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ABSTRACT 

 Although not strictly necessary in all color image processing applications today, 

color quantization still plays an important role in certain, typically hardware constrained, 

applications.  In this thesis, a novel color quantization method based on MacQueen’s k-

means algorithm, is proposed and compared to the more popular batch k-means 

algorithm.  The proposed method uses the maximin initialization method and quasi-

random sampling to achieve high quality, fast, and deterministic results.  In comparison 

to other well-known color quantization methods, the proposed method achieves very 

competitive results while being much faster. 
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CHAPTER 1: INTRODUCTION 

 Pixels in an RGB image are comprised of three-color values: red, green, and blue.  

RGB color images are then simply a rectangularly arranged collection of RGB triplets.  

Because the red, green, and blue values can each range from 0 to 255, the total number 

distinct colors that can be represented in a conventional 24-bit color image is 16,777,216.  

This can be quite a lot of information, especially with larger, more complex images.  

Therefore, the technique of color quantization (CQ) was conceived to help alleviate some 

of the storage related constraints (Heckbert, 1982).  Modern hardware can easily handle 

these images, however there are still a large number of applications where CQ is used and 

where advances in this field are quite useful.   

Data Clustering 

 Data Clustering is a type of unsupervised learning (Celebi and Aydin, 2015) in 

which data points are grouped into “clusters,” each of which is typically represented by a 

center.  Each cluster’s data points are typically similar to each other in some sense.  

Various algorithms have been invented over the years for data clustering, with one of the 

most popular algorithms being k-means and its numerous variants.  K-means is a 

partitional clustering method (Celebi, 2014) in which n observations are partitioned into k 

clusters with each observation belonging to a single cluster.   

In the context of CQ, clustering methods are typically divided into two different 

categories: pre-clustering and post-clustering. Pre-clustering methods recursively find 

nested clusters in either a divisive (top-down) or agglomerative (bottom-up) fashion. Pre-

clustering algorithms are typically faster than post-clustering algorithms and sacrifice 

accuracy for speed.  Post-clustering, on the other hand, find all k clusters simultaneously. 
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Color Quantization 

 CQ is a technique in which the number of colors in an input image is significantly 

reduced by picking a predetermined number of colors from a palette and applying them to 

all similarly colored pixels in the image (Braudaway, 1987).  For example, if an original 

image has around 100,000 colors, one may desire to reduce the number of colors to 64 in 

order to achieve a faster and better compression.  There have been several methods 

devised for quantizing images over the past four decades (Heckbert, 1982) and among the 

best of them is k-means.  K-means clustering (Celebi, 2009; Celebi, 2011) is a natural 

candidate because CQ can be viewed conveniently as a three-dimensional clustering 

problem. Like nearly all post-clustering algorithms, this technique is typically performed 

in two steps.  The first is to choose the color palette, and the second is to map each of the 

original pixels to the closest color in the palette.   
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CHAPTER 2: RELATED WORK 

 Several CQ techniques are used in the color image processing literature (Brun, 

2002). Among them are: popularity (POP), median-cut (MC), modified popularity 

(MPOP), octree (OCT), variance-based method (WAN), greedy orthogonal bipartitioning 

(WU), center-cut (CC), self-organizing map (SOM), radius-weighted mean-cut (RWM), 

modified maximin (MMM), pairwise clustering (PWC), split and merge (SAM), Cheng 

and Yang (CY), fuzzy c-means (FCM), adaptive distributing units (ADU), and variance-

cut (VC).   

Heckbert (1982) proposed the popularity method which builds a 16 x 16 x 16 

color histogram using 4 bits per channel, and then takes the K most frequent colors in the 

histogram as the color palette. He also proposed the median-cut method that builds a 32 x 

32 x 32 color histogram containing pixel values reduced by uniform quantization to 5 bits 

per channel.  The histogram is split recursively into smaller boxes until K boxes are 

obtained. 

Braudaway (1987) introduced the modified popularity method that starts by 

building a 2R x 2R x 2R histogram using R bits per channel.  It chooses the most frequent 

color as the first palette color and then reduces the frequency of each color.  The 

remaining colors are chosen in a similar fashion.  

Gervautz and Purgathofer (1988) proposed the octree method which builds an 

octree (tree data structure in which each internal node has up to eight children) that is a 

representation of the input image color distribution.  Then, it prunes the tree starting from 

the bottom by merging nodes until K colors are obtained.  
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Wan, Prusinkiewicz, and Wong (1990) proposed the variance based method, 

which is similar to Median-cut and starts the same but at each step, the box with the 

largest square error is split along the principal axis at the point that minimizes marginal 

weighted variance. 

Wu (1991) proposed the greedy orthogonal bipartitioning procedure that is similar 

to the variance-based method with the exception that at each step, the box with the largest 

square error is split along the axis that minimizes the sum of the variance on both sides.  

Joy and Xian (1993) proposed the center-cut method which is very similar to 

median-cut except at each step, the box with the greatest range on any coordinate axis is 

split along its longest axis at the mean point.  

Dekker (1994) applied a one-dimensional self-organizing map (Kohonen, 1990) 

to color quantization.  A random subset of pixels is used in the training phase and the 

final weights of the centers are taken as the color palette.  

Yang and Lin (1996) proposed the radius-weighted mean-cut method that is 

similar to the variance-based method, except the box is split along the vector from the 

origin to the radius-weight mean at that point.  

Xiang (1997) introduced the modified maximin method (Gonzalez, 1985) which 

chooses the first center arbitrarily from the data set and the rest of the centers are chosen 

to be the points with the largest minimum distance to the previously selected centers.  

Each of the initially chosen centers are then recalculated as the mean of the points 

assigned to them. 

Velho, Gomez, and Sobreiro (1997) introduced the pairwise clustering method 

that builds a 2R x 2R x 2R color histogram and controls a Q x Q joint quantization error 
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matrix where Q is the number of colors in the reduced color histogram.  The clustering 

procedure starts with Q singleton clusters, each of which contains one image color.  In 

each iteration, the pair of clusters with the least joint quantization error is merged (Ward, 

1963).  This process is repeated until K clusters remain.  

Brun and Mokhtari (2000) created the split and merge method which first 

partitions the color space into B partitions uniformly.  This initial set is represented as an 

adjacency graph.  In the second (last) phase, B – K merge operations are performed to 

obtain the final clusters (K). The pair of clusters with the minimum joint quantization 

error are merged during the second phase.  

Cheng and Yang (2001) created the method named after themselves, that is 

similar to WAN, except at each step the box is split along a specially chosen line defined 

by the mean color and the color that is farthest away at the mean point. 

Wen and Celebi (2011) conducted a comparative study among several variants of 

k-means and fuzzy c-means algorithms. They demonstrated that fuzzy c-means is 

substantially slower than k-means and, in terms of quantization effectiveness, the former 

algorithm is neither objectively nor subjectively superior to the latter. 

Celebi (2014) introduced a CQ methods based  the adaptive distributing units 

algorithm (Uchiyama and Arbib, 1994).  This algorithm is an online clustering algorithm 

based on the competitive learning paradigm.  What makes this postclustering method 

interesting is that it does not require initialization. 

Celebi, Wen, and Hwang (2015) developed the variance-cut method that is similar 

to MC with the exception that, at each step, the box with the greatest SSE is split along 

the coordinate axis with the greatest variance at the mean point. They also proposed the 
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variance-cut with Lloyd iterations method that is like VC except it locally optimizes the 

two subpartitions resulting from each split using 10 Lloyd iterations.  
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CHAPTER 3: PROPOSED COLOR QUANTIZATION METHOD 

This chapter serves to explain the proposed CQ method.  The proposed method 

starts by converting an image to a one-dimensional array of pixels (RGB values).  Then, 

it will initialize cluster centers using an appropriate adaptive method.  After this, it will 

begin to cluster the image by presenting pixels using a modified version of MacQueen’s 

k-means algorithm.  For each presented pixel, once it finds the closest center to the pixel, 

it will immediately update this center. It will continue to do this until the cluster centers 

do not move, or until a predetermined number of iterations is reached.  Finally, once 

MacQueen’s algorithm converges, each pixel in the input image is then mapped to its 

nearest center. 

Initialization 

 The simplest type of initialization is random selection.  While random selection is 

very efficient, it simply is not reliable enough to be used for this work (Celebi et al., 

2013).  A common alternative to random selection is the maximin method of initialization 

(Gonzalez, 1985).  In the maximin method, the first center is chosen arbitrarily, and the 

successive centers are chosen to be the point with the greatest minimum Euclidean 

distance to the previously selected center.  Euclidean distance between two RGB pixels 

(R1, G1, B1) and (R2, G2, B2) is given by the equation 

!(#! − #")! + ('! − '")! +	()! − )")!	.  While it is typical to choose the first center 

randomly, this essentially makes the entire method randomized.  Instead, picking the 

mean data point in the image as the starting point is a convenient and deterministic 

approach, and the one used here.  The pseudocode for maximin is given in Table 1. 
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Table 1. Maximin Initialization Method Pseudocode 

Step Description 

1 Take one center arbitrarily from the 

dataset and make it the first center. 

2 

In iteration (i = 2, 3,…, K), the ith center 

is chosen to be the one with the greatest 
minimum Euclidean distance to the 

nearest previously selected (i−1) centers. 

 

Lloyd’s Algorithm 

 Lloyd’s algorithm (Lloyd, 1982; Lindie et al., 1980) is one of the most common 

clustering algorithms in scientific and engineering applications (Celebi et al., 2013).  

Lloyd’s algorithm is commonly referred to as batch k-means and starts with a data set X = 

{x1,…, xN} ⊆ RD and a positive integer value K, that is, the desired number of.  For color 

quantization purposes, N, D, and K correspond, respectively, to the number of pixels in 

the input image, number of color channels (three in our case: RGB), and the number of 

colors desired.  The algorithm then assigns each data point to the closest cluster, thereby 

minimizing the sum of error (SE) given by SE = ∑ ,(x, {0", … , 0#})$∈& , where 

,(x, {0", … , 0#}) denotes the Bregman divergence of x to the nearest center in {c1,…,cK}.  

Bregman divergences are a family of nonmetric dissimilarity functions including 

Mahalanobis distance, Kullback-Leibler divergence, and Itakura-Saito divergence 

(Banerjee et al., 2005).  The most popular, and the one used in this case, is the squared 

Euclidean distance.  Because the squared Euclidean distance is used, the squared error SE 

becomes the sum of squared error (SSE).   

MacQueen’s Algorithm 

 An online formulation of the batch k-means algorithm was proposed by 

MacQueen (MacQueen, 1967).  It is similar to Lloyd’s algorithm in that each point is 
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assigned to the cluster that has the nearest center to that point (Thompson, 2020).  The 

two algorithms differ, however, in the way points are recomputed.  Unlike the batch 

algorithm, that updates all centers after the presentation of the entire set of points, the 

online algorithm updates the nearest center after the presentation of each point.  The 

online algorithm can be viewed as an instance of the competitive learning paradigm 

(Rumelhart and Zipser, 1985).   

In a basic competitive learning algorithm, a randomly distributed set of units 

compete for the right to respond to a subset of inputs (Rumelhart and Zipser, 1985).  

After the presentation of each input, the unit that most closely resembles the input is the 

winner and moves toward the input.  This is termed “hard competitive learning” because 

only the winner unit is adapted.  Let x(t) be the input at time t (t = 1,2,…) and c(t) be the 

corresponding nearest unit with respect to the ℓ2 distance.  The adaptation equation for c(t) 

is given by 

 0(()") = 0(() + η(()67(() − 0(()8, 

where η	∈ [0,1] is the learning rate, which is typically a monotonically decreasing 

function of time.  The larger the η value, the more emphasis given to new input and hence 

the faster the learning.  However, very large values of η may prevent the algorithm from 

converging.  In general, η is chosen to satisfy the Robbins-Monro conditions (Robbins-

Monro(1951): 

lim
(	→-

η(=) = 0, 

∑ η(t) = ∞-
(." , 
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∑ η(=)! < 	∞-
(." . 

The conditions ensure that the learning rate decreases enough to suppress noise but not 

too fast to avoid premature convergence.  The pseudocodes for the batch and online 

algorithms are given in Tables 2 and 3 respectively. 

Table 2. Batch K-Means Algorithm Pseudocode 

Step Description 

1 Let {c1,…,cK} be the initial set of centers. 

2 For each i ∈ {1,…, K}, set cluster Ci to be 
the set of points in X that are closer in 

terms of d to ci than they are to any other 
center.  

3 For each i ∈ {1,…, K}, set the center ci of 
cluster Ci to be the centroid of all points in 

Ci. 

4 Repeat Lloyd iterations (steps 2 and 3) 

until convergence. 

 

Table 3. MacQueen’s K-Means Algorithm Pseudocode 

Step Description 

1 Let {c1,…, cK} be the initial set of centers 
and n1 = … = nK = 1. 

2 Select a random point xr from X and find 
the nearest center ci to this point. 

3 Update the nearest center and the 
cardinality of the corresponding cluster     

ci ← (nici	+ xr)⁄(ni + 1),  

ni ← ni + 1.  

This ensures that the nearest center ci now 
accurately represents the mean of all 

points in Ci. 

4 Repeat steps 2 and 3 until convergence. 
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Presentation 

 Batch clustering algorithms, such as Lloyd’s algorithm, are less likely than online 

algorithms such as MacQueen’s to escape poor local minima (Celebi, 2014).  However, 

online algorithms have two major drawbacks.  First, stochastic selection of random input 

data could potentially make each run generate different results, effectively randomizing 

the output of the algorithm.  Second, the presentation order matters and different orders 

of presentation will result in different partitions.  To solve this problem, quasi-random 

sampling is used instead of pseudo-random sampling for the proposed method.  A quasi-

random sequence differs from a pseudo-random sequence in that it fills the D-

dimensional Euclidean space RD more uniformly.  Specifically, in this work, Sobol’ 

quasi-random sampling (Bratley and Fox, 1988) is used.  Fig. 1 depicts three pseudo-

random sequences generated by the popular MT19937 generator (Matsumoto and 

Nishimura, 1998) (top row) and three corresponding Sobol’ sequences (bottom row).  

Because quasi-random sampling is deterministic, this method of sampling now makes the 

modified MacQueen’s algorithm also deterministic.  
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Figure 1. Comparison of pseudo-random (a-c) and quasi-random (d-f) sampling 

 
(a) Random sequence (210 pts) 

 
(b) Random sequence (211 pts) 

 
(c) Random sequence (212 pts) 

 
(d) Sobol’ sequence (210 pts)  

(e) Sobol’ sequence (211 pts) 
 

(f) Sobol’ sequence (212 pts) 
 

Color Quantization 

 After the method converges, we have a color palette (also known as a “color 

map”). With the color palette at hand, we can start the actual CQ process.  Every pixel 

will be cycled through and compared against all of the cluster centers in order to find the 

closest center to this pixel.  After this, the pixels’ color values in the output image are 

replaced by those of the closest center.   
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CHAPTER 4: EXPERIMENTAL RESULTS AND DISCUSSION 

 This chapter explains the experimental procedure, the results of the experiments, 

and a discussion of the results.  First, the test dataset used in the experiments is presented.  

Next, the procedure used for the experiment is explained and the results are presented.  

Finally, a detailed discussion of these results is provided. 

Input Data 

 Table 4 presents the images used in the experiment, their name, file size, and 

number of colors.  These images are common in the CQ literature and present a diverse 

amount of test data for the experiment.  Note that both file size and the number of colors 

is given because there is not a direct relationship between the two (i.e., a large file may 

not necessarily have more colors).  Baboon, Lenna, Peppers are from the USC-SIPI 

Image Database; Motocross and Parrots are from the Kodak Lossless True Color Image 

Suite; Goldhill, Fish, and Pills are by Lee Crocker, Luiz Velho, and Karel de Gendre.  It 

is worth noting that the images used in the experiment are binary PPM files (P6) and the 

program developed for this thesis only accepts this specific format for reasons of 

programmer convenience and portability.   
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Table 4. Test Images 

Image Image Name File Size Num Colors 

 

Baboon 997KB 230,427 

 

Fish 228KB 28,170 

 

Goldhill 1.6MB 90,966 
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Image Image Name File Size Num Colors 

 

Lenna 997KB 148,279 

 

Motocross 433KB 63,558 

 

Parrots 324KB 72,079 

 

Peppers 997KB 183,525 
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Image Image Name File Size Num Colors 

 

Pills 1.6MB 206,609 

Experimental Setup 

 There are three parameters that are tested in the presented CQ method.  The first 

is K, which is present in nearly all CQ methods.  The second and third are the learning 

rate (B ∈ (0.5,1]) and sampling fraction (f ∈ (0, 1]) respectively.  The learning rate 

controls the rate of adaptation and the sampling fraction controls the proportion of input 

pixels that participate in the learning phase of MacQueen’s algorithm.  Determining the 

best possible parameter combination for this CQ method involved considering 24 distinct 

possibilities: p ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1} × f ∈ {0.25, 0.5, 0.75, 1}.  For each input 

image and K ∈ {32, 64, 128, 256} value, each image was quantized using the CQ method 

separately with each of the 24 combinations of (p, f) values.  The computed Mean 

Squared Error (MSE) between the input and output images was then taken.  The MSE is 

given by the mathematical formulation 

MSE(X, XK) = 
"
/0∑ ∑ |MN(ℎ, P) − NQ(ℎ, P)M|!!0

1."
/
2." , 

where X and XK denote, respectively, the H x W original and quantized images in the RGB 

color space. These 24 MSE values were then ranked from best to worst, with the lowest 

value being the best and the highest being the worst.  Finally, the mean and standard 

deviation of the MSE ranked values were calculated.  These results are given in Table 5. 
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Table 5. Mean and Standard Deviation Ranks for Various Parameter Combinations 

p f Mean Std 

0.5 0.25 9.5 2.8 

 0.5 4.8 2.1 

 0.75 2.9 1.3 

 1.00 1.4 0.8 

0.6 0.25 10.6 2.8 

 0.5 6.6 1.7 

 0.75 5.4 2.4 

 1.00 3.4 2.3 

0.7 0.25 14.1 3.1 

 0.5 9.8 2.1 

 0.75 7.8 2.2 

 1.00 7.4 3.3 

0.8 0.25 17.5 2.9 

 0.5 14.3 1.9 

 0.75 13.0 2.5 

 1.00 11.6 2.7 

0.9 0.25 20.7 1.7 

 0.5 17.7 1.8 

 0.75 17.3 1.9 

 1.00 16.5 2.6 

1.0 0.25 23.4 1.2 

 0.5 22.0 1.5 

 0.75 21.6 1.5 

 1.00 20.7 1.7 
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Comparison with Other CQ Methods 

 The proposed method is compared to the 15 well-known color quantization 

methods described above:  popularity (POP), median-cut (MC), modified popularity 

(MPOP), octree (OCT), variance-based method (WAN), greedy orthogonal bipartitioning 

(WU), center-cut (CC), radius-weighted mean-cut (RWM), pairwise clustering (PWC), 

split and merge (SAM), Cheng and Yang (CY), variance-cut (VC), variance-cut with 

Lloyd iterations (VCL), self-organizing map (SOM), and modified maximin (MMM).   

Two variations of MacQueen’s and two variants of Lloyd’s (batch) k-means 

algorithms were implemented for comparison.  The two variations of batch (BKM) were 

developed as an adaptation of Lloyd’s k-means clustering algorithm:  One-pass BKM 

(denoted by BKM1) and convergent BKM (denoted by BKM).  One-pass BKM is nothing 

but the batch version of MacQueen’s algorithm where the set of image pixels is presented 

to the algorithm exactly once.  Convergent BKM, on the other hand, performs Lloyd 

iterations until cluster memberships of points no longer change.  The two variations of 

MacQueen’s algorithm are: one with pseudo-random sampling (denoted by MKMp) and 

one with quasi-random sampling (denoted by MKMq).  The pseudo-random sampling 

variant uses the MT19937 (Mersenne Twister) generator.  In each iteration, a pseudo-

random data point is presented to the algorithm by generating an unbiased pseudo-

random integer using a recent algorithm due to Lemire (2019).  The quasi-random variant 

of MacQueen’s algorithm uses a quasi-random sampling using a Sobol’ sequence.  All 

four k-means variant were initialized using the maximin method. 

Table 6 compares the effectiveness, or quality, of the CQ methods.  The best 

(lowest) values are bolded for emphasis.  For the only randomized color quantization 
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method, MKMq, the values are given in the format ms, where m and s are the mean and 

standard deviation, respectively, over 100 independent runs.   
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Table 6. Comparison of Quantization Effectiveness 
CQ K    K    K    K    

 32 64 128 256 32 64 128 256 32 64 128 256 32 64 128 256 

 Baboon   Fish    Goldhill   Lenna   

POP 1679.5 849.5 330.7 170.4 2827.6 482.5 105.2 69.8 576.7 199.3 101.8 73.1 347.2 199.5 84.5 65.3 

MC 643.0 445.6 307.4 213.0 282.3 189.4 121.2 75.9 293.9 188.8 132.3 86.5 214.0 146.1 112.4 80.3 

MPOP 453.1 290.4 195.0 109.3 198.4 145.5 66.2 47.7 200.2 140.7 66.7 48.6 194.5 138.9 60.0 47.8 

OCT 530.2 306.6 203.6 125.0 218.4 125.1 77.8 44.3 230.3 130.3 79.0 45.7 186.7 110.0 66.0 40.6 

WAN 528.3 385.7 266.0 178.0 311.6 209.0 124.5 77.1 229.0 141.2 94.5 64.4 216.5 140.8 87.6 56.7 

WU 468.3 288.3 186.5 118.6 187.6 111.6 69.0 43.8 196.0 114.2 71.4 45.2 158.2 99.1 61.7 39.4 

CC 473.1 299.7 202.5 144.7 189.8 127.3 82.3 56.5 202.0 134.9 87.9 57.9 189.1 125.5 80.6 52.2 

RWM 459.0 301.6 188.1 120.2 176.7 109.0 68.9 44.4 179.8 118.3 71.0 44.5 161.2 94.6 60.1 39.2 

PWC 469.4 308.8 206.7 128.8 201.5 130.9 93.1 69.4 193.8 125.1 88.9 70.9 186.9 108.0 78.8 65.0 

SAM 464.9 293.9 188.8 119.8 198.5 120.1 74.0 48.5 179.3 111.2 70.4 46.7 158.0 102.0 65.0 45.4 

CY 465.9 280.9 187.3 117.7 193.8 112.5 72.0 44.8 186.3 121.6 72.2 46.4 166.4 97.6 62.5 41.9 

VC 450.6 273.5 179.9 117.6 168.1 106.5 67.4 43.4 174.8 109.5 68.3 42.4 145.6 91.7 60.7 38.9 

VCL 425.6 264.0 173.1 115.3 169.9 102.5 65.1 43.1 169.3 104.3 66.2 42.0 146.3 89.2 59.2 38.6 

SOM 433.6 268.9 163.9 108.2 180.4 114.1 60.4 45.1 182.1 104.2 59.5 38.4 140.2 87.4 50.5 33.9 

MMM 510.0 368.4 230.4 147.5 223.4 144.2 81.7 53.7 239.9 143.1 95.4 61.0 183.3 114.2 73.5 48.5 

BKM1 505.0 341.7 218.2 138.2 242.5 139.9 87.3 48.9 250.9 149.3 90.6 61.5 192.9 124.1 72.2 48.1 

BKM 374.2 234.3 149.3 95.6 142.6 90.2 57.3 34.8 143.8 83.0 52.0 34.2 130.8 74.7 46.8 30.3 

MKMp 375.31.4 236.4.6 152.2.3 98.2.2 147.93.1 93.31.1 59.5.5 37.0.3 144.4.7 84.1.5 53.3.2 35.6.2 131.3.5 75.2.3 47.7.2 31.4.1 

MKMq 375.6 236.2 152.0 97.6 148.7 92.8 59.2 36.2 144.3 83.3 53.3 35.7 131.4 75.4 47.9 31.3 

 Motocross   Parrots   Peppers   Pills   

POP 1288.6 474.3 201.6 93.5 4086.8 371.7 180.6 104.0 1389.3 367.7 218.3 129.1 788.2 222.9 124.0 85.3 

MC 437.6 254.0 169.4 114.3 441.0 265.1 153.6 112.3 377.6 238.9 173.8 121.9 324.2 233.8 159.5 100.4 

MPOP 287.5 177.9 84.1 53.3 379.8 212.1 104.7 59.4 338.7 204.9 112.1 69.3 277.5 175.2 88.4 55.1 

OCT 300.5 158.9 96.2 54.2 342.4 191.2 111.2 63.8 317.4 193.1 113.9 68.9 281.9 159.8 99.1 56.9 

WAN 445.6 292.1 168.7 92.4 376.0 233.4 153.4 92.2 348.1 225.7 157.2 106.4 294.9 197.7 133.1 87.7 

WU 268.1 147.2 86.7 51.0 299.2 167.3 95.4 58.3 278.9 165.5 102.2 66.1 261.2 150.1 89.5 55.0 

CC 335.1 202.0 122.6 74.9 398.8 246.5 148.7 78.9 418.4 256.8 160.7 107.9 285.9 171.7 111.9 77.4 

RWM 251.4 150.1 83.7 51.0 296.5 171.0 99.8 60.6 295.6 178.8 107.1 69.2 260.4 149.7 88.8 55.6 

PWC 243.2 161.2 101.5 78.0 349.4 205.1 125.8 86.0 344.8 183.7 121.1 80.0 283.4 169.3 110.5 75.6 

SAM 238.1 138.5 81.8 53.5 282.4 157.5 92.4 58.8 275.7 159.2 100.8 65.9 246.2 141.2 85.0 53.7 

CY 248.0 146.6 89.3 53.0 313.2 178.6 106.7 64.5 317.3 186.1 114.1 72.6 237.8 157.9 96.4 58.8 

VC 253.2 144.5 79.6 48.8 290.6 166.4 98.0 58.5 294.8 169.3 108.0 69.5 234.4 146.6 90.2 54.2 

VCL 240.6 131.5 77.1 47.9 263.7 157.5 96.6 57.2 261.1 160.3 103.8 68.4 229.8 141.4 85.7 53.8 

SOM 301.7 134.7 70.3 44.2 279.4 151.5 82.2 47.7 270.9 160.5 89.9 69.1 226.4 137.8 72.4 46.0 

MMM 407.9 276.9 138.2 85.6 352.1 194.8 128.7 68.5 341.5 213.3 136.5 85.2 276.2 174.9 117.2 75.6 

BKM1 389.4 237.8 166.2 85.7 363.7 202.1 121.3 71.6 363.1 232.2 138.7 92.8 307.5 188.3 121.5 72.0 

BKM 197.5 115.0 68.0 42.9 230.7 129.5 73.2 44.3 248.7 148.1 87.7 55.0 198.4 111.1 66.3 41.0 

MKMp 200.24.2 115.91.6 71.9.9 45.0.4 236.63.6 129.51.2 75.9.7 45.2.3 257.53.3 148.61.1 89.6.4 57.6.2 199.71.4 112.3.6 67.3.4 42.5.2 

MKMqq 194.3 116.7 72.7 44.6 241.2 127.2 75.9 44.3 258.3 148.9 89.4 57.6 199.0 112.0 67.3 42.4 
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 Table 7 compares the CPU time for the k-means based CQ methods on three of 

the eight images. Because the three most effective CQ methods are consistently superior 

to the others, they are the only ones compared in this experiment.  They are compared on 

the three most well-known images in CQ literature (Lenna, Baboon, and Peppers), with 

each having the same resolution of 512 x 512 pixels.  The remaining methods are left out 

because they are either pre-clustering methods that sacrifice effectiveness for speed, or 

post-clustering methods that do not perform particularly well. “Init” is the initialization 

time (msec), “Clust” is the clustering time (msec), “cr” is the clustering time for BKM 

divided by that for BKM, MKMp, or MKMq, and “tr” is the total time for BKM divided 

by that for BKM, MKMp, or MKMq.  All methods were implemented using the C 

language with the gcc v8.2.0 compiler and the Intel Core i7-6700 (3.4GHz) processor.  

The time figures were averaged over 100 independent runs. 

  

 

Table 7. Comparison of CPU Time 
Image CQ 32    64    128    256    

  init clust cr tr init clust cr tr init clust cr tr init clust cr tr 

Baboon BKM 39 4413 1 1 76 14249 1 1 146 27196 1 1 283 40378 1 1 

 MKMp 37 54 82 49 73 73 195 98 144 111 246 107 283 200 202 84 

 MKMq 37 64 69 44 73 83 171 92 144 122 223 103 283 200 202 84 

Lenna BKM 38 4319 1 1 75 9259 1 1 147 26378 1 1 283 32952 1 1 

 MKMp 36 52 82 49 72 73 127 64 143 109 241 105 283 200 165 69 

 MKMq 36 63 68 44 72 84 111 60 143 122 217 100 283 200 165 69 

Peppers BKM 36 2610 1 1 74 6259 1 1 147 33127 1 1 284 30275 1 1 

 MKMp 37 54 48 29 71 72 87 44 143 110 300 131 284 198 153 63 

 MKMq 36 63 41 27 72 83 76 41 143 122 272 126 284 198 153 63 
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Discussion of Results 

 For the presented CQ method, Table 3 (p,f) = (0.5, 1) is the best combination 

attaining mean and standard deviation ranks of 1.4 and 0.8 respectively.  This parameter 

combination almost always generates the lowest distortion.  Despite the fact that p = 1 is 

the most common choice in the statistical literature, the experiments demonstrated that p 

= 0.5 may be a better choice for finite data sets and K > 1.  Table 3 shows that the mean 

MSE ranks constantly decrease with increasing f.  Given that typically the more input 

pixels that are used, the better the learning for the dataset, this is not surprising.  From a 

theoretical and empirical perspective, the best parameter combination for the examined 

CQ method is (p,f) = (0.5, 1). 

 Table 6, which compares the MSE of the different CQ methods shows several 

interesting results:   

• Interestingly, MKM performs either best or close to the best every time and 

BKM1 performs among the worst, despite the fact that both make a single pass 

over the image using almost the same operations.  Both are also initialized with 

maximin.  The only explanation for this drastic performance difference is the 

online nature of MKM, which helps it to easier escape from poor local minima 

and learn faster.   

• Post-clustering methods are more effective than pre-clustering methods in almost 

all results, with VC and VCL performing better than the other pre-clustering 

methods (VCL is not purely pre-clustering because it performs refinement using 

Lloyd iterations after every split).  
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• Both the pseudo-random and quasi-random versions of MacQueen’s k-means 

(MKMp and MKMq) have very similar effectiveness and in most cases, BKM is 

slightly more effective than either variant.  The differences in MSE are negligible, 

however, and BKM only outperforms MKM by a few units. 

Table 7, which compares the CPU time for each of the top three clustering methods 

(BKM, MKMp, and MKMq) shows the following observations: 

• By observing the total times ratios, one can see that MKMp is ever so slightly 

faster than MKMq, because pseudo-random sampling is more efficient than 

quasi-random sampling.  This is a very small trade-off for a deterministic 

scheme, however.  Both methods are faster than BKM and the larger K 

becomes, the faster the methods become in relation.   

• Maximin exhibits linear behavior with respect to K.  When K is increased, the 

initialization time for MKM increases at the same rate (doubling each time K 

does).   

• BKM does not scale predictably.  In some cases when doubling K, the 

clustering time is increased by a factor of more than 5, whereas in other cases, 

doubling K actually decreases clustering time.  This is because that, for a 

given image, the number of iterations for Lloyd’s algorithm cannot be 

determined in advance and varies based on several factors including initial 

centers and distribution of colors in the image. 

• In BKM, initialization time is very small compared to clustering time.  The 

same cannot be said for MKM, which sometimes has the initialization phase 

take longer than the clustering phase.  A faster initialization method than 
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maximin can be used to help compensate for this but implementation 

convenience and portability is sacrificed as a result. 

• The image used makes a huge impact on the execution time of BKM.  For 

example, for K = 64, BKM takes ≈ 14.2s on Baboon, whereas clustering for 

Peppers takes ≈ 6.3s.  This is a huge difference and can be explained by the 

amount of colors and the complexity of the image (higher complexity means 

higher execution time). 

Images Quantized Using Various CQ Methods 

 Figures 2 and 4 below show sample quantization results for close-up parts of 

Baboon, Peppers, and Pills images.  Figures 3 and 5 show the full-scale error images for 

these images.  The error image for a particular CQ method was obtained by taking the 

pixelwise absolute difference between the original and quantized images.  For better 

visualization, pixel values of the error images were multiplied by 4 and then negated. 
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Figure 2. Baboon output images (K = 32) 

 
(a) Original 

 
(a) MC output 

  
(c) WAN output 

 
(d) OCT output 

 
(e) VCL output 

 
(f) SOM output 

 
(g) MMM output 

 
(h) BKM output 

 
(i) MKMq output 
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Figure 3. Peppers output images (K = 64) 

 
(a) Original 

 
(b) MC output 

 
(c) WAN output 

 
(d) SAM output 

 
(e) CY output 

 
(f) VCL output 

 
(g) SOM output 

 
(h) BKM output 

 
(i) MKMq output 
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Figure 4. Pills output images (K=128) 

 
(a) Original 

 
(b) POP output 

 
(c) MPOP output 

 
(d) RWM output 

 
(e) PWC output 

 
(f) SAM output 

 
(g) VC output 

 
(h) BKM output 

 
(i) MKMq output 
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Figure 5. Baboon error images (K=32) 

 
(a) MC error 

 
(b) WAN error 

 
(c) OCT error 

 
(d) VCL error 

 
(e) SOM error 

 
(f) MMM error 

 
(g) BKM error 

 
(h) MKMq error 
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Figure 6. Peppers error images (K=64) 

 
(a) MC error 

 
(b) WAN error 

 
(c) SAM error 

 
(d) CY error 

 
(e) VCL error 

 
(f) SOM error 

 
(g) BKM error 

 
(h) MKMq error 
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Figure 7. Pills error images (K = 128) 

 
(a) POP error 

 
(b) MPOP error 

 
(c) RWM error 

 
(d) PWC error 

 
(e) SAM error 

 
(f) VC error 

 
(g) BKM error 

 
(h) MKMq error 
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CHAPTER 5: CONCLUSIONS AND FUTURE WORK 

 In this thesis, a variation of MacQueen’s online k-means algorithm was 

introduced as a means to quantize color images.  A series of experiments were performed 

in order to determine the best parameter combination for the proposed algorithm.  

Included within the tested algorithms, was both a pseudo-random and quasi-random 

implementation of MacQueen’s k-means clustering algorithm.  Both utilized maximin as 

the initialization method due to its deterministic nature and superior results to that of 

random selection.  The pseudo-random implementation utilized the MT19937 generator 

and the quasi-random implementation used the Sobol’ sequence.  The results of the 

experiment demonstrated that MacQueen’s algorithm was comparable to Lloyd’s 

algorithm in effectiveness and was several times faster.   

 In the experiments, MacQueen’s algorithm was compared against a number of CQ 

algorithms: popularity, median-cut, modified popularity, octree, variance-based method, 

greedy orthogonal bipartitioning, center-cut, radius-weighted mean-cut, pairwise 

clustering, split and merge, Cheng and Yang, variance-cut, variance-cut with Lloyd 

iterations, self-organizing map, and modified maximin.  Along with these were two 

custom implementations of Lloyd’s algorithm.  While Lloyd’s algorithm performed best 

in nearly all scenarios, typically the resulting difference between it and MacQueen’s 

algorithm was negligible.  The primary difference between the two was speed.  

MacQueen’s algorithm consistently performed many times faster than Lloyd’s due to its 

online nature. 

 In this study, only maximin was used as an initialization method.  Many other 

initialization methods have been developed (Celebi et al., 2013), and through further 
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experimentation, perhaps faster and better results could be achieved.  The quasi-random 

variant of MacQueen’s algorithm was of particular interest during this study due to its 

deterministic nature, and the only presentation method tested for this was the Sobol’ 

sequence.  It would be interesting to compare other sampling methods (Ros and 

Guillaume, 2020), such as coreset sampling (Valenzuela et al., 2018) to perhaps achieve 

better results. 
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