
THE EFFECTS OF LEARNING RATE SCHEDULES

ON COLOR QUANTIZATION

by

Garrett Brown

A thesis presented to the Department of Computer Science

and the Graduate School of the University of Central Arkansas

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Science

Conway, Arkansas

May 2020

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Published by ProQuest LLC (

 ProQuest

). Copyright of the Dissertation is held by the Author.

All Rights Reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

27834147

27834147

2020

TO THE OFFICE OF GRADUATE STUDIES:

The members of the Committee approve the thesis of

Garrett Brown presented on March 31, 2020.

M. Emre Celebi, Ph.D., Committee Chairperson

Ahmad Patooghy, Ph.D.

Mahmut Karakaya, Ph.D.

PERMISSION

Title The Effects of Learning Rate Schedules on Color Quantization

Department Computer Science

Degree Master of Science

In presenting this thesis/dissertation in partial fulfillment of the requirements for a

graduate degree from the University of Central Arkansas, I agree that the Library of this

University shall make it freely available for inspections. I further agree that permission

for extensive copying for scholarly purposes may be granted by the professor who

supervised my thesis/dissertation work, or, in the professor’s absence, by the Chair of the

Department or the Dean of the Graduate School. It is understood that due recognition

shall be given to me and to the University of Central Arkansas in any scholarly use which

may be made of any material in my thesis/dissertation.

Garrett Brown

March 31, 2020

 iv

© 2020 Garrett Brown

 v

ACKNOWLEDGEMENT

I would first like to thank my thesis advisor Dr. Emre Celebi, professor and chair

of the Department of Computer Science at University of Central Arkansas. He was

always willing to discuss any issues or concerns I had. Dr. Celebi consistently guided me

throughout the project to ensure I was going in the right direction.

I would also like to acknowledge the rest of the faculty of the Department of

Computer Science at University of Central Arkansas for all the guidance throughout my

graduate and undergraduate studies. They were able to provide me an opportunity to

discover and pursue my passion for Computer Science.

Finally, I would like to express my gratitude to my family and wife for supporting

me through all of my years of study. It would not have been possible without them.

 vi

VITA

 Garrett Brown was born in Ventura, California. He attended elementary, middle,

and high school in Vilonia, Arkansas and graduated with honors in 2014. He attended

University of Central Arkansas and graduated from UCA Magna Cum Laude with a

Bachelor of Science in Computer Science and a minor in Mathematics in August 2018.

 vii

ABSTRACT

Color Quantization is a technique to reduce the number of distinct colors in a

digital color image and is an important operation in image processing and computer

graphics. In this thesis, we improve upon a recently proposed color quantization method.

The proposed method utilizes an efficient algorithm to determine the initial color palette

and quasirandom sampling to scramble the image deterministically. An online version of

the k-means clustering algorithm is then used to fine-tune the initial palette. We

investigate multiple learning rate schedules to control the convergence of online k-means.

The resulting color quantization method is trained on 20 images and tested on 8 popular

images. The results demonstrate that while the proposed method is competitive with

state-of-the-art methods with respect to quality, it is faster.

 viii

TABLE OF CONTENTS

ACKNOWLEDGEMENT .. v

VITA .. vi

ABSTRACT .. vii

LIST OF TABLES ... ix

LIST OF FIGURES .. x

CHAPTER 1 INTRODUCTION .. 1

CHAPTER 2 RELATED WORK ... 3

CHAPTER 3 PROPOSED COLOR QUANTIZATION METHOD 6

CHAPTER 4 EXPERIMENTAL RESULTS AND DISCUSSION 12

CHAPTER 5 CONCLUSIONS AND FUTURE WORK ... 32

REFERENCES ... 33

 ix

LIST OF TABLES

Table 1. Maximin Initialization Algorithm ... 7

Table 2. Image set ... 14

Table 3. MSE for k = 32 colors ... 18

Table 4. MSE for k = 64 colors ... 19

Table 5. MSE for k = 128 colors ... 20

Table 6. MSE for k = 256 colors ... 21

Table 7. CPU time in milliseconds ... 22

 x

LIST OF FIGURES

Figure 1. Comparison of pseudorandom (a) and quasirandom (b) 8

Figure 1. Baboon Output Images (k = 32) .. 23

Figure 2. Peppers Output Images (k = 64) .. 24

Figure 3. Pills Output Images (k = 128) ... 25

Figure 4. Average and Standard Deviation for Constant LRS training 26

Figure 5. Average and Standard Deviation for Hyperbolic LRS training 27

Figure 6. Average and Standard Deviation for Linear LRS training 28

Figure 7. Average and Standard Deviation for Parametric Hyperbolic LRS training 29

Figure 8. Average and Standard Deviation for Alternative Parametric Hyperbolic LRS

training .. 31

1

CHAPTER 1 INTRODUCTION

 A true color image is typically comprised of pixels represented by three 1-byte

color components: red, green, and blue. This means that 3 bytes are needed to store a

color pixel and each color pixel can assume a value out of 2563 color combinations. Color

quantization (CQ) is an image processing method that reduces the number of unique

colors in an image, allowing the image to be stored with fewer colors while maintaining

the fidelity of the image as much as possible. While CQ is no longer required due to the

advancement of hardware technology, it is still beneficial for various computer graphics

and image processing applications. Applications of CQ in the aforementioned fields

include color texture analysis, compression, watermarking, and others (Celebi 2011).

Quantization Methods

 A large number of CQ methods have evolved over the past four decades, but

virtually any CQ method belongs to one of two groups: preclustering methods and

postclustering methods (Brun & Trémeau 2003). The former methods discover clusters

recursively either top-down or bottom-up, thus leading to a hierarchy in the clustering

(Jain, Murty & Flynn 1999). Postclustering methods, on the other hand, find all the

clusters at once via partitioning and do not impose any structure onto the data. The

drawback of postclustering is that it is very time consuming even though it produces

better results because it improves upon the initial color palette iteratively.

Color Quantization via Data Clustering

 Because a pixel is made up of a red, a green, and a blue component, CQ can be

interpreted as a three-dimensional clustering problem where the goal is to determine the

clusters that best represent the colors in an image (Celebi 2009). CQ methods can be

 2

broken into two main phases: palette design and mapping. In the palette design phase,

the algorithm generates a reduced color palette with k colors, where k is a user-defined

integer typically ranging from 8 to 256. In the second phase, each pixel in the original

image is mapped to one of the colors in the reduced palette.

Metaheuristics and Color Quantization

 As the techniques for CQ have evolved, researchers have started to borrow ideas

from other fields such as machine learning. One such result of this is the combination of

metaheuristics and preclustering or postclustering methods. Metaheuristics based CQ

methods include a hybrid method combining k-means clustering and self-adaptive

differential evolution (Su & Hu 2013), artificial bee colony optimization (Ozturk, Hancer,

& Karaboga 2014), ant-tree algorithm (Pérez-Delgado 2015), combining fuzzy c-means

clustering and artificial fish swarm algorithm (El-Said 2015), combining k-means with

the harmony search algorithm (Khaled, Abdel-Bader, & Yasein 2016), artificial ants and

fireflies (Pérez-Delgado 2018), binary splitting and ant-tree algorithm (Pérez-Delgado &

Gallego 2018), artificial bee colony algorithm combined with ant-tree algorithm (Pérez-

Delgado 2019) shuffled-frog leaping algorithm (Pérez-Delgado 2019), greedy orthogonal

bi-partitioning and ant-tree (Pérez-Delgado & Gallego 2019) and particle swarm and

artificial ants (Pérez-Delgado 2020); these methods present CQ as a global optimization

problem that can be solved with nature- or physics-inspired metaheuristics. While these

methods can be more powerful than the traditional preclustering/postclustering methods

because of their ability to optimize complex objective functions. Unfortunately, these

methods are typically randomized and computationally intensive, with multiple

parameters that are hard to fine tune for each image.

 3

CHAPTER 2 RELATED WORK

 Many CQ techniques exist in the literature, such as median-cut (Heckbert 1982),

popularity (Heckbert 1982), modified popularity (Braudaway 1987), greedy orthogonoal

bipartitioning (Wu 1991), octree (Gervautz & Purgathofer 1988), center-cut (Joy &

Xiang 1993), variance-based method (Wan, Prusinkiewicz, &Wong 1990), modified

maximin (Xiang 1997), radius-weighted mean-cut (Yang & Lin 1996), self-organizing

map (Dekker 1994), Cheng and Yang (Cheng & Yang 2001), split and merge (Brun, &

Mokhtari 2000), weighted sort-means (Celebi 2009), modified weighted sort-means

(Celebi 2011), fuzzy c-means (Wen & Celebi 2011), adaptive distributing units (Celebi,

Hwang, & Wen 2014), variance-cut (Celebi, Wen, & Hwang 2015), and MacQueen’s k-

means (Thompson, Celebi, & Buck 2020).

 Heckbert (1982) proposed two CQ methods: popularity and median-cut.

Popularity builds a 16 x 16 x 16 color histogram and derives the reduced color palette

from the k most frequent colors in the histogram. Median-cut builds a 32 x 32 x 32 color

histogram whose volume is recursively split along the longest axis. The histogram is split

until there are k boxes for the color palette.

 Braudaway (1987) introduced the modified popularity method that builds a 2𝑅 x

2𝑅 x 2𝑅 color histogram with R bits per channel. The most frequent color is taken as the

first color in the reduced palette and then the frequency of each of the remaining colors is

reduced. This procedure is repeated until a total of k colors is chosen.

 Gervautz and Purgathofer (1988) discussed the octree method. It builds an octree

that is representative of the color distribution of the image. Then it merges adjacent

 4

colors with the fewest pixels to the nearest cluster form the bottom up until it has k

colors.

 Wan, Prusinkiewicz, and Wong (1990) introduced the variance-based method.

This method is like the median-cut but the box with the greatest error is split along the

least weighted sum of projected variances axis.

 Wu (1991) presented the greedy orthogonal bipartitioning procedure. It works like

the variance-based method but it splits on the axis that minimizes the sum of variance.

 Joy and Xian’s (1993) center-cut method is similar to the median-cut but splits the

box with the greatest range on the average point in the box.

 Dekker (1994) provided the self-organizing map scheme. It has a self-organizing

map of k neurons and a random subset of the pixels are used for the training phase. The

final weights from the training phase are used as the color palette.

 Yang and Lin (1996) proposed the radius-weighted mean-cut method. This is

almost exactly like the variance-based method but it splits on the vector from the origin

to the radius-weighted mean.

 Xiang (1997) introduced a variant of the maximin method (Gonzalez 1985). The

first color is chosen randomly and each subsequent color is chosen as the color with the

greatest minimum weighted distance to the previous colors. The palette colors are then

calculated as the mean of the colors assigned to these initial colors.

 Brun and Mokhtari (2000) developed the split and merge method. This method

partitions the color space into B partitions that are represented on an adjacency graph.

Then each cluster is merged by joining the clusters with the least amount of error.

 5

 Cheng and Yang’s (2001) self-named method works like the variance based-

method except it is split along a specific line determined by the mean color and the color

farthest from it.

 Celebi (2009, 2011) introduced the weighted sort-means clustering method. It is

an adaptation of the traditional k-means clustering algorithm that involves sample

weighting, data reduction, and accelerated nearest neighbor search.

 Wen and Celebi (2011) proposed the fuzzy c-means clustering that modifies the

k-means algorithm so that points can belong to more than one cluster. The goal is to

generate an optimal fuzzy c-partition by minimizing a fuzzy objective function.

 Celebi, Hwang, and Wen (2014) brought forth the adaptive distributing units

(ADU) method, which is an adaption of Uchiyama and Arbib’s clustering algorithm

(1994). It is a competitive learning algorithm where points compete to represent the

input. The winner is moved closer to the input by designated learning rate. The method

starts with a unit that is represented by the center of all the inputs and then new units are

generated by splitting existing units until there are K units.

 Finally, Thompson, Celebi, and Buck (2020) proposed a modified version of

MacQueen’s (1967) online k-means algorithm with a square-root learning rate schedule.

 This thesis expands upon the recent work by Thompson, Celebi, and Buck to

investigate how alternative learning rate schedules (LRS’s) and parameters affect the

results of a CQ method based on MacQueen’s k-means algorithm. We propose a new

learning rate schedule that is very competitive with Thompson, Celebi, and Buck’s CQ

method in terms of quantization quality while being faster.

 6

CHAPTER 3 PROPOSED COLOR QUANTIZATION METHOD

 This chapter describes the proposed CQ method in detail. First, we present an

efficient and deterministic initialization method that is used for determining the initial

color palette with k colors. Then, we describe a quasirandom sampling method that is

utilized for selecting points to be presented to MacQueen’s k-means clustering algorithm.

Finally, we explain the clustering algorithm itself.

Initialization

Before we can use a postclustering method, we need to determine the initial color

palette, which has k colors (k is a user-defined integer). The problem of devising an initial

color palette of size k in a CQ application is essentially the same problem as selecting the

initial k cluster centers in a partitional clustering application (Celebi 2015).

An often-used approach for determining the initial k cluster centers is to select

these points uniformly at random from the entire data set. Unfortunately, the k-means

clustering algorithm is rather sensitive to initialization which can lead to negative

consequences such as longer convergence time, empty clusters, and a larger likelihood of

the algorithm getting trapped at a local minimum (Celebi, Kingravi, & Vela 2013).

Gonzalez (1985) proposed a better initialization method, named the maximin

initialization method, that selects the first center arbitrarily and each of the remaining

centers is chosen as the point with the greatest minimum distance to the previously

selected centers.

 For this algorithm, described in Table 1, the first center is typically chosen

uniformly at random from data set. However, for the purposes of this thesis, the average

red, green, and blue color across the input image was used as the first center. This allows

 7

the entire initialization process to become deterministic as long as a deterministic tie-

breaking strategy is utilized when finding nearest point-to-center distances. An often-

used strategy, and the one used in this work, is having the smallest index determine the

tiebreaker. The remaining k – 1 centers are chosen such that the ith center (i ∈ {2, …, k})

is the point with the greatest minimum distance to the nearest of the previously selected (i

– 1) centers.

Table 1. Maximin Initialization Algorithm

Step Description

1 Select the first center c1 as the mean data point.

2 Select the next center ci as the point with the greatest minimum

distance to the previously selected (i – 1) centers.

3 Repeat Step 2 until all k centers have been determined.

Sampling

 Online clustering algorithms like MacQueen’s tend to be more adaptive so the

order in which the points are presented has significance (Thompson, Celebi, & Buck

2020). If the points are presented in raster order, then the algorithm will learn of many of

the same points due to the nature of image data and the accuracy of learning will

decrease. If the points were sampled pseudorandomly, some clumping would occur on

among the selected points, which leads to potential bias in the learning procedure.

Pseudorandom sampling could also lead to vastly different clustering results in each run.

The Sobol’ sequence (Bratley & Fox 1988) presents a way to sample the data

quasirandomly to avoid the previously mentioned bias. The Sobol’ sequence samples

 8

more uniformly, see Figure 1, and in a way that is deterministic, so the online algorithm

becomes order independent.

Figure 1. Comparison of pseudorandom (a) and quasirandom (b)

(https://en.wikipedia.org/wiki/Sobol_sequence)

a) Pseudorandom Sampling b) Quasirandom Sampling

Clustering

 While Lloyd’s (1982) batch k-means algorithm (Linde et al., 1980) is the most

frequently used k-means variant (Wu et al. 2008), there is another variant of k-means,

often referred to as the online k-means (MacQueen 1967). This algorithm starts with k

centers, where k denotes the number of clusters (or, number of colors in a CQ

application). With the previously discussed maximin initialization algorithm, the k

centers have already been initialized as opposed to selecting the first k points as the initial

centers like MacQueen suggests in his classical work. The algorithm utilizes a randomly

sampled point x and assigns it to the nearest cluster, which is then updated to include this

 9

new point. This update includes increasing the size of the cluster as well as adjusting the

center as follows

𝑐(𝑡+1) = 𝑐(𝑡) + 𝜂(𝑡)(𝑥(𝑡) − 𝑐(𝑡)),

where x(t) is the current presented point, c(t) is the current center of the nearest cluster,

c(t+1) is the new center of the nearest cluster that now includes x(t), and η(t) is the learning

rate bounded in (0,1]. The learning rate is selected to satisfy the Robbins–Monro

conditions

lim
𝑡→∞

𝜂(𝑡) = 0,

∑ 𝜂(𝑡) = ∞∞
𝑡=1 ,

∑ 𝜂(𝑡)2 < ∞∞
𝑡=1 .

These conditions ensure that η decreases slow enough to avoid premature convergence,

but not so slow to be overly influenced by noise (Robbins & Monro 1951). The rate

allows for the algorithm to learn in a way that the quantization distortion is decreased.

MacQueen’s algorithm then continues through each sampled point as determined by the

Sobol’ sequence, updating the nearest center after each presentation.

Learning Rate Schedules

As mentioned earlier, the LRS is important for the clustering algorithm to

properly and efficiently converge. This work utilizes three different LRS’s and two

variants bringing the total to five. These schedules are detailed below.

Constant

 The constant learning rate is defined by 𝜂(𝑡) = 𝑐 with 0 < c ≤ 1. With this

schedule, each color in the quantized palette is a result of the exponentially decaying

average of the inputs that were assigned to the corresponding cluster (Fritzke 1997). The

 10

value of c is inversely related to the number of inputs because as more points are

presented the average of the inputs decay faster. Therefore, the rate c should be much

smaller than 1 (e.g., 0.001) because an image is typically made up of hundreds of

thousands of pixels.

Hyperbolic

 The hyperbolic learning rate is the most popular LRS in the stochastic

approximation literature (Robbins & Monro 1951). It is given by 𝜂(𝑡) =
1

(1+𝑡)𝑝, where t

indicates the cardinality of the cluster before including the new point and p is the

exponent bounded in the interval (0.5, 1] to ensure convergence. When p = 1, the

hyperbolic learning becomes the rate that MacQueen originally used for his algorithm,

which again is the most popular rate for stochastic approximation. This rate provides a

running average of the presented data. When p < 1, this LRS leads to an increasing

weight sequence thus giving more weight to the latest data (Yair, Zeger, & Gersho 1992).

And, when p is at its lower bound of 0.5, it tends to lead to faster convergence for finite

data sets (Darken & Moody 1990).

Linear

 The linear decay LRS is given by 𝜂(𝑡) = 𝑐(1 − 𝑡/𝑇), where 0 < c ≤ 1 and T is the

total number of points to be presented to the learning algorithm. When t is very small

compared to T, the learning rate is very slow and can be compared to the constant LRS.

On the opposite end, when t approaches T, the learning rate rapidly approaches zero. So,

there is some intermediate point t, where the schedule has the best point of learning (Yair,

Zeger, & Gersho 1992). With a smaller constant (e.g., c = 0.01), the LRS approaches to

 11

that intermediate point more slowly and learns as much as possible before ceasing to

learn.

Parametric Hyperbolic

 The parametric hyperbolic LRS is defined by 𝜂(𝑡) =
𝑘

(𝑘+1+𝑡)𝑝, which makes it

similar to the original hyperbolic LRS with the exception that the parametric version

utilizes the number of clusters (k) in its formulation. Recall that k is actually a parameter

of the clustering algorithm rather than a parameter of the LRS. The use of k allows the

LRS to adjust the learning rate proportionally to k because when k is large, the average

number of presentations per cluster is small, so the learning rate should be larger

(otherwise, the algorithm will not have sufficient opportunity to learn each center) (Wu &

Yang, 2006). Just like the hyperbolic LRS, the parametric hyperbolic LRS has the

exponent p, which is bounded in the interval (0.5, 1].

Alternative Parametric Hyperbolic

 The alternative parametric hyperbolic schedule is defined by 𝜂(𝑡) =
𝑐

(𝑓𝑇+1+𝑡)𝑝 . It

is another modified version of the hyperbolic LRS and is the schedule with the most

adjustable parameters. Just like the hyperbolic LRS, it has the exponent p bounded in the

interval (0.5, 1]. The parameter f is a fractional multiplier that adjusts the total number of

points to be presented. Finally, there is a positive parameter c that scales the overall

learning rate.

 12

CHAPTER 4 EXPERIMENTAL RESULTS AND DISCUSSION

 This chapter explains the experimental procedure that was followed and then

details the experimental results. First the training and test data sets and the performance

measures are described. Then, all the constant and variable parameters involved in the

experiment are discussed. Finally, the results of the experiments are presented and their

results are discussed.

Experimental Setup

 The program first reads the image data from a Portable Pixmap, or PPM, image

file and gets the mean image color to be used for the first cluster center. These PPM

images have header data that contains the image height and width, the maximum

brightness value which determines the number of bits-per-pixel for each channel, and the

image format. The algorithm was trained with 20 PPM images and the best parameters

were tested on 8 images commonly used in the CQ literature as seen in Table 2. Lenna,

Peppers and Baboon are from the USC-SIPI Image Database

(http://sipi.usc.edu/database); Parrots and Motocross are from the Kodak Lossless True

Color Image Suite (http://r0k.us/graphics/kodak/); and Pills, Fish, and Goldhill are by

Karel de Gendre, Luiz Velho, and Lee Crocker respectively. Then the LRS is selected

based on a parameter passed to the program. The cluster centers are initialized with the

maximin method. Once the MacQueen’s clustering algorithm is completed, the final k

centers are taken as the reduced color palette. This color palette is then used to map the

input image by determining the nearest color to each input pixel and replacing that pixel

with that palette color. The resulting image is then comprised of k colors as opposed to

 13

the initial number of colors it had. The program then generates the output PPM file based

on the quantized output image. Finally, to determine the distortion, the input image and

the output image are compared using the Mean Squared Error measure that is described

in the next section.

 14

Table 2. Test image set

Image File Name Size Number of

Colors

Baboon 512 x 512 230,427

Lenna 512 x 512 148,279

Peppers 512 x 512 183,525

Fish 300 x 200 63,558

 15

Table 2. (continued)

Goldhill 720 x 576 30,966

Motocross 768 x 512 63,558

Parrots 768 x 512 72,079

Pills 800 x 519 206,609

 16

Performance Measures

Time

 The computation efficiency of the initialization and clustering algorithm were

measured using the CPU time. The time was measured using the high_resolution_clock

class of the chrono library that exists in the std namespace for C++. This clock type has a

resolution of a microsecond. The elapsed time was measured by using the now function

of the class, which gets the current time, before the initialization happens and after the

clustering is completed then taking the difference of the two instances. The

measurements were then converted to milliseconds for readability and comparison.

Mean Squared Error

 A popular image quality metric is the Mean Squared Error (MSE). It is calculated

by taking the average of the squared differences of the corresponding pixels from two

images. This method for evaluating the quality is often used in CQ literature due to its

simplicity and clear meaning. It is computed as:

𝑀𝑆𝐸(𝑋, X̂) =
1

𝐻𝑊
∑ ∑ ||𝑋(ℎ, 𝑤) − X̂(h, w)||2𝑊

𝑤=1
𝐻
ℎ=1 ,

where X and X̂ represent, respectively, the H × W original and quantized images in the

RGB color space.

Experimental Parameters

 The variable parameters for MacQueen’s algorithm were represented as follows:

the number of colors k = {32, 64, 128, 256}; presentation factor f = {0.25, 0.5, 0.75, 1};

parametric fraction pf = {0.25, 0.5, 0.75}; and parametric constant pc = {1, 2, 3}. Every

time the program ran, the MSE was captured for each LRS and the parameters involved.

This MSE data was used determine optimal parameter configurations for each of the

 17

LRS’s. The mean and standard deviation of CPU time was also captured over 100 runs

for 3 of the 8 test images (Baboon, Lenna, and Peppers) as their sizes were identical (512

x 512), allowing easier comparisons. This program was implemented with the C++

programming language, compiled with the GNU g++ compiler version 8.1.0 and

executed on a 2.20GHz Intel Core i7-8750H CPU.

Discussion

 The experimental results are given in Tables 3–7. Tables 3–6 contain the MSE for

each LRS, and Table 7 shows the CPU time, in milliseconds, for the k values tested.

Figures 1–3 show a cropped section of one of the original images and the same cropped

outputs from different LRS’s. Note that, in these tables, we also compare the

MacQueen’s k-means algorithm with the proposed LRS’s to the batch k-means algorithm

(BKM). For comparisons against other common CQ methods, please refer to Thompson,

Celebi, and Buck (2020). Note that in these tables, the row labeled as ‘Hyper’

corresponds to the MacQueen’s k-means algorithm with the square-root hyperbolic LRS

(the MKMq algorithm in Thompson, Celebi, & Buck) In the initial experimentation, the

MSE values were normalized using min-max normalization in the [0, 100] interval across

each training image and their averages and standard deviations were computed to allow

better comparison across each LRS.

 18

Table 3. MSE for k = 32 colors

 Image

LRS Baboon Lenna Peppers Fish

Const 386.0 134.4 273.2 147.9

Hyper 375.6 131.4 258.4 148.8

Linear 383.9 134.7 272.3 147.4

Phyper 375.7 131.5 259.5 144.1

AltPhyper 376.6 131.8 258.4 146.2

BKM 374.2 130.8 248.7 142.6

 Image

LRS Goldhill Motocross Parrots Pills

Const 147.2 203.9 236.2 202.8

Hyper 144.5 194.5 241.4 199.1

Linear 146.8 207.5 234.3 201.8

Phyper 143.9 188.5 230.7 197.7

AltPhyper 144.9 199.7 232.2 202.0

BKM 143.8 197.5 230.7 198.4

 19

Table 4. MSE for k = 64 colors

 Image

LRS Baboon Lenna Peppers Fish

Const 242.1 77.3 154.6 95.8

Hyper 236.3 75.5 149.2 93.1

Linear 240.6 77.7 156.0 97.7

Phyper 238.0 75.7 147.8 92.4

AltPhyper 238.0 75.8 150.4 95.5

BKM 234.3 74.7 148.1 90.2

 Image

LRS Goldhill Motocross Parrots Pills

Const 87.1 117.8 131.3 117.0

Hyper 83.5 116.9 127.4 112.2

Linear 88.1 119.7 132.8 115.9

Phyper 83.9 109.2 127.0 112.0

AltPhyper 85.2 115.7 130.6 113.4

BKM 83.0 115.0 129.5 111.1

 20

Table 5. MSE for k = 128 colors

 Image

LRS Baboon Lenna Peppers Fish

Const 155.2 49.7 93.8 62.9

Hyper 152.2 48.0 89.6 59.4

Linear 154.5 50.2 94.2 63.0

Phyper 159.0 49.7 92.4 62.9

AltPhyper 153.3 48.5 91.3 60.9

BKM 149.3 46.8 87.7 57.3

 Image

LRS Goldhill Motocross Parrots Pills

Const 57.1 76.0 78.0 71.8

Hyper 53.5 72.9 76.1 67.5

Linear 57.7 77.2 78.9 71.8

Phyper 54.2 65.3 74.9 68.5

AltPhyper 55.0 75.6 76.5 68.8

BKM 52.0 68.0 73.2 66.3

 21

Table 6. MSE for k = 256 colors

 Image

LRS Baboon Lenna Peppers Fish

Const 100.9 33.3 62.3 40.1

Hyper 97.8 31.5 57.7 36.4

Linear 100.9 33.4 63.0 40.6

Phyper 109.6 34.4 63.1 45.5

AltPhyper 100.0 32.7 60.9 39.2

BKM 95.6 30.3 55.0 34.8

 Image

LRS Goldhill Motocross Parrots Pills

Const 38.5 48.7 47.6 46.1

Hyper 35.8 44.8 44.5 42.5

Linear 38.8 48.8 48.3 46.4

Phyper 38.0 44.3 47.5 45.9

AltPhyper 38.1 48.1 47.3 44.7

BKM 34.2 42.9 44.3 41.0

 22

Table 7. CPU Time in Milliseconds

 Baboon Lenna Peppers

LRS Colors Mean Stdev Mean Stdev Mean Stdev

Constant

32 154.48 7.36 152.72 6.52 152.57 8.87

64 281.20 7.05 278.97 8.05 279.97 8.74

128 531.77 10.68 528.94 10.94 528.88 11.15

256 1020.68 17.13 1020.89 15.15 1015.69 11.82

Hyper

32 171.38 7.04 170.92 14.36 168.51 7.30

64 296.60 6.79 292.53 10.12 293.04 7.60

128 546.66 8.16 541.93 11.70 546.61 36.96

256 1040.13 9.79 1038.73 10.89 1035.57 11.18

Linear

32 152.92 7.63 151.08 7.49 148.72 7.49

64 280.99 6.29 277.93 7.04 278.78 6.85

128 528.33 7.77 524.63 11.64 525.02 11.36

256 1018.68 13.32 1016.22 11.60 1014.48 11.24

Phyper

32 170.44 6.18 166.38 7.69 166.07 7.51

64 299.19 6.72 297.11 19.95 294.65 12.75

128 545.18 8.07 541.91 8.49 543.11 8.78

256 1044.39 14.18 1038.29 10.17 1042.03 10.40

AltPhyper

32 136.16 7.08 138.87 17.65 136.87 12.88

64 263.07 29.69 258.28 27.33 263.20 32.26

128 496.63 29.91 519.70 71.38 476.88 14.99

256 920.27 12.36 917.09 12.49 916.71 12.60

BKM

32 4452 4357 2646

64 14325 9334 6333

128 27342 26525 33274

256 40661 33235 30559

 23

Figure 1. Baboon Output Images (k = 32)

a) Original

b) Constant Output c) Hyper Output

d) Linear Output e) PHyper Output

f) AltPhyper Output g) BKM Output

 24

Figure 2. Peppers Output Images (k = 64)

a) Original

b) Constant Output c) Hyper Output

d) Linear Output e) PHyper Output

f) AltPhyper Output g) BKM Output

 25

Figure 3. Pills Output Images (k = 128)

a) Original

b) Constant Output c) Hyper Output

d) Linear Output e) PHyper Output

f) AltPhyper Output g) BKM Output

 26

Constant

 The constant LRS, as well as every other LRS, typically performed better with a

greater presentation factor. As more of the image was presented, the algorithm was able

to learn more from it and provide a more accurate color quantized image, as shown in

Figure 4. For constant LRS specifically, the value of c = 0.03 yielded the best results. It

had the lowest average MSE as well as the lowest standard deviation across all the

images.

Figure 4. Average and Standard Deviation for Constant LRS training

 When using the optimized parameters on the 8 test images, the constant LRS

produced many of the higher MSE values across all k values. The MSE was higher for

lower number of colors because there were fewer clusters for the points to be assigned,

meaning that each cluster was potentially larger. This caused the exponentially decaying

average of the inputs to decay faster than it did for higher number of colors. At the higher

number of colors, fewer points were added to each cluster so the average did not decay as

0

10

20

30

40

50

60

70

80

90

100

P
re

se
n

ta
ti

o
n

0
.5 1

0
.5 1

0
.5 1

0
.5 1

0
.5 1

0
.5 1

0
.5 1

0
.5 1

0
.5 1

0
.5 1

c 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Average StDev

 27

fast. Even though the MSE was still worse compared to other LRS’s; the higher color

number of colors allowed for the constant LRS to be relatively more competitive.

Hyperbolic

 This LRS gave the best average MSE for p = 0.5, which is consistent with what

has been observed in the literature (Darken & Moody 1990) (Wu & Yang 2006)

(Thompson, Celebi, & Buck, 2020). The LRS with p = 0.5 also produced very low

standard deviations, further indicating that the LRS was consistently the best for this

parameter value. As the parameter p approached 1, the same parameter value that the

MacQueen originally used, the average MSE continued to increase, see Figure 5,

showing that the most popular rate in the stochastic approximation literature is not as

good in practice as it is in theory.

Figure 5. Average and Standard Deviation for Hyperbolic LRS training

0

20

40

60

80

100

120

P
re

se
n

ta
ti

o
n

0
.2

5

0
.5

0
.7

5 1

0
.2

5

0
.5

0
.7

5 1

0
.2

5

0
.5

0
.7

5 1

0
.2

5

0
.5

0
.7

5 1

0
.2

5

0
.5

0
.7

5 1

0
.2

5

0
.5

0
.7

5 1

p 0.5 0.6 0.7 0.8 0.9 1

Average StDev

 28

Linear

 This LRS ended up being very similar to the Constant LRS, see Figure 6. This is

likely due to t being very small compared to the total points presented as mentioned in the

previous chapter. So, until a cluster had enough points in it, the linear LRS basically

acted like a constant one. There is some difference between the two LRS’s, however, as

c = 0.05 ended up being the parameter giving the lowest average MSE rather than the c =

0.03 for the constant LRS.

Figure 6. Average and Standard Deviation for Linear LRS training

When utilizing the best c parameter on the test images, many of the MSE values

were very close to those given by the constant LRS. However, many of the configurations

using this LRS had the worst MSE across all investigated schedules. As mentioned

earlier, when there are few points, the linear LRS behaves like the constant LRS. By the

time the 𝑡/𝑇 portion of the equation started to factor in, it was likely that there was very

little more learning that could be done using this schedule because of how quickly the

constant LRS decays.

0
10
20
30
40
50
60
70
80
90

100

P
re

se
n

ta
ti

o
n

0
.5 1

0
.5 1

0
.5 1

0
.5 1

0
.5 1

0
.5 1

0
.5 1

0
.5 1

0
.5 1

0
.5 1

c 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Average StDev

 29

Parametric Hyperbolic

 The parametric hyperbolic LRS, shown in Figure 7, although very similar to the

conventional hyperbolic LRS, did not behave in the same way. As the exponent p is

increased, the average MSE decreased (up to a certain point) rather than increase like

hyperbolic does. The standard deviations for this LRS also seemed to be the highest

across all of the LRS’s.

Figure 7. Average and Standard Deviation for Parametric Hyperbolic LRS training

 When comparing the results of the optimized exponent parameter p on the test

images to the results of Thompson, Celebi, and Buck (2020), there are many cases where

this LRS does better. In many cases, this LRS gives MSE values that are more

competitive to the batch k-means algorithm than then original hyperbolic schedule used

by Thompson, Celebi, and Buck. However, the drawback of this parametric hyperbolic

LRS is that it will not outperform the original hyperbolic with respect to computational

time. This is because, the parametric hyperbolic LRS utilizes two parameters (exponent

and number of clusters), while the standard hyperbolic LRS uses only one parameter

0

10
20

30

40

50

60

70

80

90

100

P
re

se
n

ta
ti

o
n

0
.2

5

0
.5

0
.7

5 1

0
.2

5

0
.5

0
.7

5 1

0
.2

5

0
.5

0
.7

5 1

0
.2

5

0
.5

0
.7

5 1

0
.2

5

0
.5

0
.7

5 1

0
.2

5

0
.5

0
.7

5 1

p 0.5 0.6 0.7 0.8 0.9 1

Average StDev

 30

(exponent). The additional parameter in the parametric LRS, however, translates to only

one extra addition operation. Therefore, as Table 7 shows, the CPU time difference

between the resulting CQ methods is, in fact, negligible.

Alternative Parametric Hyperbolic

 This modified version of the hyperbolic LRS behaved similarly to the original

hyperbolic unlike the previous modified hyperbolic LRS. With this LRS, the exponent p

= 0.5 rate gave the lowest average and standard deviation MSE values mirroring the

results given by hyperbolic LRS. Also, like hyperbolic, the average and standard

deviation MSE values for this alternative method increased as the exponent parameter p

increased. This LRS is the only schedule where the best MSE was achieved using only

half of the image (that is, presentation factor = 0.5). The parametric constant pc was only

tested with the values 1, 2, and 3, but the data shows that as the value increases, typically

the MSE decreases. And lastly, as the parametric fraction pf approached 1, the MSE

decreased as well, see Figure 8.

0

5

10

15

20

25

P
re

se
n

ta
ti

o
n

0
.7

5

0
.5

0
.2

5 1

0
.7

5

0
.5

0
.2

5 1

0
.7

5

0
.5

0
.2

5 1

0
.7

5

0
.5

0
.2

5 1

0
.7

5

0
.5

0
.2

5 1

0
.7

5

0
.5

0
.2

5 1

pc 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

pf 0.25 0.5 0.75 0.25 0.5 0.75

p 0.5 0.6

Average StDev

 31

Figure 8. Average and Standard Deviation for Alternative Parametric Hyperbolic LRS

training

When using the optimized parameters on the 8 test images, this was the only LRS

that was able to achieve respectable results by using only 50% of the image rather than

the full image. Because it only utilized half of the image, this LRS showed the fastest

execution time for the three images (Baboon, Lenna, and Peppers) despite being the most

complex LRS. Compared to other LRS’s, the alternative parametric hyperbolic LRS is

about 10% faster, whereas compared to BKM (batch k-means), which is the gold

standard algorithm in CQ, it is between 19 and 44 times faster.

 32

CHAPTER 5 CONCLUSIONS AND FUTURE WORK

 In this thesis, alternative LRS’s were explored for use in a CQ method based on

MacQueen’s k-means clustering algorithm. First, the maximin initialization method was

used as a means to select an effective initial color palette. Then, the image was

subsampled quasirandomly using a Sobol’ sequence to present the pixels to the clustering

algorithm in a deterministic fashion. Finally, the MacQueen’s k-means clustering

algorithm was implemented with various LRS’s with differing complexities to determine

the effects and viability of each LRS. A comprehensive experiment was conducted on 20

training and 8 test images that are commonly used in the CQ literature. The results

showed that, with respect to quantization quality, several of the investigated LRS’s are

comparable to the hyperbolic LRS proposed by Thompson, Celebi, and Buck’s (2020). In

addition, one of the investigated LRS’s outperformed the hyperbolic LRS in terms of

CPU time.

 Further work includes investigation of alternative, faster initialization methods as

this thesis focused solely on the maximin initialization algorithm. Celebi, Kingravi, and

Vela (2013) describes numerous other initialization methods that could be profitably

applied to the presented CQ method. Finally, more advanced online unsupervised

learning methods could be explored as discussed in Yair, Zeger, and Gersho (1992).

 33

REFERENCES

Bratley, P., Fox, B. L. (1988). Algorithm 659: Implementing Sobol’s Quasirandom

Sequence Generator. ACM transactions on Mathematical Software, 14(1) 88–100.

doi: 10.1145/42288.214372

Braudaway, G. W. (1987). Procedure for Optimum Choice of a Small Number of Colors

from a Large Color Palette for Color Imaging. Proceedings of the Electronic

Imaging Conference, 71–75

Brun, L., & Mokhtari, M. (2000). Two High Speed Color Quantization Algorithms.

Proceedings of the 1st International Conference on Color in Graphics and Image

Processing, 116–121

Brun, L., & Trémeau, A. (2003). Color Quantization. Digital Color Imaging Handbook

(G. Sharma, Ed.), CRC Press, 589–638

Celebi, M. E. (2009). Fast Color Quantization Using Weighted Sort-Means Clustering.

Journal of the Optical Society of America A, 26(11), 2434–2443. doi:

10.1364/JOSAA.26.002434

Celebi, M. E. (2011). Improving the Performance of K-Means for Color Quantization.

Image and Vision Computing, 29(1), 260–271. doi: 10.1016/j.imavis.2010.10.002

Celebi, M. E., Hwang, S., & Wen, Q. (2014). Color Quantization Using the Adaptive

Distributing Units Algorithm. Imaging Science Journal, 62(2), 80–91. doi:

10.1179/1743131X13Y.0000000059

Celebi, M. E., Kingravi, H., & Vela, P. A. (2013). A Comparative Study of Efficient

Initialization Methods for the K-Means Clustering Algorithm. Expert Systems

with Applications, 40(1), 200–210. doi: 10.1016/j.eswa.2012.07.021

 34

Celebi, M. E.(ed.) (2015) Partitional Clustering Algorithms. Springer. doi: 10.1007/978-

3-319-09259-1

Darken, C., Moody, J. (1990) Fast adaptive K-means clustering: some empirical results.

Proceedings of the 1990 International Joint Conference on Neural Networks.

233–238 doi: 10.1109/IJCNN.1990.137720

Dekker, A. (1994). Kohonen Neural Networks for Optimal Colour Quantization.

Network: Computation in Neural Systems, 5(3), 351–367. doi: 10.1088/0954-

898X/5/3/003

El-Said, S. A. (2015). Image Quantization Using Improved Artificial Fish Swarm

Algorithm. Soft Computing, 19(9), 2667–2679. doi: 10.1007/s00500-014-1436-0

Fritzke, B. (1997). Some Competitive Learning Methods. Technical Report, Institute for

Neural Computation, Ruhr-Universität Bochum

Gervautz, M., & Purgathofer, W. (1988). A Simple Method for Color Quantization:

Octree Quantization. In N. Magnenat-Thalmann & D. Thalmann (Eds.), New

Trends in Computer Graphics (pp. 219–231). Berlin, Germany: Springer. doi:

10.1007/978-3-642-83492-9_20

Gonzalez, T. (1985). Clustering to Minimize the Maximum Intercluster Distance.

Theoretical Computer Science 38(2–3), 293–306. doi: 10.1016/0304-

3975(85)90224-5

Heckbert, P. (1982). Color Image Quantization for Frame Buffer Display. Proceedings of

ACM SIGGRAPH Computer Graphics, 16(3), 297–307. doi:

10.1145/965145.801294

 35

Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). ACM Computing Surveys (CSUR).

Data Clustering: A Review 31(3), 264–323. doi: 10.1145/331499.331504

Joy, G., & Xiang, Z. (1993). Center-Cut for Color Image Quantization. Visual

Computing, 10(1), 62–66. doi: 10.1007/BF01905532

Khaled, A., Abdel-Kader, R. F., & Yasein, M. S. (2016). A Hybrid Color Image

Quantization Algorithm Based on k-Means and Harmony Search Algorithms.

Applied Artificial Intelligence, 30(4), 331–351. doi:

10.1080/08839514.2016.1169049

Linde Y., Buzo A., & Gray, R. (1980) An Algorithm for Vector Quantizer Design. IEEE

Transactions on Communications, 28(1), 84–95, doi:

10.1109/TCOM.1980.1094577

Lloyd, S. (1982). Least Squares Quantization in PCM. IEEE Transactions on Information

Theory, 28(2), 129–136. doi: 10.1109/TIT.1982.1056489

MacQueen, J. (1967) Some Methods for Classification and Analysis of Multivariate

Observations. Proceedings of the 5th Berkeley Symposium on Mathematical

Statistics and Probability 281–297 doi: 10.1.1.308.8619

Ozturk, C., Hancer, E., & Karaboga, D. (2014). Color Image Quantization: A Short

Review and an Application with Artificial Bee Colony Algorithm. Informatica,

25(3), 485–503. doi: 10.15388/Informatica.2014.25

Pérez-Delgado, M. L. & Gallego J. A. R. (2018). A two-stage method to improve the

quality of quantized images. Journal of Real-Time Image Processing. doi:

10.1007/s11554-018-0814-8

 36

Pérez-Delgado, M. L. & Gallego, J. A. R. (2019). A Hybrid Color Quantization

Algorithm That Combines the Greedy Orthogonal Bi-Partitioning Method With

Artificial Ants. IEEE Access, 7, 128714– 128734. doi:

10.1109/ACCESS.2019.2937934

Pérez-Delgado, M. L. (2015). Color Image Quantization Using the Shuffled-Frog

Leaping Algorithm. Engineering Applications of Artificial Intelligence, 79, 142–

158. doi: 10.1016/j.engappai.2019.01.002

Pérez-Delgado, M. L. (2015). Colour Quantization with Ant-tree. Applied Soft

Computing, 36, 656–669. doi: 10.1016/j.asoc.2015.07.048

Pérez-Delgado, M. L. (2018). Artificial ants and fireflies can perform colour quantisation.

Applied Soft Computing, 73, 153–177. doi: 10.1016/j.asoc.2018.08.018

Pérez-Delgado, M. L. (2019). The color quantization problem solved by swarm-based

operations. Applied Intelligence, 49, 2482–2514. doi: 10.1007/s10489-018-1389-6

Pérez-Delgado, M. L. (2020). Color Quantization with Particle Swarm Optimization and

Artificial Ants. Soft Computing, 24, 4545–4573. doi: 10.1007/s00500-019-04216-

8

Robbins, H. & Monro, S. (1951) A Stochastic Approximation Method. Annals of

Mathematical Statistics, 22(3), 400–407. doi:10.1214/aoms/1177729586

Su, Q., & Hu, Z. (2013). Color Image Quantization Algorithm Based on Self-Adaptive

Differential Evolution. Computational Intelligence and Neuroscience, 2013,

Article ID 231916, 8 pages. doi: 10.1155/2013/231916

 37

Thompson, S., Celebi, M. E. & Buck, K. H. (2020) Fast color quantization using

MacQueen’s k-means algorithm. Journal of Real-Time Image

Processing doi:10.1007/s11554-019-00914-6

Uchiyama, T., & Arbib, M. (1994). An Algorithm for Competitive Learning in Clustering

Problems. Pattern Recognition, 27(10), 1415–1421, doi: 10.1016/0031-

3203(94)90074-4

Wan, S. J., Prusinkiewicz, P., & Wong, S. K. M. (1990). Variance-Based Color Image

Quantization for Frame Buffer Display. Color Research and Application, 15(1),

52–58. doi: 10.1002/col.5080150109

Wen, Q., & Celebi, M. E. (2011). Hard versus Fuzzy C-Means Clustering for Color

Quantization. EURASIP Journal on Advances in Signal Processing, 2011, 118–

129. doi: 10.1186/1687-6180-2011-118

Wu, K. L., Yang, M. S. (2006). Alternative learning vector quantization. Pattern

Recognition, 39(3), 351–362 doi: 10.1016/j.patcog.2005.09.011

Wu, X., Kumar, V., Quinlan, J. R., et al. (2008). Top 10 Algorithms in Data Mining.

Knowledge and Information Systems, 14, 1–37. doi: 10.1007/s10115-007-0114-2

Xiang, Z. (1997). Color Image Quantization by Minimizing the Maximum Intercluster

Distance. ACM Transactions on Graphics, 16(3), 260–276. doi:

0.1145/256157.256159

Yair, E., Zeger, K., & Gersho, A. (1992). Competitive Learning and Soft Competition for

Vector Quantizer Design. IEEE Transactions on Signal Processing, 40(2), 294–

309 doi: 10.1109/78.124940

 38

Yang, C. Y., & Lin, J. C. (1996). RWM-Cut for Color Image Quantization. Computers &

Graphics, 20(4), 577–588. doi: 10.1109/ICDAR.1995.601984

