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ABSTRACT 

Diabetic Retinopathy, the most common reason of vision loss, is caused by damage 

to the small blood vessels in the retina. If untreated, it may result in varying degrees of 

vision loss and even blindness. Since Diabetic Retinopathy is a silent disease that may 

cause no symptoms or only mild vision problems, annual eye exams are crucial for early 

detection to improve the chances of effective treatment where fundus cameras are used to 

capture the retinal images. However, fundus cameras are too big and heavy to be 

transported easily and too costly to be purchased by every health clinic, so fundus cameras 

are an inconvenient tool for widespread screening. Recent technological developments 

have enabled using smartphones in designing small-sized, low-power, and affordable 

retinal imaging systems to perform Diabetic Retinopathy screening and automated Diabetic 

Retinopathy detection using machine learning and image processing methods. However, 

Diabetic Retinopathy detection accuracy depends on the image quality and it is negatively 

affected by several factors such as Field of View. Since smartphone-based retinal imaging 

systems have much more compact designs than the traditional fundus cameras, the retina 

images captured are likely to be low quality with smaller Field of View. 

In this thesis, we first investigate the smartphone-based portable ophthalmoscope 

systems available on the market and compare their Field of View and image quality to 

determine if they are suitable for Diabetic Retinopathy detection during a general health 

screening. Then, we propose automatic Diabetic Retinopathy detection algorithms for 

smartphone-based retinal images using deep learning frameworks, AlexNet and 

GoogLeNet.  To test our proposed methods, we generate smartphone-based synthetic retina 

images by simulating the different Field of View with masking the original image around 
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the optic disk and cropping it. Using transfer learning, we retrain the pretrained networks 

with retina images from several datasets including EyePACS, Messidor, IDRiD, and 

Messidor-2. Then, we compare our smartphone-based results with the original retina 

images from the University of Auckland Diabetic Retinopathy dataset. As a main 

contribution to the existing literature, we study the effect of the Field of View in 

smartphone-based retinal imaging and improve Diabetic Retinopathy detection accuracy 

by training network with merged publicly available datasets.  

Based on the results, iNview retinal imaging system has the largest Field of View 

and better image quality compared with iExaminer, D-Eye, and Peek Retina systems. Using 

AlexNet, the overall classification accuracies of smartphone-based systems are sorted as 

61%, 62%, 69%, and 75% for iExaminer, D-Eye, Peek Retina, and iNview images, 

respectively. We observed that the network DR detection performance decreases as the 

Field of View of the smartphone-based retinal systems get smaller where iNview is the 

largest and iExaminer is the smallest. Finally, we observed the best results for vision 

threatening Diabetic Retinopathy detection with GoogLeNet as 95% testing accuracy and 

95% sensitivity for original images, while 89% testing accuracy and 94% sensitivity for 

smartphone-based synthetic images. Although we have used a smaller number of images 

in the training set compared with the existing deep networks in the literature, we obtained 

considerably acceptable higher accuracies for validation and testing data. As a result, the 

smartphone-based retina imaging systems can be used as an alternative to the direct 

ophthalmoscope once it tested in the clinical settings. However, the Field of View of the 

smartphone-based retina imaging systems plays an important role in determining the 

automatic Diabetic Retinopathy detection accuracy. 
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1. INTRODUCTION 

The World Health Organization estimates that 347 million people have diabetes 

worldwide and the number will increase to 552 million by the year 2030. In the United 

States, more than 9 percent of Americans (29 million) have the disease and 8 million of 

those are undiagnosed. A diabetic person is at high risk of eye disease including diabetic 

retinopathy (DR), diabetic macular edema (DME), cataract, and glaucoma. The most 

common cause of vision loss, DR is caused by bleeding of the small blood vessels in the 

retina. If these bloody retina veins are untreated, it may cause varying degrees of vision 

loss and even blindness. The signs of DR can be listed as including but not limited to the 

existence of microaneurysms, hard exudates, vitreous hemorrhages, and retinal 

detachments. Figure 1 shows retina images with different DR levels such as (a) normal, (b) 

mild, (c) moderate, (d) severe, and (e) proliferative. As shown in Figure 1(a), there is no 

abnormal lesions in the normal retina. Based on the severity and amount of the 

microaneurysms, hard exudates, vitreous hemorrhages, and retinal detachments, Figure 

1(b-d) are labeled differently from mild to proliferative using clinical DR disease severity 

scales (See Section 4.1. Datasets). Readers can easily observe the differences, especially 

in the yellow and red regions. 
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Figure 1. Retinal images from the UoA – DR dataset with different DR levels, (a) normal, 

(b) mild, (c) moderate, (d) severe, and (e) proliferative  

 

In the US, more than 4.4 million people aged 40 and older had DR problems at 

different stages. Due to its silent nature, DR may cause no symptoms or only mild vision 

problems [1]. Since early detection could improve the chances of effective treatment to 

prevent blindness, doctors suggest annual eye exams for diabetic patients. With early 

diagnosis and accurate evaluation of DR severity, it is possible to coordinate diabetic eye 

care and prompt appropriate treatment for the prevention of blindness and visual loss [2]. 

However, current studies show that access to such medical care in developed countries 

ranges between 60% and 90%, with significantly lower rates in developing countries [3]. 

Patients without eye care access do not benefit from the potential of early detection and 

                       (a)                                                     (b)                                                      (c) 

                (d)                                                      (e)                                                         
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getting effective treatment in a timely manner. Among rural and minority populations, 

there exists a significant disparity in early diagnosis and access to eye care. 

In the retina examination, doctors use special optical devices such as an 

ophthalmoscope, a 20D (diopter) lens, and a fundus camera. Due to the easier storage, 

better image quality, and faster electronic transfer, fundus cameras are widely used to 

detect eye diseases with their digital imaging features. However, retinal imaging with a 

fundus camera is a time-consuming and manual process. Some certain level of expertise is 

required to capture a retinal image and an expert evaluation report may take a few days to 

submit. Since fundus cameras are also too big and heavy to be transported easily and too 

costly to be purchased by every health clinic, fundus cameras are inconvenient tools for 

widespread screening. In addition, it is very hard to find equipment and expert in rural areas 

that have a high diabetes rate [4]. The need for infrastructure for DR screening will become 

even more insufficient as the number of diabetic people increases. Therefore, there is a 

growing demand for small, portable, and inexpensive retinal imaging systems to perform 

DR screening and automated DR detection methods using data science and image 

processing techniques. 

 Recent technological developments have enabled using of smartphones in 

designing small-sized, low-power, and affordable biomedical imaging devices. These 

systems are capable of imaging, onboard processing, and wireless communication. 

Therefore, smartphone-based systems are very popular in several applications ranging 

from health care to entertainment since they make existing systems small and portable. 

Since fundus cameras are large-size, heavy-weight, and high-price devices, they are a good 

candidate to be transformed into a portable device to perform fast DR screening. 
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Developing new portable retinal imaging systems using smartphones is an emerging 

research and technology area that attracts several universities and companies. 

Using 20D lens with a smartphone is one of the early designs to record video on 

human and rabbit eyes [5] as shown in Figure 2(a). This early design used the Filmic Pro 

mobile application to adjust focus, exposure, and light intensity manually. This allows 

having better quality fundus images in clinic settings for both under anesthesia and awake 

conditions. Another very simple smartphone-based design is the iExaminer system of 

Welch Allyn [6]. It is developed by attaching a smartphone to a PanOptic ophthalmoscope 

as shown in Figure 2(b). These systems require attaching the smartphone to an existing 

medical device. Recently, new smartphone-based retinal imaging systems are released to 

the market including D- Eye, Peek Retina, and iNview. These smartphone-based retinal 

imaging systems are bundled with associated secure HIPPA-compliant mobile application 

for image capture and transmission. In addition, iExaminer, D-Eye, and iNview have the 

Food and Drug Administration (FDA) approval for their devices. However, Peek Retina is 

currently waiting for the approval from FDA. 
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Figure 2. Smartphone-based retinal imaging systems available in the market, (a) Fundus 

photography method used by Harvard Medical School (b) iExaminer developed by 

Welch Allyn, (c) D-Eye, (d) Peek Retina, and (e) iNview by Volk. 

 

                          (a)                                                                                       (b) 

                           (c)                                                                                       (d) 

(e) 
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Russo et al. [7] developed the D-Eye, a small, portable, and inexpensive retinal 

imaging system to capture retina images as an attachment to a smartphone. Using the cross-

polarization technique to reduce corneal reflections and integrated with the smartphone's 

autofocus feature to prevent the patient's refractive error, D-Eye allows retinal eye 

screening even for undilated eyes. To illuminate the retina, D-Eye reflects the smartphone 

flashlight as shown in Figure 2(c). Peek Retina imaging system [8] includes its own light 

to illuminate the retina and the image is captured by a smartphone as shown in Figure 2(d). 

To capture wide-angle retinal images, Volk Optical developed iNview smartphone-based 

retinal imaging system [9] as shown in Figure 2(e). It illuminates the retina by reflecting 

the smartphone flashlight and does not require pupil dilation to acquire 50 degrees of retinal 

view to visualize the entire posterior pole in a single image. All these smartphone-based 

imaging systems are capable of capturing retina images, but none of these smartphone-

based systems offer a way to analyze and evaluate eye disease by using image processing 

techniques. 
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2. RELATED WORKS 

In this section, we introduce solutions for the detection of DR using conventional 

and deep learning methods. There exist several telemedicine solutions for retinal image 

analysis for DR screening [10]. These solutions in the literature need manual grading. 

However, they have to be fully automated to accelerate the diagnosis of retinal diseases 

using predictive models, especially for patients in rural areas. Researchers presented 

automatic retinal image analysis (ARIA) tools including iGradingM [11], The TRIAD 

Network [12, 13], IDx-DR [14], RetmarkerDR [15], and Retianalyze [16]. However, these 

methods are semi-automated and require some expert control to decide the existence of the 

retinal disorder. This is the main obstacle to apply them automatically for large datasets.  

Kaggle's competition is one of the attempts to attract researchers to present 

solutions for DR detection providing the EyePACS retinal images. EyePACS contains 

78685 retinal images to assess the DR existence and severity recommendation in different 

studies. This competition gives an opportunity to researchers to design their deep learning 

networks and try them with a publicly available dataset. It also accelerates the research 

findings for automatic DR detection and usage of the deep networks for classification based 

medical research with higher detection performance. Graham is the winner achieving the 

accuracy score of 0.84957. He first preprocessed the retina images to remove the 

illumination difference and used a convolutional neural network, SparseConvNet and 

random forest for classification by augmenting the retina images to increase the number of 

images in the training set [17].  

With the improvement of computational power and advances in neural networks, 

deep learning algorithms, especially Convolutional Neural Networks (CNNs), have been 
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widely used in different applications including retinal imaging. Rajalakshmi et al. [18] 

proposed using Remidio Fundus on Phone (FOP) device to capture high-quality retina 

images compared with the traditional fundus devices. The FOP is a high-quality portable 

fundus camera that is capable of capturing wide retinal color photography covering macula, 

nasal to the optic disc, superior-temporal and inferior-temporal quadrants. After data 

capturing, retina images are graded with EyeArt [19, 20], a deep learning method to 

determine the existence of the DR. It is a cloud-based retinal image assessment tool to 

grade DR development using deep learning methods that were trained with EyePACS 

dataset [21]. The EyeArt system also offers image processing and machine learning 

techniques such as image gradeability, image enhancement, image restoration, interest 

region detection, and descriptor computation. Compared with manually graded results by 

two ophthalmologists, deep artificial neural network method shows high sensitivity and 

specificity for retina images captured by FOP device. FOP proves the concept of 

smartphone-based designs and shows the technological and economic feasibility of the 

portable retinal imaging systems. However, due to their fewer controllable parameters such 

as aperture and inexpensive lenses, smartphone-based systems have a lower image quality 

compared to the fundus camera and FOP. Therefore, the existing algorithms could not be 

applied directly to the retinal images captured with smartphone-based retinal imaging 

systems because the quality of captured retina images plays an important role in the 

accuracy of the deep learning techniques. 

Gulshan et al. used specific deep learning methods for automated DR detection 

[22]. They have used CNN methods for image classification and trained their algorithm 

with Inception-v3 architecture [23] with about 128175 images using EyePACS and 
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Messidor-2 datasets. They have mentioned the variety of DR problems such as referable 

Diabetic Retinopathy (rDR), vision-threatening Diabetic Retinopathy (vtDR), and 

referable Diabetic Macular Edema (rDME). Based on the results, they suggest that such a 

CNN network gives the best results when the network trained with 60000 images in terms 

of sensitivity and specificity. For the sensitivity, they reached about 97%. In order to apply 

these results to the clinical environment, more research is needed. They obtained an 

accuracy of 97.5% and 96.1% choosing two different threshold values. 

Abramoff et al. [24] developed Iowa detection program for detecting rDR and they 

have used their own DR database and publicly available Messidor-2 dataset for training 

and testing, respectively. Based on the test results on the Mesidor-2 dataset, they achieved 

96.8% sensitivity and 59.4% specificity for detecting rDR. After that, they improved their 

results and reported 96.8% sensitivity and 87% specificity for detecting rDR using machine 

learning methods. [25] 

Gargeya et al. [26] used a customized CNN technique to detect DR. They trained 

their system with 75137 fundus images from their own dataset and tested with Messidor-2 

and E-Optha datasets. They classified images into two categories, one with the healthy 

eyes, the other with any DR stage, in other words, mild and worse DR. They acquired 94% 

sensitivity and 98% specificity from their own dataset. Also, they tested their model with 

Messidor-2 dataset, and they achieved 93% sensitivity and 87% specificity. 

Philip et al. [27] developed a DR assessment system based on healthy and disease 

conditions, also known as mild DR and worse. They trained their algorithm with 1067 

images and tested with 14406 images. The performance of their algorithm was 86.2% and 

76.8% with sensitivity and specificity, respectively. 
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Carson et al. [28] introduced a CNN based deep learning techniques to detect DR 

using various classification models including but not limited to 2-ary, 3-ary, and 4-ary. 

Pretrained AlexNet and GoogLeNet models were investigated and transfer learning 

approaches were applied using Kaggle EyePACS and Messidor-1 dataset. They suggested 

using image processing techniques to increase validation accuracy especially for the 

detection of mild DR such as image normalization and contrast adjustments using 

histogram equalization. They augmented the retina images to increase the number of 

images in the training set and prevent overfitting. They received 95% sensitivity in the 

validation set and its accuracy in the testing set 74.5%, 68.75%, and 51.25% for 2-ary, 3-

ary, and 4-ary models, respectively. 

Pires et al. proposed a solution for detecting rDR using data-driven approaches [29]. 

They used transfer learning techniques by applying to CNN. They applied on their training 

stage to data augmentation, multi-resolution, feature extraction, per patient analysis, and 

testing their solution with cross dataset logic by using Kaggle EyePACS dataset as a 

training, Messidor-2 dataset for testing. Based on the results, they obtained a 98.2% 

Receiver Operating Characteristic (ROC) curve for predicting rDR. 

Since these methods in the literature focus on fundus images, they cannot be easily 

applied to smartphone-based images. For this reason, we need to investigate and create our 

own synthetic DR dataset using the FoV approach. 
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3. METHODS 

In this section, we first present the details of smartphone-based portable retinal 

imaging systems available on the market to compare their features and image qualities. 

Second, we introduce the Field of View (FoV) determination process of each smartphone-

based retinal imaging system using a circular test pattern. Third, we introduce the layout 

of the adopted deep learning architecture for DR detection. 

3.1. Smartphone-based Portable Retinal Imaging Systems 

There are four smartphone-based retinal imaging systems available in the market 

including iExaminer, D-Eye, Peek Retina, and iNview. First, we attach each smartphone-

based retinal imaging devices to the smartphone to capture retinal images. Since the retina 

is located at the back of the eye and light does not reflect back through the retina, it is not 

possible to take a picture of the retina directly without any external illumination. Therefore, 

these imaging systems attached to the smartphone needs to illuminate the dark retina by 

reflecting the smartphone flashlight on the retina or using its own light to brighten the 

retina. Figure 3 shows the general optical design of the smartphone-based retinal imaging 

devices. Based on their optical design, each smartphone-based portable retinal imaging 

system has different degrees in angles of retinal views (AoV) to capture retinal images. It 

suggests that this difference in angles determines the FoV of different imaging systems. 

For example, the distance of the device to the eye, (i.e., x), the length of the device (i.e., 

y), and the number of lenses in the optic design determine the AoV in different imaging 

systems. 
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Figure 3. The general optical design of the smartphone-based retinal imaging devices. 

 

Even in a controlled environment, pupil dilation level of the human subject and the 

eye gaze between a human subject and the retinal imaging system changes easily. Since 

the visible portions of the retina will change, the retina images captured from a human 

subject changes over time for different smartphone-based retinal imaging systems. To test 

the visible retina, a synthetic eye model can be used. For our experimental setup, we used 

the synthetic eye model box provided with Peek Retina smartphone-based retinal imaging 

system as shown in Figure 4(a). It replicates the eye structures including pupil, lens, and 

retina. The dimensions of the synthetic eye model are 53 mm x 53 mm x 22 mm in width, 

length, and depth. The opening on the box replicates the pupil of the eye. Under the pupil 

opening, there is a lens to illustrate the lens of the eye. Since the distance from the front 

surface of the cornea to the retina is approximately 24 mm on average, a printed test image 

is placed inside the box at the bottom that gives the same distance. As shown in Figure 4(b-
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c), the printed real retina images show related retina tissues including the optic nerve, 

macula, and blood vessel. There are eight different high-quality printed real retina images 

provided with Peek Retina system including (1) normal retina, (2) glaucoma, (3) age-

related macular degeneration, (4) diabetic retinopathy - clinically significant macular 

edema, (5) branch retinal vein occlusion, (6) diabetic retinopathy - ghost vessel, (7) 

papilloedema optic disc swelling, and (8) diabetic retinopathy - proliferative. 
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Figure 4. (a) Peek Retina synthetic eye model in a box for data collection and (b-c) 

Synthetic retina images. 

 

                                                              (a) 

                          (b)                                                                              (c) 
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In the following subsections, we present the details about the publicly available 

smartphone-based portable retinal imaging systems and their features. Table 1 summarizes 

and compares the important features of smartphone-based retinal imaging systems publicly 

available in the market including their price, size, weight, compatible smartphones, 

illumination source, pupil dilation dependency, degree of retinal view, type of captured 

data with its own mobile application, image size, and the maximum number of images. 

Table 1. Comparison of smartphone-based retinal imaging systems available in the 

market 

Properties iExaminer D-Eye 
Peek 

Retina 
iNview 20D Lens 

Compatible 

Smartphones 
iPhone 6 iPhone 6/7 Universal iPhone 5/6/6s Universal 

Illumination 

Source 
Inside Flashlight Inside Flashlight Flashlight 

Dilation 

Dependency 

Not 

Required 
Required Required Not Required Required 

Degree of 

Retinal View 
25 6-20 20-30 50 46 

Working 

Distance (mm) 
22 22 22 65 50 

Size (mm) 70/220/162 68/135/7 27/75/35 180/76/180 50/50/10 

Weight (gr) 390 25 43 332 50 

Price ($) 750 400 235 995 113 

Own Mobile 

Application 
Yes Yes Yes Yes No 

Type of 

Captured 

Data 

Image Video 
Image / 

Video 
Image N/A 

Images/Video 

Duration 
5 Images 

30 

Seconds 
N/A 9 Images N/A 

Size of Images 320x280 640x480 640x480 640x480 N/A 

Data Capture 

Modes 
Manual Manual Manual Manual/Auto Manual 
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3.1.1. 20D Lens 

One of the early and simple designs for smartphone-based retinal imaging is 

developed using 20D (diopter) lens at Harvard Medical School and the Massachusetts Eye 

Hospital [5]. An operator holds the 20D lens directly in front of the eye and captures the 

retinal images with a smartphone. The flashlight of the smartphone or an external light 

source attached to the doctor's head is used to illuminate the retina. After capturing images 

using any smartphone application, retinal images are extracted using the virtue of 

MovieTolmage and Video2Photo applications. In addition, light intensity, focusing, and 

exposure can be adjusted before data capture. In order to acquire the retinal images for 

optimal quality, not only is the pupil dilation suggested but also it requires a certain level 

of expertise to capture retinal images.  

3.1.2.  iExaminer 

iExaminer is another simple early design for a fundus photography method using a 

smartphone [6]. It is developed by attaching a smartphone to a Welch Allyn PanOptic 

ophthalmoscope. PanOptic Ophthalmoscope has been used for several years by 

ophthalmologists to provide convenient eye exams and detect eye diseases, including DR. 

In the iExaminer system, the eyecup of the ophthalmoscope where the doctor looks 

removed and the smartphone is attached using a special attachment to capture the retina 

images using the smartphone's camera. The iExaminer system involves three main pieces, 

including a smartphone application, iExaminer adapter, and PanOptic Ophthalmoscope. 

However, it is only compatible with the iPhone 4 and 6 since there is no smartphone adapter 

available in the market for other devices.  
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To capture retina images, iExaminer provides up to 25-degree FoV for dilated eyes 

and allows adjusting focus ranging from -20 to +20 diopter. It offers several apertures and 

filter options including small spot, large spot, microspot, slit aperture, red-free filter, cobalt 

blue filter, half-moon, and fixation aperture. Its optic design generates its own light, 

converges it to a point at the cornea, and diverges around the retina. This allows easy entry 

into small pupils and wide area illumination of the fundus. Therefore, it does not require 

pupil dilation for retinal imaging. The operator can also control the amount of illumination 

manually. It also has an eyecup at the patients’ side that helps stabilization for the view and 

occludes ambient light to prevent the interference from outside light. The smartphone 

application allows capturing up to five images from a patient. After capturing retina 

images, the iExaminer system can send them to the doctor via an e-mail without applying 

any image processing algorithms.  

To capture images with iExaminer, we attached the phone to the adapter on the 

PanOptic Ophthalmoscope. Since iExaminer uses its own light, we disabled the flashlight 

of the phone and set the carousel settings for large light in the ophthalmoscope. Then, we 

positioned the iExaminer on the synthetic eye model box and touched the eyecup to the 

box as shown in Figure 5(a). In order to use the auto-focus property, we set the diopter to 

zero and waited for a few seconds before capturing the images. 
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Figure 5. Experimental setup retinal imaging with (a) iExaminer, (b) D-Eye, (c)Peek 

Retina, and (d) Volk iNview. 

                            (a)                                                                                    (b) 

                           (c)                                                                                      (d) 
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3.1.3. D-Eye 

D-Eye retinal imaging system [7, 30] illuminates the retina by reflecting the 

smartphone flashlight to capture magnified retinal images up to 20 degrees in angle using 

its optics design and the smartphone camera. The D-Eye adapter is designed to attach it to 

various compatible iPhone models using compatible bumpers to magnetically attach. Since 

D-Eye reflects the flashlight of the smartphone to the retina using its optic design with 

mirrors and lenses, it does not require additional external power and light sources. Due to 

this design constraint, D-Eye is compatible with iPhone 5, 5s, 6, 6Plus, 6s, 6sPlus, and 7. 

D-Eye also provides an iOS application that gives the opportunity to both recording videos 

and shooting multiple images. Even if the system does not require pupil dilation to capture 

retina images, pupil dilation might be helpful where a larger FoV is needed such as 

analyzing retinal tissue structures and screening a complete retina. For undilated eyes, D-

Eye system can capture retina up to a 6-degree angle of view, while dilated eyes allow the 

20-degree angle of view. To capture images with D-Eye, we position the D-Eye on the 

synthetic eye model box as close as possible as shown in Figure 5(b). 

3.1.4. Peek Retina 

Peek Retina is another plug-in imaging system [8] that has its own adjustable light 

and power source to illuminate the retina. Users can change the amount of light to 

illuminate the retina by choosing one level out of three. Since it has its own light source, 

Peek Retina has a universal clip to attach any smartphone. It also has own Android 

application, named Peek Retina Camera, that enables capturing photos and recording 

videos. However, we can use any camera application with iPhone and Windows Phone 
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models to capture images by adjusting manual settings in terms of autofocusing, clarity, 

and brightness.  

Since Peek Retina system is still waiting for approval from the Food and Drug 

Administration in the US, it can only be used for educational purposes, not for medical 

purposes. However, there is a synthetic eye model box in its package for synthetic data 

capture. Therefore, we can only collect synthetic data provided in its package with eight 

different retina images that have different eye disease conditions from the normal eye to 

proliferative DR. For data capture with Peek Retina, we positioned the Peek Retina adapter 

to align with the camera and tighten the knob to hold the device in the correct position as 

shown in Figure 5(c). Since Peek Retina has its own light source, we disabled the flashlight 

of the smartphone. 

3.1.5. Volk iNview 

The Volk iNview [9] smartphone-based retinal imaging system is developed by 

Volk Optical to capture wide-angle retinal images. It has three core components, including 

a mobile application, an indirect ophthalmoscopy lens, and an attachment adaptor for 

iPhone or iPod. This system captures the high-resolution retinal images using the camera 

and flashlight of the smartphone. The system does not require pupil dilation and it is able 

to capture 50 degrees of retinal view to visualize the entire posterior pole in a single image. 

In order to magnify the retina and to visualize it in a wider FoV, iNview Retinal Imager 

used 25D (diopter) lens as the primary imaging lens in its design. Its optical design 

generates a working distance of approximately 65mm. Due to the size of the 25D lens in 

the optical design, it has a large end tube size that requires the operator to use the patient's 

forehead as a steady reference to stabilize the device. 



21 

 

Volk iNview provides the widest FoV compared to other smartphone-based retinal 

imaging systems but it is also the biggest and heaviest design (see Table 1). Volk iNview 

is compatible with iPhone 5s, 6, 6s and iPod Touch. The free mobile application provides 

automatic retinal image capture and good auto-focus features. It also allows the user to 

encrypt the captured images using a password key for data security. This adds an extra 

layer of security to send the retinal images through an e-mail. Since iNview does not have 

its own light, we enabled the phone flashlight and positioned the iNview on the synthetic 

eye model box. In order to use the auto-focus property, we placed the iNview to about 

150mm away from the box and make it closer to the box to set the distance around 65mm 

(the best distance for data acquisition) as shown in Figure 5(d). Waiting for a few seconds 

before data capture helps the auto-focus feature to stabilize the image. 

3.2. Field of View (FoV) and Image Quality for Smartphone-based Retinal Imaging 

Systems 

3.2.1. Circular Test Patterns 

In order to compare the FoV and image quality and show the difference between 

smartphone-based retinal imaging systems, we set up our experiments using a circular test 

pattern as shown in Figure 6. We collected retina images and videos using four smartphone-

based retinal imaging systems available on the market including iExaminer, D-Eye, Peek 

Retina, and Volk iNview. To make the fair comparison between different retinal imaging 

systems, we captured retinal images and recorded videos with iPhone 6 using their 

compatible adapters and bumpers. We first attached each smartphone-based retinal 

imaging system to iPhone 6 to capture retina images. Since the retina is located at the back 

of the eye and light does not reflect back through the retina, it is not possible to take a 
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picture of the retina directly without any external illumination. Therefore, we illuminated 

the dark retina by reflecting the smartphone flashlight or using the light source on the 

smartphone-based retinal imaging system. The amount of light reflected on the retina is 

adjusted using the mobile application or controller on the smartphone-based retinal 

imaging system. The retina images were captured using the smartphone’s camera and saved 

to its memory. 

 

Figure 6. The circular test pattern of the Peek Retina synthetic eye model box 

 

Even if in a controlled environment, pupil dilation level of the human subject and 

the eye gaze between a human subject and the retinal imaging system changes easily. Since 

the visible portions of the retina will change, the retina images captured from a human 

subject changes over time for different smartphone-based retinal imaging systems. To fix 

the visible retina, a synthetic eye model can be used. For our experimental setup, we used 
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the synthetic eye model box provided with Peek Retina smartphone-based retinal imaging 

system. It replicates the eye structures including pupil, lens, and retina. The dimensions of 

the synthetic eye model are 53 mm x 53 mm x 22 mm in width, length, and depth. The 

opening on the box replicates the pupil of the eye. Under the pupil opening, there is a lens 

to illustrate the lens of the eye. Since the distance from the front surface of the cornea to 

the retina is approximately 24 mm on average, a printed test image is placed inside the box 

at the bottom that gives the same distance. 

In our experiments, we used a circular test pattern to capture images using different 

smartphone-based retinal imaging systems. Therefore, we placed the circular test pattern 

at the bottom of the Peek Retina synthetic eye model box as shown in Figure 6. With this 

set of experiments, we compared the FoV, illumination distribution, depth of focus blur, 

environmental setup for each smartphone-based retinal imaging system. 

Before comparing the smartphone-based retinal imaging systems, we first 

investigated the data collection environment to figure out what condition is more suitable 

for capturing retina images such as ambient light in the environment, mobile application, 

auto-focus, zoom, etc. For example, we captured retina images in an office with different 

light setup and in outdoor to test the effect of ambient light in the environment. We captured 

images with four smartphone-based retinal imaging systems using different mobile 

applications such as iPhone’s camera app, Pro-Movie for video recording app, and other 

apps in App Store by changing the focus and zoom settings. Based on our observations, 

even if there might have small variations in each system due to its own features, the best 

experimental setup for data collection, in general, is to use iPhone’s camera app with the 

flashlight on and auto-focus in a dark office environment. 
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3.2.2. Best Distance Calculation for Environment Setting 

After finding the best setup, we investigated the effect of the distance between the 

retina and the smartphone-based retinal imaging system. We captured retina images and 

videos at a different distance including 150mm, 100mm, 75mm, 65mm, 50mm, 35mm, 

30mm, and 22mm. For example, when the distance between retina and imaging system is 

fixed at 22mm, it means that the imaging device touching to the synthetic eye model box. 

To find the optimum distance between the imaging system and the eye, we compared the 

FoV and depth of field blur by counting the number of visible circles, and the sharpness of 

each circle in the captured images from different distances. 

Figure 7 shows the images captured with iExaminer using circular test patterns 

from 150mm, 100mm, 75mm, 65mm, 50mm, 35mm, 30mm, and 22mm in distance. We 

observed that the number of circles increases from one to six as the distance between the 

retina and the imaging device decreases.  
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Figure 7. Circular test pattern images captured by iExaminer from (a) 150mm, (b) 

100mm, (c) 75mm, (d) 65mm, (e) 50mm, (f) 35mm, (g) 30mm, (h) 22mm in distance. 

 

Using D-Eye, we captured the circular test patterns from 150mm, 100mm, 75mm, 

65mm, 50mm, 35mm, and 22mm in the distance as shown in Figure 8. The number of 

(a)                                                                                           (b)                                                  

(c)                                                                                         (d)                                                  

 (e)                                                                                           (f)                                                  

(g)                                                                                           (h)                                                  
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visible circles in the test pattern increases when the imaging system is closer to the 

synthetic eye model box. There are seven visible circles at the closest 22mm distance.  

  

  

  

 

 

Figure 8. Circular test pattern images captured by D-Eye from (a) 150mm, (b) 100mm, 

(c) 75mm, (d) 65mm, (e) 50mm, (f) 35mm, (g) 22mm in distance. 

(a)                                                                                           (b)                                                  

(c)                                                                                           (d)                                                  

(e)                                                                                           (f)                                                  

(g)                                                                                           (b)                                                  
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Figure 9 shows the images captured with Peek Retina using circular test patterns 

from 150mm, 100mm, 75mm, 65mm, 50mm, 35mm, and 22mm in distance. We observed 

that the number of circles increases from one to seven as the distance between the retina 

and the imaging device decreases. 
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Figure 9. Circular test pattern images captured by Peek Retina (a) 150mm, (b) 100mm, 

(c) 75mm, (d) 65mm, (e) 50mm, (f) 35mm, (g) 22mm in distance. 

 

Finally, we captured the circular test patterns using iNview from 150mm, 100mm, 

75mm, 65mm, 50mm, 35mm, 30mm, and 22mm in the distance as shown in Figure 10. 

(a)                                                                                           (b)                                                  

 (c)                                                                                            (d)                                                  

(e)                                                                                           (f)                                                  

(g)                                                                                           (b)                                                  
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Unlike other retinal imaging systems, a number of visible circles in the circular test pattern 

first increases then decreases when the imaging system is closer to the synthetic eye model 

box. The maximum number of circles is from 65mm where 10 to 15 circles are visible. 

This is the best seen for data acquisition distance for iNview. 
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Figure 10. (a) Circular test pattern images captured by iNview from (a) 150mm, (b) 

100mm, (c) 75mm, (d) 65mm, (e) 50mm, (f) 35mm, (g) 30mm, (h) 22mm in distance. 

 

To compare the FoV of the retinal imaging systems, Figure 11(c-f) shows the 

captured circular test pattern images by iExaminer, D-Eye, Peek Retina, and iNview at 

(a)                                                                                           (b)                                                  

(c)                                                                                           (d)                                                  

(e)                                                                                           (f)                                                  

(g)                                                                                           (h)                                                  
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their best distance, respectively. Even if there are 15 circles in the test pattern, none of the 

smartphone-based retinal imaging systems can see the entire test pattern. 

(a)  
(b)   

  

  

Figure 11. (a) Circular test pattern image (b) Comparison of the FoV of each smartphone-

based retinal imaging system where the solid black line is for iNview, the green dashed-

dotted line is for D-Eye, the purple dashed line is for Peek Retina, the red dotted line is 

for iExaminer. Captured images of circular test patterns at the best distance by (c) 

iExaminer, (d) D-Eye, (e) Peek Retina and (f) iNview. 

 

iNview 

D-Eye 

Peek Retina 

iExaminer 

(c)                                                                                                     (d)     

iExaminer D-Eye 

(e)                                                                                           (f)      

Peek Retina iNview 

(c)                                                                                           (d)      
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Figure 11(b) shows the marks for the FoV of each imaging system. iNview has the 

largest FoV compared with others where its FoV is marked with solid black line ranging 

from 10 to 15 circles. Due to its optical design, its FoV is shifted to the right. It has a very 

homogenous illumination distribution. D-Eye has the second-largest FoV with 7-8 visible 

circles that are marked with a green dashed-dotted line. However, its brightness in the 

captured image does not distribute evenly where it gradually decreases from the center to 

sides. Peek Retina has almost the same size FoV with D-Eye where seven circles are visible 

that is marked with a purple dashed line. However, its brightness distribution is better than 

D-Eye where its distribution is almost homogeneous. The smallest FoV belongs to 

iExaminer where it is only possible to see six circles marked with a red dotted line. In 

addition, there exists a color artifact at the edge of the captured image and the sharpness of 

the image also decreases at the larger circles close to the boundaries. 

Based on the results, iNview retinal imaging system has the largest FoV and better 

image quality compared with iExaminer, D-Eye, Peek Retina retinal imaging systems. D-

Eye and Peek Retina has a similar size in the FoV that is half of iNview. iExaminer has the 

smallest FoV. The best FoV is reached when images captured the closest distance (22mm) 

for iExaminer, D-Eye and Peek Retina. However, iNview captures the best quality images 

at 65mm in distance. 

3.3. Deep Learning Architectures for Diabetic Retinopathy Detection 

This section provides the layout of the utilized deep learning framework. For image 

classification, Convolution Neural Network (CNN) is one of the most popular deep 

learning frameworks so this work adopts the CNN based AlexNet [31, 32] and GoogLeNet 

[33] using the transfer learning. 
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3.3.1. AlexNet 

` Due to its simple design and high classification accuracy compared with other 

CNNs, AlexNet is very popular in different research communities and used in several 

applications. Since 1.2 million high-resolution images are used to train AlexNet, it 

classifies images into 1000 different classes with a very low error rate.  

AlexNet first uses five convolutional layers to extract low-level features. Then, it 

maps the final features to the set of the predetermined number of classes using three fully 

connected layers and a softmax layer. In order to transfer the network knowledge, we use 

the general purpose features learned previously to retrain the softmax layer on a different 

dataset with different classes. In each layer, network architecture contains different layers 

such as convolutions, fully connected, activation functions, dropouts, and max pooling as 

can be seen in Table 2. More complex features are extracted gradually in each convolution 

layer using the features from previous layers in the network. To introduce nonlinearity into 

the network, we use Rectified Linear Units (ReLU) as an activation function after each 

convolutional layer and fully-connected layer. Max pooling layers are used to keep the 

number of parameters required to be learned by outputting the maximum value of each 

square kernel and discarding the rest. This helps to reduce the redundancies among the 

features learned by the network. Dropout layers are introduced after the last two ReLU 

activations during training to force the network learning more robust features from training 

samples and avoid the overfitting problem. Using the output of the last fully connected 

layer, softmax classifies images into different classes based on the highest probability. 
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Table 2. AlexNet Architecture 

Name Type/Stride Description 

Data Input Image 227x227x3 images  

conv1 Convolution/4 96 11x11x3 convolutions 

relu1 ReLU ReLU 

norm1 Normalization Cross channel normalization  

pool1 Max Pooling/2 3x3 max pooling 

conv2 Convolution/1 256 5x5x48 convolutions  

relu2 ReLU ReLU 

norm2 Normalization Cross channel normalization  

pool2 Max Pooling/2 3x3 max pooling 

conv3 Convolution/1 384 3x3x256 convolutions  

relu3 ReLU ReLU 

conv4 Convolution/1 384 3x3x192 convolutions  

relu4 ReLU ReLU 

conv5 Convolution/1 256 3x3x192 convolutions  

relu5 ReLU ReLU 

pool5 Max Pooling/2 3x3 max pooling  

fc6 Fully Connected 4096 fully connected layer 

relu6 ReLU ReLU 

drop6 Dropout 50% dropout 

fc7 Fully Connected 4096 fully connected layer 

relu7 ReLU ReLU 

drop7 Dropout 50% dropout 

fc8 Fully Connected 52 fully connected layer 

Prob Softmax softmax 

Out Output Classification 
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Since AlexNet contains nearly 60 million parameters in its architecture, training it 

from scratch requires a very large amount of input images and computational power. When 

we do not have millions of labeled images, the best approach is to use transfer learning. In 

this paper, we removed the last three layers of the AlexNet (i.e., 1000-class fully connected, 

softmax, and classification). Then, we replaced them with a new two-class fully connected 

layer, softmax, and classification layers for transfer learning. Finally, we retrained the new 

network with the retina images from the EyePACS dataset using Stochastic Gradient 

Descent (SGD) algorithm with a minibatch size of 2, 4, 8 examples, the learning rate of 1e-

5, and a momentum of 0.9. During the retraining, the network updates the parameters of 

each layer for every iteration with each training sample.  

3.3.2. GoogLeNet 

GoogLeNet framework gets popularity from different research communities and 

applied for different applications. GoogLeNet is trained on ImageNet [34] with millions of 

high-resolution images to classify them into 1000 different classes such as a keyboard, 

mouse, and many species of animals with a very low error rate by tuning nearly seven 

million parameters doing 1.5 billion operations. 

This network consists of 144 layers in MATLAB which 57 convolutional layers 

followed by activation layers and a softmax layer to map the final features to the set of 

classes of interest. For knowledge transfer, this softmax layer can be retrained on a different 

dataset with different classes using the general-purpose features learned up to this layer. 

Alternatively, these features can be fed into other machine learning classifiers such as 

Naïve Bayes, Random Forest, and Support Vector Machines (SVM). Each convolution 

layer extracts gradually more complex features from a larger area using features from its 
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deeper layers to the network. As an activation function, Rectified Linear Units (ReLU) are 

used after each convolutional layer and fully-connected layer to introduce nonlinearity into 

the model. Some RELU functions are followed by a depth concatenation and normalization 

layer to preserve the generalization capabilities of the network by regularizing the 

responses. To lower the number of parameters to learn, max-pooling regularization layers 

are used; it outputs the maximum value of each square kernel discarding the rest, thus 

reducing the redundancies among the features learned by the network. 

For every training sample, the network updates the weights and biases. To force the 

network to learn more robust features from inputs by randomly setting the output of each 

hidden neuron to zero with a certain probability to contribute to the forward pass and back-

propagation, dropout layers follows the first two ReLU activations. While testing the 

network all units are used without dropout. Using dropout layers also helps to reduce the 

risk of overfitting. The image classification is performed at the softmax layer using the 

output of the last fully connected layer. It is based on the highest probability among 

different classes. 

Since training a CNN network from scratch is overwhelming that requires a very 

large amount of input and computational power, we adopt the idea of using transfer 

learning in this work. Before transferring the network, we first freeze 110 layers and 

removed the last three layers from the GoogLeNet including the last fully connected (fc8), 

softmax (prob), and classification (output) layers and replaced with two fully connected 

layers, softmax, and two classification layer. The new network is retrained with the retina 

images using Stochastic Gradient Descent (SGD) algorithm with a minibatch size of 4, 8, 

16 examples, the learning rate of 1e−5, and a momentum of 0.9. The number of max epoch 
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number in experiments was set to 50, 75, and 100 depending on the number of images in 

training and validation sets. 

For all our experiments, we developed our programs and CNN frameworks using 

the MatConvNet [35] and image processing toolboxes in MATLAB 2018. The experiments 

are performed on a DELL Alienware Aurora R8 workstation with 8 core Intel Core i7 

9700K processor at 4.6GHz, NVIDIA GeForce RTX 2080 with 8GB GPU, and 32GB 

memory. 
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4. EXPERIMENTAL SETUP AND DATASETS 

4.1. Datasets 

To investigate the automatic DR detection accuracy for smartphone-based retinal 

imaging systems and compare them with traditional fundus imagery, we set up two sets of 

experiments using synthetic and original retina images. For our experiments, we used 

several publicly available retina image datasets including EyePACS [36], Messidor [37], 

Messidor-2 [38], IDRiD [39], and University of Auckland Diabetic Retinopathy (UoA-

DR) dataset [40, 41]. EyePACS is the largest publicly available dataset that offered during 

Kaggle's competition with 35126 retina images that include five different DR severity 

labels. IDRID has 271 retinal images and its DR severity assigned based on five classes. 

Messidor DR database images have four labels and their ground truths available with 

Diabetic Macular Edema grades [42]. Messidor-2 dataset is an extension of Messidor with 

its ground truth labels. UoA-DR has 200 retina images and has detailed DR and DME 

severity scales as well as information about neovascularization, hemorrhage, and 

microvascular abnormalities. We converted all this information to regular five different 

DR categories. Table 3 shows detailed information for each data set that we have used in 

this study. 
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Table 3. Retina Image Datasets with DR Severity Labels 

Datasets Label0 Label1 Label2 Label3 Label4 Total 

EyePACS 25810 2443 5292 873 708 35126 

EyePACS-u 9895 899 2175 395 260 13624 

Messidor 547 149 240 251 - 1187 

Messidor-2 1368 - - - 380 1748 

IDRiD 168 25 168 93 62 271 

UoA-DR 56 9 50 55 30 200 

 

Retina images in these datasets are graded according to the International Clinical 

DR scale [43] except Messidor and Messidor-2. This scale classifies the retina images into 

five classes including none, mild DR, moderate DR, severe DR, and Proliferative DR. 

Abramoff [44] graded Messidor-2 retina images based on the rDR standards that apply for 

the moderate, severe, or proliferative DR level and/or rDME. Table 4 shows the available 

data labels in each dataset. The image acquisition method was different for most of the 

datasets where images are captured using Canon, Centervue DRS, Optovue iCam, Topcon 

NW cameras, and pupil dilation levels might be different for each image. 
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Table 4. Label Assignments for DR Severity 

Datasets Label0 Label1 Label2 Label3 Label4 

EyePACS No DR Mild Moderate Severe Proliferative 

Messidor No DR Mild 
Moderate 

Severe 
Proliferative - 

Messidor-2 No DR - - - Others 

IDRiD No DR Mild Moderate Severe Proliferative 

UoA-DR No DR Mild Moderate Severe Proliferative 

 

Since some of the images include darkness, reflections, lack of contrasts, and even 

lack of optic nerve, we needed to preprocess the images, especially for the EyePACS 

dataset. For the data preprocessing stage, we removed the images from the data set if the 

optic disk could not be detected. In addition, since 90% of the dataset consists of healthy 

retina images, it causes a bias in the network retraining. Therefore, 21,502 images removed 

from the original EyePACS data set. Besides, according to the new findings, Messidor data 

set updated since there were some grading inconsistencies so that the number of images 

decreased to 1,187 images by removing 13 images from the dataset. 

Originally, there are four different DR classes in Messidor datasets and five classes 

in the other datasets. However, the same person can make mistakes when classifying 

images into five different groups especially for the mild DR and moderate DR. In order to 

remove the inconsistencies and transfer the problem into the easier two-class domain, we 

conducted our experiments by classifying two different classes. For that purpose, we tested 

different options including (1) healthy retina vs proliferative DR, (2) healthy retina vs 

severe and proliferative DR, (3) referable diabetic retinopathy (rDR), and (4) vision-
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threatening DR (vtDR). Referable DR (rDR) consists of the images for normal retina vs 

Moderate DR, Severe DR, Proliferative DR, ungradable images and referable DME while 

vtDR is dropped out moderate DR and ungradable images from the rDR. 

4.2. Dataset Preparation 

The original retina images in the dataset are originally color images and their 

resolutions vary since they captured by different fundus cameras. However, GoogLeNet 

Deep Learning framework requires the inputs to have 224x224x3 pixels as color images. 

Therefore, we first cropped pixels from the right and left sides of each original image to 

make it a square shape. Then, we down-sampled the cropped square images into 

224x224x3 as can be seen in Figure 12. 

 

Figure 12. Flow chart of original retina conversion images for GoogLeNet 

 

In order to train and test the deep learning network, we need to feed the CNN 

frameworks with retina images captured by different smartphone-based devices. However, 

there is no available real data captured by the smartphone-based retinal imaging device in 

the literature. Therefore, we generate retina images by simulating the FoV for each device 

using the original retina images from the UoA-DR dataset. We generate a circular mask 

around the optic nerve center based on the different ratios of FoV ranging from 20% to 
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100% compared with the original images. The mask radius is calculated by multiplying the 

radius of the original image boundary and the percentage of the radius of FoV.  

Figure 13 shows each circular mask representing the different FoV to compare the 

difference in smartphone-based retinal imaging systems. Finally, the original image is 

cropped with respect to the mask. Examples of generated smartphone-based synthetic 

retina images are shown in Figure 14 for different FoV. 

 

Figure 13. Comparison of the FoV of synthetic retina images with different percentages 

with respect to the original image where the solid green, blue, purple, and white lines 

represent 90%, 80%, 70%, and 60% FoV, respectively. The dotted green, blue, purple, 

and white lines represent 50%, 40%, 30%, and 20% FoV, respectively. 
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(a) Original (b) 90% (c) 80% 

   

(d) 70% (e) 60% (f) 50% 

   
(g) 40% (h) 30% (i) 20% 

Figure 14. Input images for deep learning architecture with (a) original size and synthetic 

images with a smaller FoV  where their percentage w.r.t the original image as (b) 90%, 

(c) 80%, (d) 70%, (e) 60%, (f) 50%, (g) 40%, (h) 30%, (i) 20%. 

 

4.3. Dataset Augmentation 

Data augmentation is a very useful technique to prevent bias especially for the deep 

learning algorithms that require large datasets. Therefore, it is crucial especially for a small 

number of training datasets. By performing augmentation, researchers acquire more data 
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by applying affine transformations, hue shifts, and cropping to the existing images. Some 

of the data augmentation operations including but not limited to filling value, hue shifts, 

cropping, random rotation, random reflection, random scaling, random shearing, and 

random translation. However, most of these operations more useful when applying to 

object recognition tasks. For example, when finding a human, the algorithm might need to 

take look at the different locations to images. A person can be any part of the image even 

just human head can be found in the images. For these tasks, most of the listed data 

augmentation is essential for object recognition. However, our specific DR detection task 

needs to hall retina image especially the surroundings of the optic disc, fovea, and macula 

so that we did not apply most of the augmentation process since we did not want to lose 

the lesions that include hemorrhages, exudates, and microaneurysms. Hence, we applied 

data augmentation process just flipping the images, in other words, obtaining the mirror 

images for each image sample. 

4.4. Data Merging and Splits for Training and Validation 

For DR detection performance analysis of the deep learning framework, we 

designed several experiments using seven different combinations of retina datasets in 

training and testing. We feed the GoogLeNet network and test it with images from single, 

crossed and merged datasets. Table 8 shows details of these seven sets of experiments with 

(1) Train and validation with EyePACS, (2) Train and validation Messidor, (3) Train with 

EyePACS and validation with Messidor, (4) Train with Messidor and validation with 

EyePACS, (5) Merged Datasets (EyePACS and Messidor), (6) rDR detection with Merged 

dataset (EyePACS, Messidor, Messidor-2, and IDRiD), and (7) vtDR detection with 
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Merged dataset (EyePACS, Messidor, and IDRiD). Note that non-healthy images (Label 

1) are used from the Messidor-2 dataset for (6).  

After data conversion, data augmentation, and dataset generation, we split our 

retina images in each dataset into two categories: training and validation sets with a ratio 

of 0.8. The training sets include a maximum of 2,000 images for each experiment. 
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5. RESULTS AND DISCUSSION 

5.1. Diabetic Retinopathy Detection using Single Dataset 

To compare the smartphone-based retinal imaging systems, we set up two sets of 

experiments using synthetic retina images and real fundus images. We first collected retina 

images using iExaminer, D-Eye, Peek Retina, and iNview. To make the fair comparison 

between different retinal imaging systems, we captured retinal images with iPhone 6 using 

their compatible adapters and bumpers. In order to capture an image of the dark retina, we 

first needed to use a light source for illumination. For this purpose, we reflected the 

smartphone flashlight to the retina for D-Eye and iNview or use its own light source on 

iExaminer and Peek Retina. The smart phone's camera was used to capture retina images 

and images were saved to the smartphone's memory. 

5.1.1. Results for Synthetic Retina Box Images 

In our first set of experiments using a single dataset (EyePACS), we captured 

images from the printed retina in the retina box using different smartphone-based retinal 

imaging systems. We placed the printed real retina images at the bottom of the Peek Retina 

synthetic eye model box. Then, we captured retina images from the optimum distance of 

each device in order to get the largest FoV. With this set of experiments, we compared the 

image quality and FoV of smartphone-based retinal imaging systems.  

Figure 15 shows the captured printed real retina images using iExaminer, D-Eye, 

Peek Retina, and iNview. The original printed real retina images are shown in the first row. 

The image at the top left corner is a normal retina image where there is no abnormality 

visible. The image in the middle of the top row belongs to a DR patient where there is 
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clinically significant macular edema. The image on the right of the top row belongs to a 

proliferative DR patient where there are several visible abnormalities. The rest of the 

images on each row are captured using smartphone-based retinal imaging systems from 

retina box for each original printed real retina images in the first row. Images in the second 

row are captured using iExaminer. We observed that the image quality is good, and the 

optic nerve and some central blood veins are visible. Since some macula edema can be 

seen, these images can be used for DR detection. Images on the third row were captured 

using D-Eye where the illumination does not distribute evenly. However, we can still 

visualize the macular edema, so they are helpful for DR detection. Images on the fourth 

row of Figure 16 shows the image captured using Peek Retina. We observed that the FoV 

of Peek Retina is larger than iExaminer. The optic nerve and its surrounding vessels are 

visible, so these images can be used to detect DR. The images at the last in Figure 16 are 

captured using iNview. We observed that its FoV is the largest compared with other 

smartphone-based retinal imaging systems. The image quality is very good with evenly 

distributed illumination. 
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Figure 15. Retina images. (1st row) Original printed real retina images and their captured 

versions using (2nd row) iExaminer, (3rd row) D-Eye, (4th row) Peek Retina, (5th row) 

iNview. 

 

To compare the FoV of the retinal imaging systems into one shape, Figure 16 shows 

the captured printed retina images using iExaminer, D-Eye, Peek Retina, and iNview, 

respectively. Even if the printed retina image shows a larger portion of the retina, none of 

the smartphone-based retinal imaging systems can capture the entire printed retina pattern. 

Figure 17 shows the printed image from a normal retina with the markers for the FoV of 

each imaging system. We observed that the radius of FoV for iExaminer, D-Eye, Peek 
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Retina, and iNview are 32%, 40%, 45%, and 94% of the radius of printed fundus image, 

respectively. iNview has the largest FoV compared with others where its FoV is marked 

with the solid black line. D-Eye has the second-largest FoV that is marked with a green 

dashed-dotted line. Peek Retina has almost the same size FoV with D-Eye marked with a 

purple dashed line. However, their FoV is almost half of the iNview. The smallest FoV 

belongs to iExaminer, where it is only possible to capture the fovea and its surroundings 

that is marked with a red dotted line. 

 

 

Figure 16. Comparison of the FoV of each smartphone-based retinal imaging system 

using printed normal retina image with FoV markers where the solid black line is for 

iNview, the purple dashed line is for Peek Retina, the green dashed-dotted line is for D-

Eye, the red dotted line is for iExaminer. 

 

5.1.2. Results for Smartphone-based Images 

In our second set of experiments using a single dataset, we design several 

experiments for each smartphone-based retinal imaging device to analyze the DR detection 
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performance of the deep learning framework for smartphone-based systems and compare 

them with the accuracy of the original retina images. The original retina images in the 

dataset are originally color images and their resolutions vary since they captured by 

different fundus cameras. However, AlexNet Deep Learning framework requires the inputs 

to have 227x227x3 pixels as color images. Therefore, we first cropped pixels from the right 

and left sides of each original image to make it a square shape. Then, we down-sampled 

the cropped square images into 227x227x3 as shown in Figure 17(a).  

 
(a) 

 
(b) 

      

            (c)                       (d)                         (e)                       (f)                     (g) 

Figure 17. (a) Flow chart of original retina conversion images for AlexNet, (b) Flow chart 

of synthetic retina image generation for smartphone-based retinal imaging systems. 

Example of images, (c) Original image from EyePACS dataset and generated synthetic 

images for (d) iExaminer, (e) D-Eye, (f) Peek Retina, (g) iNview. 
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In order to train and test the deep learning network, we need to feed the CNN 

frameworks with retina images captured by different smartphone-based devices. However, 

there is no available real data captured by the smartphone-based retinal imaging device in 

the literature. Therefore, we generate retina images by simulating the FoV for each device 

using the retina images from EyePACS dataset as illustrated in Figure 17(b). We first 

segment the boundary of the original retina images in EyePACS and fit a circle to its 

boundary using a circular Hough transform. Second, the optic nerve is detected using 

thresholding and morphological filters since the optic nerve is the brightest area in the 

retina. Then, we generate a circular mask of each smartphone-based device using the center 

of the optic nerve as a circle center. The mask radius is calculated by multiplying the radius 

of the original image boundary and the percentage of the radius of FoV in Figure 6. Finally, 

the original image is masked and cropped with respect to the mask center. Examples of 

synthetic retina images for iExaminer, D-Eye, Peek Retina, iNview are shown in Figure 

17(c-g), respectively. 

In the original image dataset, we have 13,624 retina images from five different 

gradings (i.e., 0:No DR, 1:Mild, 2:Moderate, 3:Severe, and 4:Proliferative DR) where their 

distributions are 9898, 920, 2,108, 424, and 262, respectively. In order to simplify the 

problem, we dropped the grade 1 and 2 and merged grade 3 and 4. Since no DR images are 

more than other labels in the dataset, we randomly selected 686 no DR images and removed 

the rest from the dataset in order to remove the data bias. As a result, we had 686 no DR 

and 686 DR images remaining in each subset as shown in Figure 18. Then, we split our 

customized dataset with a ratio of 1/9 into two subsets where the testing subset has 1,234 

images and the training set has 138 images. We selected the bigger subset of original retina 
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images as a training set and the second subset from each synthetic retina subsets are used 

as testing sets. After training the network with 1,234 original retinal images, we tested the 

network with 138 retinal images from each dataset including original, iExaminer, D-Eye, 

Peek Retina, and iNview images. In total, we used 690 retinal images from five different 

datasets.  

 
Figure 18. Generation of the customized dataset of retinal fundus images and its label 

distribution. 

 

Table 5 compares the classification accuracy of the deep learning network for 

different testing images from original and synthetic smartphone-based retinal images. We 

repeated the test with different sub-sampling rates of test images and their mean and 

standard deviation values are given in Table 5. Since the network is trained with original 
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images, it shows the highest overall accuracy (82% with a standard deviation of 0.0258) 

for testing with original images, as expected. The overall classification accuracies of 

smartphone-based systems are sorted as 61%, 62%, 69%, and 75% for iExaminer, D-Eye, 

Peek Retina, and iNview images, respectively. 

Table 5. Classification accuracy of the deep learning network. Note that each result 

shows the mean and its standard deviation as mean ± std. 

 Overall No DR DR 

Original 0.8164 ± 0.0258 0.7094 ± 0.0431 0.9234 ± 0.0372 

iExaminer 0.6144 ± 0.0552 0.7661 ± 0.0582 0.4464 ± 0.0894 

D-Eye 0.6211 ± 0.0593 0.7371 ± 0.0566 0.4827 ± 0.0784 

Peek Retina 0.6889 ± 0.0353 0.8397 ± 0.0451 0.5140 ± 0.0539 

iNview 0.7531 ± 0.0311 0.6094 ± 0.0491 0.8969 ± 0.0394 

 

We observed that the overall network performance increases as the FoV of the 

smartphone-based retinal systems get bigger where their radii of printed fundus images are 

32%, 40%, 45%, and 94% for iExaminer, D-Eye, Peek Retina, and iNview, respectively. 

We also observed that the accuracy of detecting healthy retina (No DR) is higher than retina 

with DR, especially for iExaminer, D-Eye, and Peek Retina images. In addition, the 

accuracy of both labels is close to each other for iNview images. The main reason is that 

iExaminer, D-Eye, and Peek Retina systems can capture smaller areas of the retina and 

mainly their images are focused on the optic disk and its surroundings. However, lesions 

generally appear in areas away from the optic disk. Since iNview captures a wider FoV, 

where it is more probable to include lesions, it detects DR better than other smartphone-

based retinal imaging systems. For better visualization, we also show the overall, No DR, 
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and DR classification accuracies in Figure 19 for original, iExaminer, D-Eye, Peek Retina, 

and iNview images. 

 

Figure 19. Classification accuracy of deep learning network for different testing images 

from original and synthetic smartphone-based retinal images. 

 

Figure 20 compares the performance analysis of deep learning networks using 

Receiver Operating Characteristic (ROC) curve for different testing images from original 

and synthetic smartphone-based retinal images. To plot the ROC curve, we calculated the 

true positive rate (TPR) and the false positive rate (FPR) by changing the threshold value 

for the probability output of deep learning network. TPR is the probability of detecting No 

DR images as No DR, also known as sensitivity and recall. FPR is the probability of false 

alarm where No DR image is classified as DR and it is calculated as (1- specificity). ROC 

curve analysis helps to select the optimal threshold value for a specific dataset discarding 
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the suboptimal solutions due to the class distributions. As threshold value changes, the TPR 

and FPR change accordingly. Based on the specific system requirement, we can select any 

threshold value to lower the false alarm rate or increase the detection accuracy.   

 

Figure 20. Performance analysis using ROC for different testing images from original 

and synthetic smartphone-based retinal images. 

 

A specific threshold value in ROC generates an equal error value for false positive 

and false negative rate that is also known as Equal Error Rate (EER). For lower EER, the 

overall accuracy is higher. For original, iExaminer, D-Eye, Peek Retina, and iNview 

datasets respectively, EERs are calculated as 16.92%, 35.09%, 39.52%, 31.37%, and 

23.44% for the following threshold values, 0.6283, 0.3915, 0.3007, 0.2625, and 0.7029. 

The area under the curve (AUC) values for the ROC curves are 0.8835, 0.6536, 0.6826, 

0.7318, and 0.8649 for original, iExaminer, D-Eye, Peek Retina, and iNview datasets, 
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respectively, as shown in Table 6. As can be seen in ROC curves, original retina images 

marked with a solid blue line presents the best result compared with other smartphone-

based retinal image datasets where all retinal structures are included in the input images, 

including the optic nerve, fovea, macula, and blood vessels. The network is trained with 

retina images that have a large FoV, where almost 100 degrees of the retina is visible. 

However, smartphone-based retinal systems can visualize a smaller area from the retina. 

iNview shows the best among others and close the results with original images because 

iNview covers almost the same amount of area (94%) compared to the fundus camera. 

When the smaller area is captured from the retina, the network performance is lower. We 

observed that the performance of the network depends on the FoV of the retinal imaging 

system. 

Table 6. Area Under Curve (AUC), Equal Error Rate (EER), and Selected Threshold for 

EER parameters at ROC curve for different testing images from original and synthetic 

smartphone-based retinal images. 

 Area Under Curve Equal Error Rate Threshold for ERR 

Original 0.8835 0.1692 0.6283 

iExaminer 0.6536 0.3509 0.3915 

D-Eye 0.6826 0.3962 0.3007 

Peek Retina 0.7318 0.3137 0.2625 

iNview 0.8649 0.2344 0.7029 

 

5.2. Diabetic Retinopathy Detection using Multiple Datasets 

In our experiments, we first presented the performance results of deep learning 

algorithms with original retina images captured by traditional fundus cameras in seven 

different experiments in order to show the effect of using retina images from the single, 
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cross, and merged datasets in training and validation. Then, we compare these deep 

learning-based results with the smartphone-based synthetic retina images to investigate the 

effect of the FoV of smartphone-based retinal imaging devices. To show the network 

effectiveness with different training sets, we also compare their performance of CNNs by 

training and testing the networks with different types of images from different datasets. 

Therefore, we address the data fusion capability of CNNs with retina images from different 

datasets to improve the recognition performance and investigate the network behavior for 

untrained retina images from different datasets. In the following subsections, we first 

trained and tested the networks with original images. Then, we tested our network with 

smartphone-based synthetic retina images. 

5.2.1. Results for Original Images 

In our first set of experiments using multiple datasets, we tested seven combinations 

of datasets in training and testing and their deep learning results are shown in Table 7. First, 

we performed our first and second sets of experiments using single datasets (1 and 2). 

When the network is trained and tested with images from the same datasets, the overall DR 

detection accuracies of the network are 0.7661 and 0.8267 for EyePACS and Messidor 

datasets, respectively. Our third and fourth set of experiments presented results for cross 

datasets where the network is trained with retina images from one dataset and tested with 

images from other datasets. The accuracy of the network for EyePACS training and 

Messidor testing dropped to 0.5734. However, we observed better accuracy results as 

0.8750 for training with Messidor and validating with EyePACS. The main reason is that 

EyePACS has lower quality images due to the reflections and low contrast compared with 

images in Messidor datasets. In addition, there exist several inconsistencies in labeling in 
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EyePACS images. Therefore, training with only EyePACS images and testing with cross 

datasets results in lower accuracy. Then, we merged these two datasets for training and 

validation and performed experiments (5-7). We observed that the detection accuracy for 

rDR and vtDR are 0.9126 and 0.9460, respectively as shown in Table 7. 

Table 7. Classification accuracy of deep learning frameworks 

Datasets Type Overall No DR DR 

(1) EyePACS Single 0.7661 0.8065 0.7258 

(2) Messidor Single 0.8267 0.8933 0.7600 

(3) Pac_Mes Cross 0.5734 0.9908 0.1560 

(4) Mes_Pac Cross 0.8750 0.8796 0.8704 

(5) Pac-Mes Merged 0.8321 0.8467 0.8175 

(6) rDR Merged 0.9126 0.9235 0.9016 

(7) vtDR Merged 0.9460 0.9460 0.9460 

 

Our network classifies images into two different classes based on the highest 

probability of using the output of the last layer. Since there are only two classes for 

classification, the image is classified as a healthy retina if the probability of No DR is 

higher than 0.5. However, equal probability might not provide the best performance. 

Therefore, we used ROC curves to make performance analysis in our experiments where 

it plots accuracy based on the various thresholds. Based on the results from the ROC 

curves, we selected two operating points. The first operating point is set to show the best 

sensitivity and the second one demonstrates to best specificity. Note that sensitivity is the 

most important factor for medical research since the result shows the success rates of the 

detection of unhealthy retinas. 
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Tables 8 and 9 show the accuracy of rDR and vtDR detection using two operating 

points for high sensitivity and high specificity. Note that, we used EyePACS (Label 0-3-

4), Messidor (Label 0), Messidor-2 (Label 1), IDRiD (Label 0-2-3-4) images for rDR; and 

EyePACS (Label 0-3-4), Messidor (Label 0-4), and IDRiD (Label 0-3-4) images for vtDR. 

Using the first operating point (high sensitivity) for rDR, the DR detection accuracy is 

0.9563 and the No DR detection accuracy is 0.8415. For the second operating point (high 

specificity), the DR detection accuracy is 0.8743 and the No DR detection accuracy is 0.94. 

For vtDR detection, using the first operating point (high sensitivity), the DR detection 

accuracy is 0.9730 and No DR detection accuracy is 0.7973. For the second operating point 

(high specificity), the DR detection accuracy is 0.9460 and the No DR detection accuracy 

is 0.8648. 

Table 8. Accuracy for rDR detection using two operating points 

 
Overall No rDR rDR 

High Sensitivity 0.8989 0.8415 0.9563 

High Specificity 0.9071 0.94 0.8743 

 

Table 9. Accuracy for vtDR detection using two operating points 

 
Overall No vtDR vtDR 

High Sensitivity 0.8851 0.7973 0.9730 

High Specificity 0.9054 0.9460 0.8648 
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5.2.2. Results for Smartphone-based Images 

In our second set of experiments using multiple datasets, we investigate more in the 

effect of FoV of smartphone-based synthetic retinal imaging devices. Based on the 

previous results, we received the high detection accuracies at the merged data sets with two 

operating points for rDR and vtDR detection. Therefore, we trained our deep learning 

network with retina images from EyePACS, Messidor-2, and IDRiD datasets the same as 

the seventh experiment in the previous subsection. In addition, to address the cross datasets 

issues in deep learning, we tested our trained network with smartphone-based synthetic 

images generated from a completely new dataset, UoA-DR with different FoV ranging 

from 20% to 90% with a 10% step-size. In addition, to include synthetic images from 

PanOptic, D-Eye, Peek Retina, and iNview smartphone-based retinal imaging systems, we 

also tested synthetic images from 32%, 40%, 45%, and 94% FoV based on the calculations 

in this paper [45]. Using images from the UoA-DR dataset allows us to test the cross 

datasets without overlaps between training and testing images where they captured in 

totally different setups. 

Table 10 presents the results of vtDR detection performance of GoogLeNet for 

original and synthetic images with different FoV. Since the network is trained with the 

same size images as original images, it shows the highest overall accuracy (94%) for testing 

with original images, as expected. The overall vtDR detection accuracy sorted as 89%, 

88%, 86%, 82%, 77%, 74%, 70%, 69%, 61%, 60%, and 48% for synthetic retina images 

with 94%, 90%, 80%, 70%, 60%, 50%, 45%, 40%, 32%, 30%, and 20% FoV compared 

with the original images. We observed that the overall network performance decreases as 

the FoV of the smartphone-based images get smaller.   
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Table 10. Classification accuracy of deep learning frameworks 

Datasets Overall No DR DR 

Original 0.9433 0.9464 0.9412 

94% (IN) 0.8865 0.8036 0.9412 

90% 0.8794 0.75 0.9647 

80% 0.8652 0.7857 0.9176 

70% 0.8227 0.7679 0.8588 

60% 0.7714 0.6429 0.8571 

50% 0.7376 0.5714 0.8471 

45% (PR) 0.7021 0.5179 0.8235 

40% (DE) 0.6934 0.5455 0.7927 

32% (PO) 0.6071 0.3750 0.7619 

30% 0.6058 0.3455 0.7805 

20% 0.4752 0.4107 0.5176 

 

For better visualization, we also showed the overall accuracy in Figure 21 for 

images with different FoV and marked the accuracy of PanOptic, D-Eye, Peek Retina, and 

iNview systems. 
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Figure 21. Overall classification accuracy of deep learning networks for different 

smartphone-based synthetic retina images with respect to their FoV percentage 

 

We presented the performance analysis of deep learning networks for original and 

synthetic images using ROC curves in Figure 22. ROC curve is plotted by calculating the 

true positive rate (TPR) and the false positive rate (FPR) for different threshold values at 

the probability output of deep learning networks. TPR is the probability of detecting 

healthy (No DR) images as healthy. FPR is the probability of false alarm where the healthy 

(No DR) retina images are categorized as a disease (DR). Since TPR and FPR values 

change according to selected threshold changes, we can select any threshold value to lower 

the false alarm rate or increase the detection accuracy based on the specific system 

requirement. 
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Figure 22. Performance analysis using ROC for different testing images from original 

and synthetic smartphone-based retinal images with various percentages of FoV 

compared with original retina images. 

 

Equal error rate (EER) is the error value where false positive and false negative 

rates are equal to each for a specific threshold value in ROC. For lower EER, the overall 

accuracy is higher. For original and synthetic images, calculated EERs range from 5.6% to 

55.03% for the threshold values that vary from 0.007 to 0.21. The area under the curve 

(AUC) values for the ROC curves changes from 0.978 to 0.475 for original and 

smartphone-based datasets, respectively as shown in Table 11. 
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Table 11. Area Under Curve (AUC), Equal Error Rate (EER), and Selected Threshold for 

EER results of deep learning frameworks 

Datasets AUC EER THR 

Original 0.978 0.056 0.007 

94% (IN) 0.97 0.086 0.041 

90% 0.976 0.071 0.057 

80% 0.942 0.127 0.057 

70% 0.911 0.157 0.078 

60% 0.841 0.199 0.036 

50% 0.804 0.269 0.073 

45% (PR) 0.768 0.305 0.055 

40% (DE) 0.742 0.328 0.045 

32% (PO) 0.648 0.414 0.011 

30% 0.599 0.438 0.024 

20% 0.475 0.553 0.210 

 

As shown in ROC curves in Figure 22, original retina images marked with solid 

green line shows the best result compared with smartphone-based synthetic images. Since 

the network is trained with images that include all retinal structures such as the optic nerve, 

fovea, macula, and blood vessels, original images cover a similar area with training images. 

However, smartphone-based systems have a narrower FoV that cover smaller retinal areas. 

We observed that the network accuracy depends on the FoV and it decreases as the FoV 

becomes smaller as presented in ROC curves. 
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6. CONCLUSIONS 

This thesis first investigated the smartphone-based portable retinal imaging 

systems, namely iExaminer, D-Eye, Peek Retina, and iNview to compare their image 

quality. Then, we adapted deep learning frameworks using transfer learning. Using 

smartphones is an emerging research area in designing small-sized, low-power, and 

affordable retinal imaging systems to perform DR screening and automated DR detection 

due to the size, weight, and price of fundus cameras. Smartphone-based portable retinal 

imaging systems available on the market are capable of capturing retina images without 

analyzing them using any machine learning and image processing techniques to detect DR 

development.  

Based on the results, iNview retinal imaging system has the largest FoV and better 

image quality compared with iExaminer, D-Eye, and Peek Retina systems. The overall 

classification accuracies of smartphone-based systems using a single dataset with AlexNet 

are sorted as 61%, 62%, 69%, and 75% for iExaminer, D-Eye, Peek Retina, and iNview 

images, respectively. We also observed that the network DR detection performance 

decreases as the FoV of the smartphone-based retinal systems get smaller. Finally, we 

presented the utility of deep learning methods to improve the performance of DR detection 

in smartphone-based and traditional fundus camera images. This approach allows us to 

compare the FoV in smartphone-based retinal imaging systems and improve DR detection 

accuracy by training the network with merged publicly available datasets. We generated 

smartphone-based synthetic retina images by simulating the different FoV with masking 

the original image around the optic disk and cropping it. Using transfer learning of 

GoogLeNet, we investigate the automatic DR detection accuracy for traditional fundus 
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camera and smartphone-based retinal imaging systems for retina images from several 

datasets including EyePACS, Messidor, IDRiD, Messidor-2, and UoA-DR. Although we 

have used a smaller number of images in the training set compared with the existing studies, 

we obtained considerably acceptable higher accuracies for smartphone-based synthetic 

images that are comparable with the original retina images. Specifically, the overall 

classification accuracies of smartphone-based systems using multiple datasets with 

GoogLeNet are sorted as 61%, 70%, 71%, and 89% for iExaminer, D-Eye, Peek Retina, 

and iNview images, respectively. Furthermore, we observed that the best resultss for vtDR 

detection are 95% for accuracy and 95% for sensitivity with the original images. For 

smartphone-based synthetic images, vtDR accuracy is 89% and sensitivity is 94% using 

iNview synthetic data. 

As a result, the smartphone-based retina imaging systems can be used as an 

alternative to the direct ophthalmoscope once it validated in the clinical settings. However, 

as we have discussed the FoV of the smartphone-based retina imaging systems plays an 

important role in determining the automatic DR detection accuracy.  

In the future,  if any smartphone-based retinal imaging system device can be 

designed to capture the retina images without color artifacts, blurring and contrast 

problems, tens of thousands unhealthy data can be collected in clinical settings from the 

real patients, these systems can have the potential to change DR detection procedures and 

save millions of people lives’ in terms of vision loss and blindness. 
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