

encryption (Kumar & Gupta, 2013; Lin & Tzeng, 2005). Homomorphic encryption 

(Gentry, 2009) is a form of public-key encryption that allows computations to be carried 

out over encrypted data, thus generating an encrypted result which, when decrypted, 

matches the result of operations performed on the original data. Homomorphic encryption 

can be expressed as follows: 
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                                              M(,*) × M(,;) = M(,*⨂,;) (5) 

 Where M(,) represents the encryption of a message ,; operation × is the 

multiplication operation of two encrypted messages; and ⨂ is an equivalent operation in 

plaintext domain, which could be addition (Paillier, 1999) or multiplication (ElGamal, 

1985). 
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CHAPTER 4: EXPERIMENTAL RESULTS 

This chapter reports the results for the cross-modal prediction procedure as 

described in Chapter 3 on the Multi-View Digits and CIFAR-100 datasets. The within-

/cross-modal intersection error, cross-modal classification error, and cross-modal-top-3 

classification error were interpreted to reflect on the performance of the prediction 

process. For both experiments with the datasets, the errors were computed for the two 

cross-modal prediction methods explained in this thesis: The pseudoinverse method, 

where a nearest neighbors search was performed after the reconstruction of the canonical 

space, and the proposed method, where the search for most fitting representations of the 

target view was within the canonical space. With the Multi-View Digits dataset, all 15 

modality pairs were investigated, and trials were performed for different correlation 

thresholds that were used to select the number of CCA components to extract. With the 

CIFAR-100 dataset, the efficiency of three pre-trained CNNs (AlexNet, ResNet, and 

VGG) in extracting image features to be fed into CCA was addressed. Additionally, 

different numbers of CCA components were also used to reflect on the change in the 

prediction accuracy. 

4.1 Multi-View Digits Dataset 

The Multi-View Digits dataset was used for the demonstration of cross-modal 

prediction by a nearest neighbors search in the canonical subspace of two modalities. 

This thesis worked with all 15 pairs among the six feature sets provided by the dataset. 

For each modality pair, three test errors were calculated: within-/cross-modal intersection 

error, cross-modal classification error, and cross-modal-top-3 classification error. Each 

modality pair had two options for the target and query view. As a result, there were 30 



 21 

values found for each of the three errors. Furthermore, the three errors were also 

computed for the pseudoinverse cross-modal prediction method. 

As each modality has a different number of features, the initial number of 

components used for the CCA model was chosen to be the minimum rank of a modality 

pair. Then, the first K learned components were selected such that (# ≥ 0.5 > (#$*, to 

create the CCA model that would be used for the cross-modal prediction process. All 

errors computed are reported in Table 4.1.1.   
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Query Target 

Within-/cross-
modal intersection 

error 

Cross-modal 
classification 

error 

Cross-modal-top-3 
classification error 

(a) (b) (a) (b) (a) (b) 

fac 

fou 0.68125 0.69000 0.90000 0.74000 0.67000 0.61125 
kar 0.08000 0.04500 0.57125 0.29750 0.20500 0.08375 
mor 0.77250 0.96125 0.78375 0.92500 0.55250 0.69500 
pix 0.22875 0.21500 0.49375 0.43875 0.29000 0.25125 
zer 0.01125 0.03375 0.22500 0.32750 0.03125 0.09625 

fou 

fac 0.09250 0.70375 0.19625 0.62750 0.04125 0.28375 
kar 0.11375 0.26250 0.21375 0.27500 0.05625 0.15375 
mor 0.47125 0.92375 0.33875 0.70375 0.10500 0.38375 
pix 0.07500 0.27000 0.17625 0.29750 0.04250 0.15250 
zer 0.21375 0.39625 0.26875 0.38375 0.07000 0.12875 

kar 

fac 0.00000 0.14500 0.06125 0.31000 0.00500 0.06250 
fou 0.11375 0.16750 0.20250 0.25750 0.03500 0.06000 
mor 0.42625 0.92875 0.35750 0.77750 0.15625 0.43375 
pix 0.00000 0.00000 0.06250 0.06875 0.00375 0.00375 
zer 0.05875 0.39375 0.21875 0.55000 0.06500 0.23125 

mor 

fac 0.37250 0.60375 0.48375 0.57375 0.14250 0.22250 
fou 0.34500 0.54375 0.37625 0.70375 0.06500 0.20500 
kar 0.30750 0.47500 0.46500 0.47000 0.11125 0.30000 
pix 0.22500 0.48000 0.37750 0.49750 0.11625 0.28250 
zer 0.29250 0.82125 0.38125 0.82500 0.09375 0.51250 

pix 

fac 0.00125 0.20500 0.08125 0.40875 0.00875 0.09125 
fou 0.13750 0.17625 0.32000 0.26125 0.10875 0.05750 
kar 0.00000 0.00000 0.05500 0.12125 0.00250 0.00875 
mor 0.41250 0.95375 0.38500 0.82875 0.14750 0.54625 
zer 0.10250 0.56000 0.43875 0.62750 0.13875 0.30875 

zer 

fac 0.00500 0.30000 0.18500 0.47250 0.01375 0.20625 
fou 0.76500 0.70875 0.89500 0.75125 0.64500 0.61500 
kar 0.64750 0.58750 0.90000 0.78250 0.43250 0.49375 
mor 0.79250 0.96125 0.89125 0.91000 0.67000 0.60625 
pix 0.66625 0.56125 0.90000 0.68000 0.60750 0.51500 

Table 4.1.1. Test errors computed for Multi-View Digits modality pairs when performing 
nearest neighbors search (a) within the canonical space and (b) after reconstructing the 

space. 

  



 23 

Performing the search for 20 nearest neighbors within the canonical space yielded 

small errors for most target-query pairs. For several modality pairs, the choice of which 

view was the query/target view had a significant impact to increase or decrease the errors. 

For example, when Zernike moments were used to query for the most fitting 

representations of Karhunen-Love coefficients, all three errors found were relatively 

high. With a within-/cross-modal intersection error of 0.6475, only 35.25% of the time 

was there an agreement between the true neighbors and the recommendations by cross-

modal learning. The class labels of the recommended had only a 10% match rate with the 

true ones when using a cross-modal query, while the top-3 match rate was 56.75%. 

However, if the Karhunen-Love coefficients were the query view and Zernike moments 

were the target, all three rates improved significantly to 94.13%, 78.13%, and 93.5%, 

respectively. 

It was also worth noting a few modality pairs with near-zero errors. One such pair 

was the Karhunen-Love coefficients and pixel averages. No matter which of the two 

views was the query/target view, the errors were close to or even zero. As explained in 

Section 2.2, this was because Karhunen-Love coefficients are obtained by a linear 

method that takes the weighted averages of pixels. In other words, the relationship 

between these two modalities was so prominent that CCA could linearly transform their 

examples easily and returned the correct representations between them. 

Compared with the pseudoinverse method of reconstructing the canonical space 

and generating the most fitting (and artificial) representations in the target view, the 

proposed method of performing the nearest neighbors search within the canonical space 

was more accurate. As shown in Figure 4.1.1, most errors computed from using the 
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proposed method were smaller than those of the pseudoinverse method. For more insight 

into how much improvement the search within the canonical space had on the prediction 

accuracy, the error difference between the two methods was investigated. For each pair of 

corresponding errors (based on the modality pair used), the difference was calculated. 

Whichever method the smaller error belonged to, the average difference (Eq. 6) was 

computed for that method and compared to the average difference of the other method. 

For the proposed method, the average error difference was 0.2579 for the within-/cross-

modal intersection error. This meant that for all modality pairs that received a smaller 

within-/cross-modal intersection error, the average error drop compared to using the 

pseudoinverse method was 0.2579. The proposed method had an average difference of 

0.2051 for the cross-modal classification error and 0.1557 for the cross-modal-top-3 

classification error. On the other hand, with the pseudoinverse method, the average 

differences were 0.0540, 0.1470, and 0.0652, respectively. The fact that all three error 

differences of the proposed method were bigger than those of the pseudoinverse method 

showed that cross-modal prediction using canonical variates directly was able to decrease 

the errors, hench improved the accuracy of the prediction. 

      -RD(-SD	D((1(	T855D(DE0D = 	∑(>,??/.	/..@.ABC155/.	/..@.)E4C>/.	@F	BC155/.	/..@.B  (6) 
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Figure 4.1.1. Test errors for 30 query/target view pairs of the Multi-View Digits dataset 

using the proposed and pseudoinverse cross-modal prediction methods.  
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An investigation into the effect of different correlation thresholds (used to choose 

the number of extracted CCA components) on the test errors was also conducted. This 

experiment was performed with pixel averages as the query modality and Fourier 

coefficients as the target modality. These two views were chosen because with a 

correlation threshold of 0.5, although the proposed cross-modal prediction method 

produced a smaller within-/cross-modal intersection error than that of the pseudoinverse 

method, the accuracy of its recommendations was not as good. Experimenting with other 

correlation thresholds would provide insights into a more optimized threshold value. 

Figure 4.1.2 compares the test errors found using the two cross-modal prediction 

methods with correlation thresholds ranging from 0.1 to 0.9. The proposed method 

observed a downward trend for all three errors as the thresholds increased from 0.1 to 

approximately 0.7, at which point the accuracy error of the recommendations started to 

increase almost exponentially. On the other hand, the test errors produced by the 

pseudoinverse method gradually increased with higher correlation thresholds and 

significantly escalated after the correlation threshold exceeded 0.8. 
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Figure 4.1.2. Test errors produced by using different correlation thresholds when 

applying the proposed and CCA-pseudoinverse cross-modal prediction methods with 
pixel averages as the query modality and Fourier coefficients as the target modality. 

 For thresholds ranging between 0.1 to 0.7, two different error trends observed for 

the two prediction methods could be explained by their predicting mechanisms. The 

higher the correlation threshold, fewer but more correlated CCA components were 
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extracted between the modalities. This was more beneficial for the proposed method 

because these components better represented the correlation between the two modalities, 

which supported the search for the most fitting representations of the target view within 

the canonical subspace. Fewer CCA components negatively affected the pseudoinverse 

method because it was attempting to reconstruct them into their original space. Its results 

were artificial and also prone to be too distinct from the real data if the available number 

of CCA components to reconstruct dropped too low. Additionally, the fact that both 

methods did not perform well when using thresholds exceeding 0.8 could be because 

CCA was overfitted by the training data. 

4.2 CIFAR-100 Dataset 

In addition to the Multi-View Digits dataset, CCA-based cross-modal prediction 

was also applied to the CIFAR-100 datasets. Deep learning feature extraction was 

performed to obtain one modality, the CIFAR-100-image dataset. The second modality, 

CIFAR-100-tag, was created based on the class and superclass information from CIFAR-

100. This dataset was created based on a probabilistic approach such that for a particular 

image, the entry corresponding to its true class had the highest probability of getting a 

value of 1, a fairly high probability for classes in the same superclass, and a low 

probability for the rest of the classes. 

Three pre-trained CNN models – AlexNet, ResNet, and VGG – were used as 

image feature extractors and compared with respect to their abilities in discovering 

distinguishable patterns in images, addressed by the corresponding CCA-based cross-

modal prediction performance. Both AlexNet and VGG extract 4,096 image features at 

its last layer and feeds them into the final classifier (softmax) layer, while ResNet 
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extracts 512 features. These features are highly descriptive and are suitable to be 

transferred to this CIFAR image-domain classification task. For this thesis, they were 

transferred and used in the CCA-based cross-modal prediction. To help CCA’s 

convergence and to reduce its training runtime, principal component analysis (PCA) was 

applied to the features extracted by all three models to reduce the dimensionality and 

eliminate collinearities within these features: The number of PCA features was fixed at 

500 for comparisons among models. 500 PCA features covered more than 80% of the 

total variance for all deep learning models. 

As opposed to selecting K learned components such that the correlation 

coefficient between the modalities’ components was over a given threshold (as done for 

the Multi-View Digits dataset), the number of CCA components used in the cross-modal 

prediction process with the CIFAR-100 datasets was chosen to be 20. This helped to cut 

down the runtime that would have been required to find the minimum rank between the 

high-dimensional training sets of CIFAR-100-image and CIFAR-100-tag (50,000x500 

and 50,000x100, respectively). The highest correlation learned between the modalities’ 

20 components for the testing data was 0.5279, 0.5355, and 0.5350, respectively for 

AlexNet, ResNet, and VGG. 

The cross-modal prediction aimed at recommending 100 most fitting examples 

with the deep-learning image features and tags representations taking turns to be the 

query/target modality. Table 4.2.1 compares the test errors produced by the prediction 

process using canonical variates and those output by the pseudoinverse method. 
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Query Target CNN 
Within-/cross-modal 

intersection error 

Cross-modal 
classification 

error 

Cross-modal-
top-3 

classification 
error 

(a) (b) (a) (b) (a) (b) 

Image Tag 
AlexNet 0.1762 0.0186 0.3465 0.3553 0.1664 0.1793 
ResNet 0.1611 0.0094 0.2925 0.3015 0.1336 0.1469 
VGG 0.1483 0.0182 0.2989 0.3039 0.1271 0.1359 

Tag Image 
AlexNet 0.5216 0.4751 0.2438 0.5045 0.1106 0.2914 
ResNet 0.449 0.3852 0.2437 0.4459 0.1027 0.244 
VGG 0.4853 0.4447 0.2495 0.4861 0.1040 0.2688 

Table 4.2.1. Test errors produced by the (a) proposed and (b) pseudoinverse  methods of 
cross-modal prediction, using tag representations and image features extracted by 

AlexNet, ResNet, and VGG. 

With the query and target views as images and tags, respectively, the cross-modal 

prediction was analogous to finding the tag representations that might label a given 

image. With AlexNet features, the within-/cross-modal intersection errors were small. 

The error of the proposed method was 0.1762, which means that about 82% of the time, 

there was an intersection between the set of recommended target-view representations 

and the set that would have been returned by a single-view nearest neighbors search with 

a target-view query. On the other hand, the within-/cross-modal intersection error of the 

pseudoinverse method was smaller (0.0186). This could be due to the noise in the tag-

view to be predicted. Similarly, for the prediction processes using the query data by 

ResNet and VGG, higher within-/cross-modal intersection errors were produced by the 

proposed method. Therefore, the accuracy of the recommendations should be best 

measured by the percentage of matching classifications (cross-modal classification error 

and cross-modal-top-3 classification error reported in Table 4.2.1). 

Although the proposed method produced a higher within-/cross-modal 

intersection error regardless of pre-trained CNN used, it was more accurate in the 
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superclasses of the recommended tag representations. With AlexNet image features as the 

query, the proposed method output a cross-modal classification error of 0.3465, which 

means that about 65 out of 100 tag representations recommended were correct. This error 

was comparable to the pseudoinverse method. However, the proposed method was more 

beneficial in the way that it performed its search in a low dimensional space: It 

eliminated the additional computation to reconstruct the 500-dimensional image features. 

Moreover, the search in a low dimensional space was slightly more accurate than the 

pseudoinverse method. When considering the top-3 classification error, the proposed 

method had a smaller error. Furthermore, for both the proposed and pseudoinverse 

methods, cross-modal prediction using image features extracted by ResNet and VGG 

produced better results than those by AlexNet. With ResNet and VGG, the top-3 tag 

representations contained the true superclass approximately 87% of the time (the top-3 

error of VGG was slightly lower). Overall, when comparing the pre-trained CNNs based 

on the corresponding CCA-based cross-modal prediction performance, ResNet and VGG 

were comparable in their ability to extract discriminative image features, and they were 

better than AlexNet. 

If the tag representations were used as the query view, the cross-modal 

recommendation aims at retrieving the most fitting images associated with the given 

noisy tag vector. For this cross-modal prediction process, the improvement in accuracy 

using the proposed method was more apparent. The within-/cross-modal intersection 

errors of both methods were moderately high regardless of which pre-trained CNN was 

used. However, the proposed method performed significatly better than the pseudoinverse 

method, cutting the classification errors down by almost half. Furthermore, the image 
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features extracted by the three pre-trained CNNs were all beneficial to either cross-modal 

prediction method, with ResNet having the best performance in terms of all three test 

errors. 

To investigate the effect of the number of CCA components on the test errors of 

the cross-modal prediction, an analysis was performed using the ResNet image features 

in the query modality and tag representations as the target modality. ResNet model was 

selected as a representative because it was the most accurate of the deep learning models. 

Figure 4.2.1 reports the test errors versus the number of CCA components used. The 

cross-modal classification errors showed that the predictions made by the proposed 

method were more accurate regardless of the number of components. There was a similar 

downward trend in the classification errors for both methods, and the proposed method’s 

performance persisted to be better. There was not much improvement to the cross-modal 

classification errors if the number of CCA components became greater than 20, which 

was expected because there are 20 superclasses. 

 



 33 

 
Figure 4.2.1. The number of CCA components versus the test errors on the CIFAR 

dataset (image features extracted by ResNet in the query modality).  
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CHAPTER 5: CONCLUSION AND FUTURE WORK 

 In this thesis, a novel CCA-based cross-modal prediction method was proposed 

and investigated. For the two-view experimental datasets, first, CCA was used as a 

feature extractor to find a common (canonical) subspace between the two views of the 

training examples. One of the views was designated to be the query view and the other 

one to be the target view. During the test phase, the cross-modal prediction was 

performed by computing the canonical variates using the given data in the query view 

and then applying a nearest neighbors search to retrieve the most matching examples in 

the target view. The thesis also investigated an alternative method referred to as the 

pseudoinverse method (Bilenko & Gallant, 2016), which reconstructed the 

representations in the target view from the canonical space and then performed a nearest 

neighbors search in a much higher dimensional space. Experiments were conducted on 

two multi-view datasets, Multi-View Digits and CIFAR-100. The experimental results 

showed that the proposed approach was more accurate than applying the pseudoinverse 

method.  

The thesis also used and compared pre-trained deep learning models for 

preprocessing the image modality of the CIFAR-100 dataset. The models used included 

AlexNet, VGG, and ResNet. Among these models, ResNet had extracted the most 

discriminative image features. Moreover, as deep learning models extracted high-

dimensional representations of the images, the proposed nearest neighbor search in the 

canonical space was shown to be much more effective than the pseudoinverse method. 

The effectiveness of the canonical space was due to its compactness and its richness in 

discriminative features, which was also suggested by Kursun et al. (2011).  
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Additionally, this thesis also proposed a procedure for privacy preservation in the 

training phase of CCA based on the alternating regression method. Each iteration of 

alternating regression applies a solution to the Millionaires’ problem (Kumar & Gupta, 

2013; Lin & Tzeng, 2005) and then updates the canonical weights of the views to 

maximize their agreement via the backpropagation algorithm. This proposed procedure 

was designed such that the canonical components of the modalities maximally agree 

while preserving the privacy of each modality’s data from one another. Future work 

includes implementing and testing the realtimeness of the proposed cross-modal 

prediction method with and without privacy preservation on larger datasets.  
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