
WINE INFORMATICS: CLUSTERING AND ANALYSIS OF PROFESSIONAL

WINE REVIEWS

by

Christopher Thomas Rhodes

A thesis presented to the Department of Computer Science

and the Graduate School of University of Central Arkansas in partial

fulfillment of the requirements for the degree of

Master of Science

in

Applied Computing

Conway, Arkansas

May 2015

TO THE OFFICE OF GRADUATE STUDIES:

 The members of the Committee approve the thesis of Christopher Thomas Rhodes

 as presented on April 20, 2015.

 Dr. Bernard Chen, Committee Chairperson

 Dr. Chenyi Hu

 Dr. Shengli Sheng

 Dr. Yu Sun

PERMISSION

Title Wine Informatics: Clustering and Analysis of Professional Wine Reviews

Department Computer Science

Degree Master of Science

In presenting this thesis/dissertation in partial fulfillment of the requirements for graduate

degree from the University of Central Arkansas, I agree that the Library of this

University shall make it freely available for inspections. I further agree that permission

for extensive copying for scholarly purposes may be granted by the professor who

supervised my thesis/dissertation work, or, in the professor’s absence, by the Chair of the

Department or the Dean of the Graduate School. It is understood that due recognition

shall be given to me and to the University of Central Arkansas in any scholarly use which

may be made of any material in my thesis/dissertation.

Christopher Rhodes

April 20, 2015

iv

COPYRIGHT

© 2015 Christopher T. Rhodes

v

ACKNOWLEDGEMENTS

 I would like to express the deepest appreciation to my committee chair, Dr. Bernard Chen,

who has been helping me grow and advance since my undergraduate years. Without his guidance

and persistence to challenge myself, this thesis would not have been possible.

 I would also like to thank my committee members, Dr. Chenyi Hu, Dr. Shengli Sheng, and

Dr. Yu Sun, whose classes have helped push me to the state I am in today. The passion presented

by these professors, and all others in the Computer Science department, has allowed an excellent

environment for learning.

 In addition, I would like to thank my parents, who have continually encouraged and

supported me throughout all of my educational endeavors.

vi

ABSTRACT

Even with the current state of technology, data growth is increasing so fast that without

proper storage and analytical techniques, it is increasingly challenging to process and analyze large

datasets. This applies to knowledge bases from all fields, but for the purpose of this paper, we will

be discussing specifically the area of professional wine reviews in a new area we call Wine

Informatics. In this area, we gathered over one thousand professional wine tasting reviews and

manually extracted key attributes that we felt defined a wine. These attributes were categorized in

three major ways: savory flavor attributes, physical characteristics, and overall subjective

descriptors. The extraction process led to the creation of what we call a computational wine wheel,

which is a wine attribute dictionary consisting of 899 categorized and normalized wine attributes,

as well as a weight system to define a level of importance. We applied Hierarchical Clustering,

BiMax Biclustering, and a proposed TriMax Triclustering algorithm onto various wine review

datasets formed around the computational wine wheel. We found that all three clustering methods

produced promising and cohesive results that can be used in various aspects of the wine industry,

such as defined palate grouping and wine searching.

vii

TABLE OF CONTENTS

COPYRIGHT .. iv

ACKNOWLEDGEMENTS .. v

ABSTRACT .. vi

LIST OF TABLES ... ix

LIST OF FIGURES .. x

LIST OF EQUATIONS .. xii

CHAPTER 1: INTRODUCTION ... 1

1.1: Wine Production ... 4

1.2: Wine Tasting Reviews ... 5

CHAPTER 2: DATA .. 8

2.1: Wine Spectator .. 8

2.2: Original Wine Aroma Wheel ... 10

2.3: Computational Wine Aroma Wheel for 100 Wines .. 11

2.4: Computational Wine Wheel for 999 Wines .. 16

2.5: Computational Wine Wheel over Time .. 20

CHAPTER 3: HIERARHICAL CLUSTERING ... 22

3.1: Clustering Introduction .. 22

3.2: Agglomerative Hierarchical Clustering .. 23

3.3: Distance Measurement .. 25

3.4: Weighted Distance Measurement for Wines .. 27

3.5: Cluster Linkage ... 29

3.6: Agglomerative Hierarchical Clustering Example ... 31

3.7: Hierarchical Clustering on 100 Wines.. 33

3.8: Hierarchical Clustering on 999 Wines.. 37

CHAPTER 4: BICLUSTERING .. 45

4.1: BiMax BiClustering .. 46

4.2: BiMax BiClustering Example .. 48

4.3: BiClustering 50 Wines .. 53

CHAPTER 5: TRICLUSTERING .. 59

5.1: TriMax TriClustering .. 59

viii

5.2: TriClustering 50 Wines across 5 Years .. 63

CONCLUSION .. 68

FUTURE WORKS ... 69

REFERENCES ... 70

ix

LIST OF TABLES

TABLE 2.1. Popular Point Scale for Wine Reviews [19] .. 8

TABLE 2.2. Computational Wine Wheel for 100 Wines Aggregate Counts 14

TABLE 2.3. Weight Values for the Computational Wine Wheel... 15

TABLE 2.4. Example Dataset with Non-Weighted Values ... 16

TABLE 2.5. Example Dataset with Weighted Values ... 16

TABLE 2.6. Computational Wine Wheel for 999 Wines Aggregate Counts 17

TABLE 2.7. Differences between 100 and 999 Wine Computational Wine Wheels 18

TABLE 2.8. Percentage of Wine Varietals from 999 Wines.. 19

TABLE 2.9. Percentage of Wine Country Origins from 999 Wines .. 20

TABLE 2.10. Percentage of Wine Types from 999 Wines .. 20

TABLE 2.11. Percentage of Wine World Category from 999 Wines ... 20

TABLE 3.1. Example Non-Weighted Dataset for Jaccard’s Similarity 28

TABLE 3.2. Example Weighted Dataset for Jaccard’s Similarity .. 28

TABLE 3.3. Cluster Attributes for Subset Cluster .. 36

TABLE 3.4. Non-Savory Cluster Example 1 .. 38

TABLE 3.5. Non-Savory Cluster Example 2 .. 38

x

LIST OF FIGURES

FIGURE 1.1. Data Science Venn Diagram ... 2

FIGURE 2.1. Wine Aroma Wheel .. 10

FIGURE 3.1. Agglomerative Hierarchical Clustering Pseudocode .. 23

FIGURE 3.2. Example Dendrogram and Data Set for Hierarchical Clustering 25

FIGURE 3.3. Clustering Linkage Types ... 29

FIGURE 3.4.1. Example Hierarchical Clustering – Initial Dataset .. 31

FIGURE 3.4.2. Example Hierarchical Clustering – Step 1 .. 32

FIGURE 3.4.4. Example Hierarchical Clustering – Step 3 .. 33

FIGURE 3.4.5. Example Hierarchical Clustering – Step 4 .. 33

FIGURE 3.5. HCE Results (Full) of 100 Wines of 2011 ... 34

FIGURE 3.6. HCE Results (Subset) of 100 Wines of 2011 ... 35

FIGURE 3.7. Scores across Entire Dendrogram of 999 Wines .. 40

FIGURE 3.8. Scores across Entire Dendrogram of 999 Wines (without Wine Amounts)........... 40

FIGURE 3.9. Example Red Wine Cluster from Best Cut Point ... 42

FIGURE 3.10. Example White Wine Cluster from Best Cut Point .. 43

FIGURE 4.1. BiMax BiClustering Generic Step Before and After .. 47

FIGURE 4.2.1. BiClustering Example – Initial Data ... 49

FIGURE 4.2.2. BiClustering Example – Step 1 .. 49

FIGURE 4.2.3. BiClustering Example – Step 2 (initial,left) .. 51

FIGURE 4.2.4. BiClustering Example – Step 3 (initial,right) .. 52

FIGURE 4.2.5. BiClustering Example - Results ... 53

FIGURE 4.3. Summarization of Biclusters of 50 Wines (2010) .. 54

FIGURE 4.4. BiCluster from 50 Wines – Example 1 (Strong) .. 55

FIGURE 4.5. BiCluster from 50 Wines – Example 2 (Weak).. 55

FIGURE 4.6. BiCluster from 50 Wines – Example 3 (Low Wines, High Attributes) 57

FIGURE 4.7. BiCluster from 50 Wines – Example 4 (High Wines, Low Attributes) 57

FIGURE 5.1. Proposed TriMax TriClustering Reference Algorithm Pseudocode 61

FIGURE 5.2. Tricluster Found from Multiple Intra-Timeslice Biclusters 62

FIGURE 5.3.1. TriMax Results on 50 Wines in 1 Time Slice ... 63

FIGURE 5.3.2. TriMax Results on 50 Wines in 2 Time Slices .. 64

FIGURE 5.3.3. TriMax Results on 50 Wines in 3 Time Slices .. 64

FIGURE 5.3.4. TriMax Results on 50 Wines in 4 Time Slices .. 65

FIGURE 5.3.5. TriMax Results on 50 Wines in 5 Time Slices .. 65

xi

FIGURE 5.4. TriCluster from 50 Wines – Example 1 ... 65

FIGURE 5.5. Three TriClusters from 50 Wines – Example 2 ... 66

FIGURE 5.6. Tricluster across 4 Years – Example 3 ... 66

xii

LIST OF EQUATIONS

EQUATION 3.1. Jaccard’s Coefficient Measurement (Similarity) ... 26

EQUATION 3.2. Jaccard’s Distance Measurement .. 26

EQUATION 3.3. Jaccard’s Non-Weighted with Distinct Measurements 27

EQUATION 3.4. Jaccard’s Weighted with Distinct Measurements ... 28

EQUATION 3.5. Single Link Clustering .. 30

EQUATION 3.6. Complete Link Clustering ... 30

EQUATION 3.7. Average Link Clustering ... 30

EQUATION 3.8. Cluster Score for a Wine Cluster ... 37

EQUATION 3.9. Cut Point Score for a Wine Dendrogram ... 37

EQUATION 3.10. Quality Score for a Wine Cluster .. 38

EQUATION 4.1. BiMax BiCluster Definition .. 46

EQUATION 5.1 TriMax TriCluster Definition ... 60

1

CHAPTER 1: INTRODUCTION

There is an intrinsic notion that the computational power of today is essentially limitless,

especially when we realize that today’s cell phones have more computational power than all of

NASA had when it sent two astronauts to the moon in 1969 [1]. We can only imagine what future

computational power will be like given said power is supposed to double every eighteen months

according to Moore’s Law. Even with contemporary capabilities though, it would seem that we

could process anything imaginable. However, with more computational power comes the ability

to actually generate new and vastly-growing data every single day. So much data in fact that it is

estimated we will have generated 40 zettabytes of data by the year 2020 [2]. With ever-growing

sizes in raw data, we have problems not only parsing the data itself, but pulling out meaningful

information from it as well. The latter part of that statement is the basis behind a generalized

concept of the Data Science field taking over nearly every industry. At its core, data science is

about extracting and being able to successfully apply meaningful knowledge from large datasets.

However, the process of understanding and retrieving the knowledge cannot stem from a single

point of investigation. That means that we cannot simply only perform classical data mining

techniques on a dataset and expect the results to make sense. We also cannot have mathematicians

do basic statistical analysis on the data, as the data could be dirty with respect to its knowledge

domain. Lastly, we cannot just have an expert in the field attempt to look over the data, as it could

be much too large for any single person to investigate. In our opinion, data science can be described

accurately using the definition created by Drew Conway, an expert on large-scale methods for

social and behavioral problems [3]. According to Conway, data science is the combination of

programming and hacking skills, math and statistics knowledge, and substantial expertise in the

knowledge domain being evaluated. It is very important to remember that all three of these sections

need to be explored because if any one section is missing, the result is an inability to fully

extrapolate knowledge in the data at hand. Conway has visually detailed his perspective of data

science in the venn diagram shown in the below figure.

2

FIGURE 1.1. Data Science Venn Diagram

Exploring the diagram, we first see that the cross section of “Hacking Skills” and “Substantive

Expertise” as the “Danger Zone!” This is because the individual knows how to structure data and

form into ways easily digested and processed. However, the knowledge is not there to actually

understand what the processed data is telling. An example of a linear regression model being

applied to the data was used. In the “Danger Zone!” of the diagram for this example, the user might

know enough to apply such a model, yet the results would be meaningless without the math and

statistics knowledge to back it up. We can see there are two other cross sections, each where an

overall topic is left out. This means a user might not have the “Hacking Skills” to produce certain

algorithms or models, or the user might not have the “Substantive Expertise” in a topic to

understand what the model or statistical output means according to the data domain itself.

For this paper, our hacking skills will explore the study of data mining, or data analysis of

large datasets. This is really just a term to describe the actual process of exploring data and finding

patterns or relationships within it. Examples of popular data mining techniques include clustering,

classification, and association rules [4]. Clustering can generally be thought of as an unsupervised

learning method that processes groups of objects into clusters that have high similarity between

3

one another. Clustering also operates under the assumption that objects in one cluster are dissimilar

to objects in a different cluster. Overall most clustering algorithms are fairly open ended and

require inputs from the user to try to guess the best way to join, parse, and evaluate the quality of

produced clusters. Examples of popular clustering techniques include Hierarchical Clustering [5],

Co-Clustering [6], and Density Based Scanning [7]. Classification on the other hand is generally a

supervised learning approach. This means the user has a set of observations and attributes, such

that each observation has one or more labels attached to it. The label is a classification designation

that groups an observation into a specific category. This initial set of data can then be thought of

as a training dataset. Using statistics on the training dataset, the user is able to form models, such

as Decision Trees [8] or Support Vector Machines (SVM) [9], which can be applied on new testing

observations. Testing observations are simply new observations that have an unknown

classification label, but once they are sent through the trained model, a label can then be assigned

with hopefully a high degree of confidence. Lastly, there is association rule learning, which is a

method of finding implication patterns between items in a transactional database or information

repository. A basic example would be finding that a consumer at a supermarket buying milk and

eggs is probably also going to buy bread. This possible implication pattern is found by finding

item set groups in the entire dataset that meet a certain support and confidence. Support is simply

the number of transactions that contain both item X and item Y. Confidence is how strong the

association between the two items is, and represents how often times item Y appears in a transaction

that contains item X. By finding the support and confidence for all item sets, a user can filter out

stronger associations by limiting records above a certain threshold for both measures. The most

popular Association Rules technique is the Apriori method [10]. All three of these data mining

techniques have many different methods for producing results, and when choosing a method to

explore, it is up to the data itself and what the user hopes to achieve from that data. For this paper,

we will only be focusing on the clustering tract of data mining, with a major focus on

Agglomerative Hierarchical Clustering, Biclustering, and a newly proposed method called TriMax

4

TriClustering. These methodologies will be described in more detail in chapters 3, 4, and 5,

respectively.

1.1: Wine Production

Our substantial expert knowledge for this paper will be the domain of wine and its flavor

characteristics. Since we are implementing and analyzing the various clustering algorithms

ourselves, we have fulfilled the top two portions of the data science venn diagram. To complete

the full cross-section, we need to prove we have enough knowledge of the subject to make an

accurate analysis of all results. We will be attempting to cluster wines based on data extracted from

expert wine tasting reviews. Before we talk about what goes into tasting a wine, a little more

background is needed. Wines are primarily made from fermented grapes and have been produced

for thousands of years and all over the world. Grapes are favored as yeast is able to more easily

convert the natural sugars into carbon dioxide and alcohol, without the need of other additives or

catalysts [11]. Grapes also generally contain the right amount of acidity and tannins, which allow

wines to maintain good balance and structure [12]. Once grapes begin to ripen, they are picked

either by hand or by machine and are taken in for sorting and fermentation. To note a special

difference, typically red wine grapes are fermented with their skins and white wine grapes are

pressed to separate the juice and skin. This is actually where red wine gets its red hue as the juice

extracts color and other properties from the skin itself [13]. At this point it is up to the winemaker

to add natural or cultured yeast to help with the fermentation process. Once the fermentation process

is complete and the wine has been pressed from any remaining skins or yeast, the wine is then

stored in a cool place for anywhere from six months to three years. The wine is usually stored in

wood barrels, and the type and size of these barrels can actually have a dramatic impact on how the

wine eventually develops. To make sure the wine matures perfectly, the wine needs to receive as

little oxygen as possible. Once a wine has been aged appropriately, the wine can then be filtered

and finally bottled. Throughout this entire process, even before picking, a wine’s future aroma and

flavor compounds are seeping into the grapes from various sources. Natural compounds are formed

5

from the soil type and area of growth. As fermentation begins, chemical reactions are occurring

between volatile and non-volatile compounds between the grapes and the yeast, and as the wine

ages and matures, these reactions still happen, but at a much slower pace. While not unique to

grapes, they have the more individual variety of possible aromas that can develop from these

chemical compounds. The actual process entails these compounds combining with sugars to form

odorless glycosides, and through the process of hydrolysis, they revert back to an aromatic form

[14]. Apart from these naturally occurring processes, there are also external forces during the aging

process that can inject other flavor compounds as well. The most notable is vanillin which seeps

into the wines from the oak barrels they are sometimes stored in, which might give hints of vanilla

to the taster. Since wine tasting can have so many unique flavors, the tasting experience is special

as tasting a wine is really just smelling all the vaporized aroma compounds. Special cells called

olfactory receptors, which are sensitive to different aromas, will send information via the olfactory

bulb to the brain on how to interpret each aroma [15]. The variety of aromas in a wine can be

staggering, and depending on the knowledge and sensitivity levels between individuals, two people

can taste the same wine and report different aromas. The mind is a powerful agent as personal

experience and bias of certain aromas can dramatically alter the perception of what an individual

is tasting. There is not necessarily a wrong description of an aroma, but an inexperienced wine

taster might not have the knowledge depth to accurately depict and describe everything. Consider

also that different people have varying sensitivity levels and may not even recognize a certain

aroma is even present. The next section will briefly discuss a simple review process and just how

little bias it takes to alter individual perceptions.

1.2: Wine Tasting Reviews

Given the knowledge of the wine creation process and how varying aromas are developed

within the wine, an actual tasting could then proceed. This process can be very delicate as a wine

is examined not only for its tasting quality, but for physical appearance and physiochemical

properties as well. A taster will usually evaluate the appearance of the wine, how it smells in the

6

glass before tasting, the different sensations once tasted, and finally how the wine finishes with its

aftertaste. The taster will be looking for how complex the wine is, how much potential it has for

aging for drinkability, and if there are any faults present. The experience required can be expansive

as any given wine needs to be carefully assessed within comparable wine standards according to

its price, region, varietal, and style. Also, if known, the actual wine production techniques will

allow the taster to examine further characteristics. Should there be multiple wines being evaluated,

there are a couple different types of tastings: vertical and horizontal. In the former, varying

vintages, or years produced, are tasted from the same winery to evaluating different ages. The latter

testing involves the same vintages from different wineries to help emphasize the differences in

styles. However, professional wine tastings are held to a much higher standard are usually done

with what is called a blind tasting. This is where the taster is not allowed to see the label of the

wine or even the shape of the bottle. Oftentimes, the taster is also not disclosed the actual color of

the wine that is consumed. Research has shown how powerful perception and bias is when there

exists a strong expectancy based on preconceived notions of any aspect of a wine. A French

researcher named Frédéric Brochet performed two experiments to show how vastly the bias can

affect a tasting. The first experiment involved a mid-range Bordeaux wine to be split into two

different bottles. One bottle was presented as a cheap table wine, and the other as a very high end

specialty. The volunteers described the high-end bottle as “woody, complex, and round”, while

they noted the cheaper bottle as being “short, light, and faulty [16].” Brochet’s second experiment

involved a white wine being presented and eventually described as “fresh, dry, honeyed, [and]

lively” from students studying wine. That same wine was then dyed red and presented again, but

this time the students described the wine as “intense, spicy, supple, [and] deep [17].” The latter

description is a usual depiction of red wines and is vastly different from the first inspection of the

same white wine. Although some people like to use these results as evidence against wine tastings,

Brochet’s experiments merely highlight the need for a standardized blind test when performing any

professional wine tasting.

7

To show an example of what might result from a professional blind tasting, below is an

example wine tasting review for Wine Spectator’s number one wine of 2014.

Dow’s Vintage Port 2011

Powerful, refined and luscious, with a surplus of dark plum, kirsch and cassis flavors that

are unctuous and long. Shows plenty of grip, presenting a long, full finish, filled with Asian

spice and raspberry tart accents. Rich and chocolaty. One for the ages. Best from 2030

through 2060. –Kim Marcus [34]1

It is important to again note that these attributes are specific to this taster’s opinions and evaluation.

A different taster might exclude or find differing attributes. However, given a fair amount of tasting

experience, the expected differences between two reviewers should be subtle, especially when

noting the strongest attributes.

This paper will present a methodology for extracting key attributes from wine reviews like

the example shown above. We will detail the formation of a Computational Wine Dictionary,

which will serve as a basis for future, automated extraction of attributes from wine reviews. Given

the dictionary and a couple datasets of wine reviews, we will explore varying clustering techniques

in an attempt to show that it is possible to group similar wines together using only the sensory

attributes given in professional wine reviews. We believe our examination and subsequent

evaluation of wine sensory information can form the base of new area called Wine Informatics.

There is some existing research into evaluating and clustering wines, but its data is purely based on

the actual chemistry of the wine, which are primarily numerical categories like alcohol, color

intensity, and phenol amounts [18]. This paper aims to show that even based on technically

subjective criteria, it is still possible to cluster wines using non-physiochemical data. We will

examine our datasets and introduce the computational wine wheel in Chapter 2. Chapters 3 through

5 will discuss using these datasets as inputs to Hierarchical Clustering, Biclustering, and

Triclustering, respectively. Finally we will conclude our paper with a summarization of results and

give details on future work for this study and Wine Informatics as a whole.

1 A Wine Spectator membership account may be required to view the tasting note.

8

CHAPTER 2: DATA

Diving deeper into the area of Wine Informatics can be a daunting task since the idea of

looking at non-quantitative attributes of wine requires quite a bit of thought and preprocessing. To

make it easier on our research and to form some consistency within the data, we thought it would

be best to limit our initial data compilation to a single source. There are thousands of local and

global wine reviewers, whether independent blogs or large publications. Some of the major

publications include Wine Spectator [20], Wine Enthusiast [35], and Wine Advocate [36]. These

three are arguably the most popular and they all use a derivation of the 50-100 point scale developed

by Robert Parker, who runs The Wine Advocate publication and has had a tremendous impact on

the wine industry. The point scale is used widely and is categorized in TABLE 2.1. The first

column defines Parker’s original scoring system, which has five 10 point ranges. Wine Spectator’s

derivation is detailed in the second column, which mostly uses 5 point ranges.

RP SCORE WS SCORE DESCRIPTION

96 – 100 95 – 100 Extraordinary/Classic wine

90 – 95 90 – 94 Outstanding; a wine of superior character and style

80 – 89 85 – 89 Very Good; various degrees of finesse
70 – 79 80 – 84 Average; little distinction, yet soundly made

60 – 69 75 – 79 Below Average; noticeable deficiencies

50 – 59 50 – 74 Poor or Undrinkable; not recommended

TABLE 2.1. Popular Point Scale for Wine Reviews [19]

With the 50 point rating system we a generally able to compare a wine across multiple sources.

However, for creating our dataset, we decided to go with Wine Spectator only because of ease of

review access and the comparable style of reviews even between different reviewers.

2.1: Wine Spectator

To start aggregating wine reviews, we decided to use Wine Spectator, which is a lifestyle

magazine that focuses on wine and wine culture [20]. The magazine has been in production since

1976 and each issue can contain more than one thousand wine reviews. Luckily, the company has

also since published hundreds of thousands of their reviews directly to their website for subscribers

9

to view. The reason Wine Spectator is a good fit for us is their strict wine tasting process, as well

as the concise nature to their reviews and tasting notes. Wine Spectator prides themselves on

evaluating using blind tastings, and sometimes double-blind, the latter meaning the reviewer has

absolutely no information at all on the wine in the glass. Typically though, a single-blind

methodology is chosen, in which the reviewer is given the vintage, appellation, and grape varietal,

but the vineyard, producer, and wine price information is not disclosed. To quote their

methodology instructions, “the goal is to arrive at the appropriate balance; enough information to

contextualize the wine, but not so much information that “imaginary references” begin to distort

judgment [21]2.” Once a tasting has concluded and the reviewer has noted their impressions, a

review, or tasting notes, is published. As compared with other big name wine publications, the

reviews from Wine Spectator are extremely concise without losing quality information concerning

the wine itself. While other reviews might often to try to bring in life anecdotes or superfluous

region information, Wine Spectator tends to only specify actual tasting notes. An example review

is seen below for the top rated wine for 2014, as also shown in Chapter 1.

Dow’s Vintage Port 2011 (#1/10 top wines of 2014)

Powerful, refined and luscious, with a surplus of dark plum, kirsch and cassis flavors

that are unctuous and long. Shows plenty of grip, presenting a long, full finish, filled with

Asian spice and raspberry tart accents. Rich and chocolaty. One for the ages. Best from

2030 through 2060. –Kim Marcus

In this version of the example review, we have bolded what we might consider to be key attributes

to the review itself, and these attributes range from actual savory properties, such as “chocolate”

and “Asian spice”, to subjective properties, such as “powerful” and “refined.” Our goal is to extract

enough key attributes from these professional wine reviews so that we can form a solid foundation

of a wine attribute dictionary for the area of Wine Informatics. While we are planning on mining

reviews solely from this review source, we do have a bit of diverseness in that Wine Spectator has

many editors that perform tastings, so there is no single point of bias giving out all tasting notes.

2 A Wine Spectator membership account may be required to view the full letter.

10

2.2: Original Wine Aroma Wheel

The tasting notes given in a review are very important as they describe the heart and soul

of a wine. Even without knowing the producer or varietal, a well-described review can adequately

sway a potential consumer into a purchase. Our idea is to build a Savory Wine Dictionary where

common, yet important attributes can be stored and referenced as needed. Luckily, this idea was

already introduced in 1980 by a sensory chemist and retired professor named Ann C. Nobel [22].

She created what she called the Wine Aroma Wheel and a representation of it can be seen below.

FIGURE 2.1. Wine Aroma Wheel

The wheel is composed of twelve categories of overall wine aromas someone might experience

when tasting a wine. The idea for the wheel was to help people describe tastes or aromas that might

be hard to formulate without having given previous impressions. While Nobel’s wine aroma wheel

11

is a good start, we did not believe it would be enough for us in its original form. Without being

overly specific there are times when certain distinct flavor attributes are not unique enough to

encapsulate all flavors. An example of this would be the FRUITY -> (TREE) FRUIT -> APPLE

attribute. As we will show later with our expansion attributes, things like APPLE and GREEN

APPLE are unique enough to warrant a distinction in the (TREE) FRUIT subcategory. However,

we cannot add flavors arbitrarily as it might not reflect actual flavors and aromas found in real

world wines. We need a wine aroma wheel that, while expansive, is accurate and can be used easily

by ourselves and others for automated processing of raw wine reviews. As we will discuss in the

next sections, there quickly becomes a point where manually extracting flavor properties from

wines becomes incredibly difficult and time consuming. Conversely, without a properly checked

base of initial, accurate descriptions and properties, any automated attempt could be futile and

possibly miss something important.

2.3: Computational Wine Aroma Wheel for 100 Wines

By expanding the wine aroma wheel, we hope to form what we call a computational wine

wheel. To form this dataset, we initially extracted all reviews from Wine Spectator’s Top 100

Wines of 2011 [37]. The idea here was that all of Wine Spectator’s Top 100 lists contain only

wines that have a review score of 90 or higher. By only picking those wines considered outstanding

or classic, we will be gathering savory attributes that most wines should have and descriptive

attributes that all wines hope to achieve during a tasting. The extraction process for these reviews

was purely manual as we handpicked key attributes as well as noted secondary information about

the wine. In total we gathered the following information: name, vintage, review, varietal, regional

information, and price. However, it is worth noting that for our processing purposes the review is

the single most important piece of information for a wine. For the review and attributes themselves,

there were a few types of attributes we are concerned with. Besides actual biological flavor

attributes, we also tried to include anything corresponding to a wine’s physical structure, including

things like acidity, body, structure, weight, tannins, and finish. These are properties of wine that a

12

taster will physically taste or feel, such as how acidic the wine tastes or how well the wine coats

the tongue. Lastly, we also decided to keep generic, subjective terminology that may or may not

be the same between two different tasters. For example, one taster may find a wine “vivid” and

“beautiful” while another taster may make no mention. Originally we thought about generalizing

words into their derived connotations, such as “grand” rating higher than a word like “fine.”

However, since we are extracting the top rated wines, the level connotative differences would be

subtle and hard to differentiate. By that, we mean the tiny difference in positive connotations

between two words may not be worthwhile in investigating. Instead, we opted to keep as many

subjective descriptors that we could find, as we found that many reviews still share many positive

descriptions and generally, different tasters are generally referring to the same aspects when using

a word such as “vivid.” We do not believe the context would be too different between separate

tasters using the same word to describe a wine.

Showing the previous example review again, we want to highlight how we would extract

the review’s key attributes into the three mentioned categories: savory, body, and descriptive.

Dow’s Vintage Port 2011 (#1/10 top wines of 2014)

Powerful, refined and luscious, with a surplus of dark plum, kirsch and cassis flavors

that are unctuous and long. Shows plenty of grip, presenting a long, full finish, filled with

Asian spice and raspberry tart accents. Rich and chocolaty. One for the ages. Best from

2030 through 2060. –Kim Marcus

For this review, red words indicate specific flavors and aromas that could possibly be found on

Nobel’s wine aroma wheel. Orange words indicate traits corresponding to the physical wine itself

like its body and finish. That is, how the wine feels physically to a taster. Lastly, blue words

indicate subjective adjectives used by the taste to describe the overall wine. Should a word or

phrase not exist in the original wine aroma wheel, we would add it. Also, if a word or phrase does

not fit into any previous categories or subcategories, we would create one for it. This methodology

generally worked well, but one thing we found while extracting properties from the 100 wines from

2011 was that there was slight contextual overlap between different reviews. That is, there would

13

be two different reviews using slightly different words to express the same tasting notes. A simple

example would be one review using the word “distinctive” and another review saying a wine was

“very distinct.” The human thought process would naturally assume these two differences are the

same thing, but computationally, we might miss the connection. For this reason, we added a fourth

level to the wine aroma wheel that we like to call a normalized attribute name. This portion of the

wheel would represent a base, or normalized, word to encompass a variety of word usages. This is

extremely important not only for differences in word tense or suffixes, but especially the verbiage

used when describing biological elements like fruits and their descriptions. An example of this

would be the taster either using the phrase “lemon peel” or “lemon rind”, both of which refer to the

outer layer of the lemon. Another example would be being too verbose when describing a specific

flavor, such as “cocoa”, “cocoa powder”, and “cocoa-filled”. Certain phrases like this generally

refer to the same thing. However, there are times when the phrases make them distinct enough to

become unique attributes. A good example of this would be “blueberry”, “blueberry fig”, and

“blueberry jam.” Even though all three are components of the same fruit, the taste and consistency

of each item convey different connotations and perceptions.

 In TABLE 2.2, we show a count summarization of the computational wine wheel as formed

from the top 100 wines for 2011. We manually extracted 547 total specific attributes across 12

specific categories. After normalizing all attributes if possible, we were able to reduce the total

attributes from 547 to 376 unique attributes. Even with the reduced size, most people would

consider this number of attributes to be a very high number of possible dimensions. With that in

mind, appropriate processing methods will need to be chosen in order to handle this situation.

14

CATEGORY SUBCATEGORY COUNT

DISTINCT

NORMALIZED

COUNT

CARAMEL CARAMEL 9 7

CHEMICAL PETROLEUM 3 1

EARTHY EARTHY 18 2

FLORAL FLORAL 15 15

FRUITY BERRY 18 15

FRUITY CITRUS 11 11

FRUITY DRIED FRUIT 21 21

FRUITY FRUIT 5 4

FRUITY OTHER 7 7

FRUITY TREE FRUIT 12 9

FRUITY TROPICAL FRUIT 15 11

HERBS/VEGETABLES CANNED/COOKED 7 7

HERBS/VEGETABLES DRIED 6 6

HERBS/VEGETABLES FRESH 15 12

MEAT MEAT 1 1

MICROBIOLOGICAL LACTIC 3 2

MICROBIOLOGICAL YEASTY 3 3

NUTTY NUTTY 3 3

OVERALL ACIDITY 14 3

OVERALL BODY 17 10

OVERALL FINISH 50 6

OVERALL FLAVOR/DESCRIPTORS 217 179

OVERALL STRUCTURE 9 2

OVERALL TANNINS 24 3

SPICY SPICE 26 21

WOODY BURNED 11 8

WOODY PHENOLIC 1 1

WOODY RESINOUS 6 6

TOTAL COUNTS 547 376

TABLE 2.2. Computational Wine Wheel for 100 Wines Aggregate Counts

For our computational wine wheel, we added a couple new overall categories that the original wine

aroma wheel did not have, such as MEAT. The most important category added is the OVERALL

category, which represents the set of subcategories describing the body of the wine and the

subjective descriptors. The fourth column represents the new level discussed, as it shows the

distinct number of unique attributes for any given subcategory. As we expected, the

FLAVOR/DESCRIPTORS subcategory represents the most possible attributes, and this actually

15

becomes a small problem when trying to find accurate similarity between two wine reviews. We

questioned if two wines are closely related if they intersect fully on savory flavor attributes, but

nearly none with subjective word descriptors. We believe they should relate more closely in that

case, but as the Hierarchical Clustering section will discuss in more detail, we need to apply a

weight to every normalized attribute to shift the similarity between reviews. The table below shows

the numerical weight value assigned to the different categories.

Attribute Type Weight

Biological Flavors and Aromas 3

Physical Wine Characteristics 2

Important Subjective Descriptors 2

All Other Subjective Descriptors 1

TABLE 2.3. Weight Values for the Computational Wine Wheel

Actual biological flavors like “APPLE”, “CHERRY”, and “SPICE” are given the most weight as

we felt that these aromas might be the most important when comparing two wines for the basic

features. Physical wine characteristics, such as “LONG FINISH” and “DENSE,” are given a

middle tier weight as they are certainly important, but these attributes might vary more wildly.

Lastly, subjective words such as “BEAUTIFUL” and “VIVID” are given the least weight since

they are the most common types of attributes and it does not accurately compare two wines on their

own. It is also important to mention the third row of the table labeled “Important Subjective

Descriptors,” as we felt there were some subjective word choices that were more important than

others. They were few and far between, but some examples include “POWER”, “RICH”, and

“SAVORY”. These are words or phrases that cannot be used as stand-alone descriptors of the

overall wine, but seemingly transcend their meaning into other categories and possibly are also

intended to include the context of the physical tasting properties. We felt two wines sharing these

special adjectives might actually reflect more similarity. The attributes that fall into this category

were few and chosen at our discretion. After forming this initial computational wine wheel, we

show what our 100 wine dataset looks like before and after applying the weights.

16

WINE NAME APPLE TANNINS_HIGH VIVID … Attribute N

Wine 1 1 0 0 … …

Wine 2 0 1 1 … …

Wine 3 1 0 1 … …

… … … … … …

Wine M … … … … …

TABLE 2.4. Example Dataset with Non-Weighted Values

TABLE 2.4 shows our multi-dimensional dataset as essentially a binary set of attributes for every

wine. A wine either has an attribute or it does not. Since there are 376 possible normalized

attributes though, it is possible the review starts to lean more heavily towards the number of

subjective descriptors than actual flavors and aromas which we consider to be the most important.

When dealing with comparing sets, this could skew any similarity calculations. To combat this

problem we apply the weights mentioned in TABLE 2.3 to form a new dataset that now looks like

the one presented in TABLE 2.5.

WINE NAME APPLE TANNINS_HIGH VIVID … Attribute N

Wine 1 3 0 0 … …

Wine 2 0 2 1 … …

Wine 3 3 0 1 … …

… … … … … …

Wine M … … … … …

TABLE 2.5. Example Dataset with Weighted Values

We still have binary sets of attributes per wine, but any distance methodology using sets can be

altered to take the weighting into account. We will explain our methodology for detecting and

handling weighted similarity in the Hierarchical Clustering chapter.

2.4: Computational Wine Wheel for 999 Wines

After forming the computational wine wheel on the 2011 wines, we figured that 100 wines

might not be a large enough sample size, so we performed the same attribute extraction on 999

additional wine reviews from Wine Spectator. These wines were the Top 100 wines from the years

2003 to 2010, and 2012 to 2013 [37]. One wine review was not able to be retrieved. We used the

computational wine wheel for 2011’s data as a basis to help filter out previously known attributes,

17

and then had our group of students manually examine any new attributes we could find. The below

table represents the final results of the 999 wine reviews. We ended up with 13 distinct categories

and a total of 31 distinct subcategories. From all wines mined, we found a total of 1,748 specific

wine attributes, and of those attributes we were able to finalize 889 distinct normalized attributes.

CATEGORY SUBCATEGORY COUNT

DISTINCT

NORMALIZED

COUNT

CARAMEL CARAMEL 67 37

CHEMICAL PETROLEUM 5 2

CHEMICAL SULFUR 2 2

EARTHY EARTHY 68 30

FLORAL FLORAL 60 35

FRUITY BERRY 54 26

FRUITY CITRUS 37 22

FRUITY DRIED FRUIT 61 54

FRUITY FRUIT 24 8

FRUITY OTHER 8 8

FRUITY TREE FRUIT 40 31

FRUITY TROPICAL FRUIT 47 25

HERBS/VEGETABLES CANNED/COOKED 10 9

HERBS/VEGETABLES DRIED 24 20

HERBS/VEGETABLES FRESH 38 26

MEAT MEAT 25 13

MICROBIOLOGICAL LACTIC 11 3

MICROBIOLOGICAL OTHER 9 3

MICROBIOLOGICAL YEASTY 4 4

NUTTY NUTTY 21 15

OVERALL ACIDITY 33 3

OVERALL BODY 43 22

OVERALL FINISH 175 5

OVERALL FLAVOR/DESCRIPTORS 611 404

OVERALL STRUCTURE 38 2

OVERALL TANNINS 79 4

PUNGENT HOT 2 2

SPICY SPICE 83 39

WOODY BURNED 43 25

WOODY PHENOLIC 2 1

WOODY RESINOUS 24 9

TOTAL COUNTS 1748 889

TABLE 2.6. Computational Wine Wheel for 999 Wines Aggregate Counts

18

Compared to the 2011 counts in TABLE 2.2, this data shows large increases in almost every

category and subcategory. This is important to highlight just how important it was to update our

original dataset. When doing a direct comparison of both computational wine wheels, we find that

there are 992 distinct normalized attributes across both. Of those 992, 103 attributes are unique to

the 100-wine dataset, 616 attributes are unique to the 999-wine dataset, and 273 attributes are

shared by both. Between the three subsets of attributes, we can analyze the impact by adding in

the additional 10 years of wine data to on overall wine attribute dictionary. TABLE 2.7 shows the

counts by weight for each of the three subsets between the two data sets.

Weight 100 wines – UNIQUE BOTH – SHARED 999 wines – UNIQUE

3 43 126 319

2 4 27 14

1 56 120 283

TOTAL 103 273 616

TABLE 2.7. Differences between 100 and 999 Wine Computational Wine Wheels

The most important aspect is that we only found 43 unique highly-weighted attributes in the 100-

wine dataset, compared to the 319 unique highly-weighted attributes found in the 999-wine dataset.

On average, that means the additional 10 years’ worth of wines added almost 32 new, unique

attributes. That is a strong indication that a 100 sample wine size is not enough to deliver accurate

results should a review be automatically matched to that version of the computational wine wheel,

as many key attributes would most likely be missed. The same applies to the lowest weighted

attributes, which saw a comparison of 56 versus 283. For biological taste indicators and subjective

descriptions, we can only assume that continuing to add wines would grow these sections.

However, we noticed that the original 100 wines were actually able to encompass a majority of the

mid-weighted attributes, which mostly contain descriptions of the physical body of the wine. This

is because the few key components of a wines body, such as weight and finish, are concepts that

do not change over time, as it would take a radical change of what wine is to alter these

subcategories.

19

As we expanded our computational wine wheel, we figured we also needed a way to decide

if the cluster results provided any significant quality. To do this, we decided against evaluating

against the sensory attributes themselves, and instead decided to bring in extra data not contained

within the wine review. We call this extra information non-savory attributes and it consists of an

individual wine’s type, varietal, country, and world. Type indicates generally if a wine is

considered red, white, or blended, which means multi-varietal. Varietal is the specific grape type(s)

used in the wine. We also pull information on the country of origin, which also strongly correlated

to the category of new or old world. The world designation of a wine is just a general categorization

of wines based on whether or not they were produced in traditional wine making countries or not.

For example, most European countries are considered Old World, whereas the United States is

generally considered New World. For all 999 wines in this dataset, we retrieved values for all 4

non-savory attributes, and have listed their names and percentages in the four tables below.

Varietal (Grape) Count Percent

BLEND (RED) 277 27.73%

PINOT NOIR 87 8.71%

CHARDONNAY 72 7.21%

CABERNET SAUVIGNON 67 6.71%

SYRAH 58 5.81%

SHIRAZ 53 5.31%

RIESLING 45 4.50%

SANGIOVESE 43 4.30%

SAUVIGNON BLANC 33 3.30%

MALBEC 31 3.10%

NEBBIOLO 30 3%

TEMPRANILLO 23 2.30%

BLEND (SPARKLING) 22 2.20%

BLEND (DESSERT) 21 2.10%

ZINFANDEL 20 2%

MERLOT 17 1.70%

BLEND (WHITE) 12 1.20%

Only showing top 17 results

TABLE 2.8. Percentage of Wine Varietals from 999 Wines

20

Country Count Percent

USA 296 29.63%

FRANCE 224 22.42%

ITALY 145 14.51%

AUSTRALIA 79 7.91%

SPAIN 70 7.01%

ARGENTINA 32 3.20%

PORTUGAL 29 2.90%

CHILE 29 2.90%

NEW ZEALAND 25 2.50%

GERMANY 25 2.50%

SOUTH AFRICA 20 2%

AUSTRIA 13 1.30%

HUNGARY 5 0.50%

GREECE 5 0.50%

CANADA 1 0.10%

ISRAEL 1 0.10%

TABLE 2.9. Percentage of Wine Country Origins from 999 Wines

Type Count Percent

 RED 737 73.77%

WHITE 214 21.42%

SPARKLING 24 2.40%

DESSERT 24 2.40%

TABLE 2.10. Percentage of Wine Types from 999 Wines

World Count Percent

OLD 517 51.75%

NEW 482 48.25%

TABLE 2.11. Percentage of Wine World Category from 999 Wines

2.5: Computational Wine Wheel over Time

Our third and final dataset encompasses 50 Cabernet Sauvignon wines from the Napa

Valley region in California. For every wine in this set, we retrieved its review for every year from

2006 to 2010. The wines were picked out in a first come, first serve order from the Wine Spectator

21

repository as long as they met the above criteria. Because of this, there are some wines that share

the same producer, but each wine has a distinct designation and is technically a different wine

production. For this dataset it is best to imagine it as a three dimensional cube of reviews, where

the height, width, and depth are the wine name, attributes, and vintage, respectively. This dataset

is special as there was nothing manual about attribute extraction. We used the computational wine

wheel for 999 wines and scripted the output of only matched attributes. The result of this was 50

wines with 259 attributes across 5 years. There are actually two purposes to this dataset. One

reason is to attempt to cluster a dataset that was matched automatically to the computational wine

wheel. The second reason is to move away from Hierarchical Clustering and to attempt a couple

algorithms for subspace clustering: BiClustering and TriClustering. We will discuss these further

in Chapter 4 and Chapter 5, respectively.

22

CHAPTER 3: HIERARHICAL CLUSTERING

This chapter will give an overview on what clustering is and how we plan to use it in this

paper. We will discuss the basics of clustering, as well as an in depth look at agglomerative

hierarchical clustering. This includes clustering properties such as distance measurements and

linkage types. Lastly, we will apply our hierarchical clustering knowledge on our Wine datasets

discussed in Chapter 2.3 and 2.4.

3.1: Clustering Introduction

Clustering is generally considered an unsupervised learning and analysis tool. It is an open-

ended process that is open to many different interpretations and techniques. Generally though,

clustering is mostly thought of as a way of grouping objects or observations into intra-similar

clusters. A generated cluster is oftentimes considered dissimilar to all other clusters formed. A

given clustering algorithm is generally characterized by the model it tries to form. For example,

there are connectivity models that build clusters based on distance connectivity. Clustering models

like this generally can results in any number of clusters. Centroid models, such as K-Means,

generally try to fit data into a predefined number of clusters via a mean vector. Distribution models

create clusters based on statistical distributions of the data itself. Density models form clusters by

finding dense regions of data. This is especially useful if dense data form irregular shapes or

patterns. Subspace models, such as BiClustering, are special in that they create clusters using both

observations and relevant attributes at the same time. We will discuss more on BiClustering in

Chapter 4. Apart from specific clustering models, we can also characterize how an observation is

defined to a cluster. For example, we can ride under the assumption that each observation either

belongs to a cluster, or it does not, which is called hard clustering. Soft clustering, or fuzzy

clustering, otherwise allows an observation to partially exist in any cluster to a certain degree of

possibility. Clustering can also get into stricter rules that can specify that an observation can belong

to one, and only one, cluster. With so much diversity in the algorithm details, it is not hard to guess

that the results might be even more complicated. Generally there is no such thing as training data

23

with clustering, so the results are unpredictable and there is no one way to analyze the output

clusters. It is up to the user to fully understand the data that is being clustered and to reprocess as

needed to make sure the desired clustering algorithm has valid information. It is also important to

make sure the distance or similarity measurements are chosen wisely as this can wildly affect the

outcome. The following sections will deal with diving in depth with hierarchical clustering, and

how we chose to apply it to our computational wine wheels.

3.2: Agglomerative Hierarchical Clustering

For this chapter, we have specifically chosen to work with agglomerative hierarchical

clustering, which is a bottom-up, connectivity-based clustering approach. To help explain how

agglomerative hierarchical clustering works, we have detailed the algorithm in FIGURE 3.1 [23].

The figure features the algorithm’s basic pseudocode with an explanation following.

Agglomerative Hierarchical Clustering Algorithm

 𝐴𝑔𝑔𝑙𝑜𝑚𝑒𝑟𝑎𝑡𝑖𝑣𝑒𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔(𝐷 = {𝑥𝑖}𝑖=1
𝑛 , 𝑘):

1 𝐶 = {𝐶𝑖 = {𝑥𝑖} | 𝑥𝑖 ∈ 𝐷}

2 ∆ = {𝛿(𝑥𝑖 , 𝑥𝑗) ∶ 𝑥𝑖 , 𝑥𝑗 ∈ 𝐷}

3 𝒘𝒉𝒊𝒍𝒆 |𝐶| > 𝑘 𝒅𝒐

4 𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑝𝑎𝑖𝑟 𝑜𝑓 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 𝐶𝑖 , 𝐶𝑗 ∈ 𝐶

5 𝐶𝑖𝑗 = 𝐶𝑖 ∪ 𝐶𝑗

6 𝐶 = {𝐶 − 𝐶𝑖 − 𝐶𝑗 } ∪ 𝐶𝑖𝑗

7 𝑈𝑝𝑑𝑎𝑡𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 ∆ 𝑡𝑜 𝑟𝑒𝑓𝑙𝑒𝑐𝑡 𝑛𝑒𝑤 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔

8 𝐶 → 𝑑𝑒𝑛𝑑𝑟𝑜𝑔𝑟𝑎𝑚 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠

FIGURE 3.1. Agglomerative Hierarchical Clustering Pseudocode

To preface the algorithm, it should be noted that agglomerative clustering starts with all

observations in the data being their own initial cluster. We start with a dataset D, which consists

of a set of n number of observations. The second argument can also be an optional k, which is

simply the threshold number of clusters to reach before the algorithm terminates. Typically, an

agglomerative clustering algorithm will keep on clustering until there is only a single cluster left,

so k is usually set to 1. The first step is to create a set of initial clusters C that corresponds to all

24

initial observations in our dataset. The line of thinking is that every initial observation starts out as

its own cluster. We now need to create a distance matrix ∆. This matrix is an n x n table

representing the distance of all clusters against each other. The distance measurement chosen

depends on the data at hand, but typically a very simple approach would be to use Euclidean

Distance. It should also be noted that the entire n x n matrix does not need to be calculated as the

values of the upper right triangle are going to mirror the values in the lower left triangle. The

diagonal will consist of zero-distance values and should be ignored as it represents clusters against

themselves. With the set of current clusters and the corresponding distance matrix, the main loop

of the algorithm can begin. While the size of C, or the total number of current clusters, is greater

than the threshold limit assigned to k, we first find the minimum value in our distance matrix. This

value is the distance value of the two most-similar, current clusters. We then form a new cluster

𝐶𝑖𝑗 and set its two-cluster set of child nodes to point to our most similar clusters, 𝐶𝑖 and 𝐶𝑗 . We

then need to update our cluster set C by removing 𝐶𝑖 and 𝐶𝑗 from the set, and pushing in the new

parent cluster, 𝐶𝑖𝑗 . Lastly, since our cluster set C has changed, the distance matrix ∆ will need to

be recalculated so all remaining clusters can get a distance value to the newly introduced cluster.

This cycle is repeated until the size of the cluster set reaches the threshold limit and at that point,

the algorithm will terminate. Typically, the best way to represent a cluster is an object with a left

and right child object of the same type. What results for classical hierarchical clustering is a binary

tree where all initial observations are represented by the leaf nodes, and every node above the leaves

are the clustering operations performed in the while loop in FIGURE 3.1. Also, the binary tree

produced is special because the length of a cluster’s stem represents the distance it takes to represent

all children belonging to that cluster. This allows someone to get an accurate, visual interpretation

of the relative similarity between all data set observations. FIGURE 3.2 shows a basic example of

a small dataset in its graphical form (right) as well as the resulting binary tree, or dendrogram (left)

[24].

25

FIGURE 3.2. Example Dendrogram and Data Set for Hierarchical Clustering

For example, we can take a look at the two clusters ((9,10),11) and ((7,8),6). Both images show

how observation 11 is much closer to cluster (9,10) than observation 6 is to cluster (7,8). A user

could then infer that that cluster ((9,10),11) is a much more cohesive structure. The hierarchical

algorithm itself is relatively simple, but there are two major components that should be taken into

a lot of consideration before blindly clustering data. Those components are the distance

measurement and the clustering linkage type, which we will discuss in the following two sections.

3.3: Distance Measurement

The distance value between two clusters, which can also be thought of as a similarity value,

can generally be thought of as a representation of their location or their properties. A representation

of location can be compared to data in a Euclidean space, which has a notion of an average between

any two points. However, as datasets increase their number of columns, or dimensions, a growing

problem occurs called the Curse of Dimensionality [25]. As the volume increases in a dataset, the

points within that set become sparse. For statistical accuracy, this means that more and more data

is needed to get accurate results. For our dataset specifically, as the number of dimensions grow,

the distance between any two points start to become the same, and because of this reason it might

be necessary to find a distance measure that works on sets of properties rather than a location.

Examples of such distances include Hamming Distance, Cosign Distance, and Jaccard’s Distance.

26

There is no single best measure for a dataset, but depending on the types of values present and the

number of dimensions there are generally choices that are better than others. Once a distance

measurement has been chosen, any two single points can then be compared.

When evaluating our Wine Wheel dataset, we noticed it had two prominent features. One

was that any dataset we formed would most likely have hundreds of dimensions. The other was

that our datasets will be binary in nature. That is, a wine either has an attribute, or it does not. For

both of these reasons we decided to stay away from location-derived distance measures. After

careful consideration, we chose to use the Jaccard’s Coefficient measure, which is a similarity

formula for set comparisons [26]. When comparing two sets, the measure can be defined simply

as the size of the intersection divided by the size of the union.

𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝑠𝐶𝑜𝑒𝑓(𝑋, 𝑌) =
| 𝑋 ∩ 𝑌 |

| 𝑋 ∪ 𝑌|

𝑖𝑓 | 𝑋 ∪ 𝑌 | = 0, 𝑡ℎ𝑒𝑛 𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝑠𝐶𝑜𝑒𝑓(𝑋, 𝑌) = 0

𝑒𝑙𝑠𝑒 0 ≤ 𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝑠𝐶𝑜𝑒𝑓(𝑋, 𝑌) ≤ 1

EQUATION 3.1. Jaccard’s Coefficient Measurement (Similarity)

The coefficient produces a number between 0 and 1, which can be thought of as a percentage of

similarity between two sets. Should two sets contain no points of intersection, the ratio will be zero

over the size of the union. Conversely, if two sets contain a complete union, then the ratio will be

same for both the intersection and the union, resulting in one hundred percent similarity. A

complementary value is the Jaccard’s Distance, which can be defined by the following formula.

𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝑠𝐷𝑖𝑠𝑡(𝑋, 𝑌) = 1 − 𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝑠𝐶𝑜𝑒𝑓(𝑋, 𝑌) =
| 𝑋 ∪ 𝑌| − | 𝑋 ∩ 𝑌 |

| 𝑋 ∪ 𝑌|

EQUATION 3.2. Jaccard’s Distance Measurement

Simply put, if two sets result in a 0.8 Jaccard’s Coefficient similarity value, then the two sets can

also be considered 0.2 dissimilar via the Jaccard’s Distance measurement. Either measure can be

used in clustering, but the user needs to remember to look for the maximum values for Jaccard’s

Coefficient or the minimum values for Jaccard’s Distance.

27

3.4: Weighted Distance Measurement for Wines

In Chapter 2.3 we proposed turning possible values in our dataset from 0 and 1 to any value

in the range 0 through 3. We wanted to specify that certain attributes belonging to a wine were

more important than others. To do this we still use the same Jaccard’s formulas presented in the

previous section. However, we use an alternate, but equivalent definition that will allow us to

eventually account for weights. Both the original coefficient and the distance formulas can be

redefined as the following [27].

𝐽𝑎𝑐𝑐𝑎𝑟𝑑′𝑠 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
𝑃

𝑃 + 𝑄 + 𝑅
 𝐽𝑎𝑐𝑐𝑎𝑟𝑑′𝑠 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =

𝑄 + 𝑅

𝑃 + 𝑄 + 𝑅

𝑃 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛 𝑏𝑜𝑡ℎ 𝑠𝑒𝑡𝑠

𝑄 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛 𝑄, 𝑏𝑢𝑡 𝑛𝑜𝑡 𝑅

𝑅 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛 𝑅, 𝑏𝑢𝑡 𝑛𝑜𝑡 𝑄

EQUATION 3.3. Jaccard’s Non-Weighted with Distinct Measurements

These formulas are equivalent to EQUATION 3.1 and 3.2, but programmatically we can now avoid

using set notation and allow modification of the specified variables P, Q, and R. Using just values

of 1 or 0, we would originally increment these variables as we compared attributes between two

wines. Now that we have weighted values, when incrementing the variables, we can increase the

value higher for strongly-weighted attributes. This idea is simply faking the set comparison by

inflating the values for the intersection and the union size. We are proposing this idea as the overall

wine data contains a disproportional amount of non-biological descriptive attributes, or subjective

adjectives described during the tastings. While these are nice, we consider actual biological or

wine body descriptions as taking priority over the more subjective descriptions. In the example

below, we will show how the weights can possibly significantly change the similarity between two

wine sets. Suppose we have the following subset of data with four wines and the following four

attributes: BLUEBERRY, CHERRY, CHEWY TANNINS, and BEAUTY. We can examine the

first wine against the second and third, which alternate the sharing of the CHERRY and BEAUTY

attributes.

28

 BLUEBERRY CHERRY CHEWY TANNINS BEAUTY

Wine1 0 1 1 1

Wine2 0 0 0 1

Wine3 0 1 0 0

Wine4 1 0 0 0

TABLE 3.1. Example Non-Weighted Dataset for Jaccard’s Similarity

If we find the Jaccard’s Coefficient for Wine1 against Wine2, we get 1/3 since P=1, Q=2, and R=0.

The Jaccard’s Coefficient for Wine1 against Wine3 is also 1/3 since P=1, Q=2, and R=0. This

makes since as the size of the intersection between both comparisons is one attribute, and the size

of the union between both comparisons is three total attributes. Wine1 is thusly a third similar to

Wine2 and Wine3 as it shares only one out of three attributes between them. However, for our

research, these results are little misleading in that we feel the shared attribute of CHERRY between

Wine 1 and Wine3 is a much stronger bond than the shared attribute of BEAUTY between Wine1

and Wine3. While BEAUTY describes a wine nicely, different reviewers could use a variety of

nice words to describe the wines. Also, since our research in this section is dealing with all Top

100 wines, we would expect nothing less than many words with positive connotations. Therefore,

we like to try to compare wines against the characters which hopefully should not be as subjective.

Now we can walk through the same example, but with their weighted values as shown in the table

below.

 BLUEBERRY CHERRY CHEWY TANNINS BEAUTY

Wine1 0 3 2 1

Wine2 0 0 0 1

Wine3 0 3 0 0

TABLE 3.2. Example Weighted Dataset for Jaccard’s Similarity

For the weighted attributes, we slightly change the definition of P, Q, and R.

𝑃 = 𝑆𝑢𝑚 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛 𝑏𝑜𝑡ℎ 𝑠𝑒𝑡𝑠

𝑄 = 𝑆𝑢𝑚 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛 𝑄, 𝑏𝑢𝑡 𝑛𝑜𝑡 𝑅

𝑅 = 𝑆𝑢𝑚 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛 𝑅, 𝑏𝑢𝑡 𝑛𝑜𝑡 𝑄

EQUATION 3.4. Jaccard’s Weighted with Distinct Measurements

29

Using the new definition, we can make the same comparisons again to see how they might change.

Calculating Wine1 against Wine2 gets us a new coefficient of 1/6 since P=1, Q=5, and R=0.

Compared to the unweighted coefficient of 1/3, this makes a lot more sense as Wine1 contains two

important attributes that Wine2 does not have. Also, the only shared attribute is a least important

attribute. Calculating Wine1 against Wine3 gets us a new coefficient of 1/2 since P=3, Q=3, and

R=0. Compared to the unweighted coefficient of 1/3, this also makes sense as while Wine1 and

Wine3 only share a single attribute, it is a highly weighted one. The strongly-weight attribute is

enough to lean the comparison from 33% to 50%. We believe that by using the weighted Jaccard’s

measurement, our clustering results will allow us to gain more accurate clusters.

3.5: Cluster Linkage

Clustering quickly presents a problem though in that clusters quickly encapsulate more

than a single point, which begs the question of how to compare objects where each represents

multiple observations. Multi-observation cluster comparison occurs via a pre-chosen linkage type.

FIGURE 3.3 shows the three most common linkage types.

Single Linkage

Complete Linkage

Average Linkage

FIGURE 3.3. Clustering Linkage Types

30

The first linkage type is called Single Linkage, which defines the distance between two clusters as

the minimum distance between a point in Cluster X and a point in Cluster Y. The name derives

from the observation that if only the minimum distance was found between points in two clusters,

then only a single link between the clusters would exist. All other point combinations would fall

outside the minimum distance. Single Linkage can be represented by the following formula.

𝛿(𝑋𝑖 , 𝑌𝑗) = min{𝛿(𝑥, 𝑦) | 𝑥 ∈ 𝑋𝑖 , 𝑦 ∈ 𝑌𝑗}

EQUATION 3.5. Single Link Clustering

The second linkage type is called Complete Linkage, which can be thought of as the opposite of

Single Linkage. Complete Linkage defines the distance between two clusters as the maximum

distance between a point in Cluster X and a point in Cluster Y. Should a linkage be made using

the maximum distance between two points, all other combinations of points would have distances

that fall under that value. That is, a complete linkage would be achieved by linking every point

combination. Complete Linkage can be represented by the following formula.

𝛿(𝑋𝑖 , 𝑌𝑗) = max{𝛿(𝑥, 𝑦) | 𝑥 ∈ 𝑋𝑖 , 𝑦 ∈ 𝑌𝑗}

EQUATION 3.6. Complete Link Clustering

The final linkage type presented here is the Average Linkage type. It is represented by the average

distance between all possible point combinations between two clusters. Average Linkage can be

represented by the following formula.

𝛿(𝑋𝑖 , 𝑌𝑗) =
∑ ∑ 𝛿(𝑥, 𝑦)𝑦∈𝑌𝑗𝑥∈𝑋𝑖

|𝑋𝑖| ∙ |𝑌𝑗|

EQUATION 3.7. Average Link Clustering

Another option that is useful is to take a centroid approach to new clusters. When a new cluster is

formed, the average attribute values for all observations can be found which converts a multi-

observation cluster into a theoretical single point entity. With only a single, averaged location,

there is no need for a linkage type as all clusters one be a one-to-one point comparison. However,

31

with this approach, the location of a cluster can shift as more and more points are clustered.

Observations that might be considered noise can have more of a dramatic affect when clustered.

Sometimes it might be important to test with all linkage types and examine the results

independently.

3.6: Agglomerative Hierarchical Clustering Example

To make sure the reader has an appropriate understanding of the previous sections, we will

introduce an example dataset that we will perform agglomerative hierarchical clustering on. This

section will show step by step on how to start with many clusters and bring them down to one. This

example will also use non-weighted values. An initial dataset is shown below with its starting,

empty dendrogram

 cherry blueberry Plum spice

wine1 1 0 1 0

wine2 0 0 1 1

wine3 1 0 1 0
wine4 0 0 1 1

wine5 1 1 1 0

FIGURE 3.4.1. Example Hierarchical Clustering – Initial Dataset

We have 5 example wines with 4 example attributes. The values of 1 indicate that the wine contains

the given attribute. The first thing that needs to be done is to form the initial distance matrix, which

is just the pairwise distance between all wines. For this example, we used standard Jaccard’s

Distance since the only possible values are 0 or 1. The initial distance matrix is shown in FIGURE

3.4.2.

32

 W1 W2 W3 W4 W5

W1 0 0.67 0 0.67 0.33

W2 0 0.67 0 0.75

W3 0 0.67 0.33

W4 0 0.75

W5 0

Current Clusters

Wine2

Wine4
Wine5

(wine1,wine3):0

FIGURE 3.4.2. Example Hierarchical Clustering – Step 1

In this example, we see there are actually two different pairs of wines that have the smallest

distance: [wine1,wine3] and [wine2,wine4]. In this scenario, we can just pick one arbitrarily. We

will turn wine1 and wine3 into the cluster (wine1,wine3) and append its distance to the cluster.

Next we will reform the distance matrix by removing the rows for wine1 and wine3, and then

adding a new row to represent the total cluster. For future runs, there will be an increasing chance

that comparing clusters contain more than a single observation, so for those cases, this example

will be using the single linkage clustering method. Below are the remaining clustering steps.

 W2 W4 W5 (W1,W3)

W2 0 0 0.75 0.67

W4 0 0.75 0.67

W5 0 0.33

(W1,W3) 0

Current Clusters

Wine5

(wine1,wine3):0
(wine2,wine4):0

FIGURE 3.4.3. Example Hierarchical Clustering – Step 2

In the FIGURE 3.4.3, we find that wine2 and wine4 have the smallest distance so we form another

cluster. At this point we only have 3 total clusters remaining.

33

 W5 (W1,W3) (W2,W4)

W5 0 0.33 0.75

(W1,W3) 0 0.67

(W2,W4) 0

Current Clusters
(wine2,wine4):0

(wine5,(wine1,wine3):0):0.33

FIGURE 3.4.4. Example Hierarchical Clustering – Step 3

In the FIGURE 3.4.4, we see that wine5 and the cluster (wine1,wine3) have the smallest distance.

We cluster both together to form (wine,(wine1,wine3):0):0.33.

 (W2,W4) (W5,(W1,W3))

(W2,W4) 0 0.67

(W5,(W1,W3)) 0

Current Cluster

((wine2,wine4):0,(wine5,(wine1,wine3):0):0.33):0.67

FIGURE 3.4.5. Example Hierarchical Clustering – Step 4

In the FIGURE 3.4.5, we see that there are only two clusters left, so there is really not a need to

find the distance, but for clarity we show the value. The final newick string is presented here,

which is just a textual representation of the dendrogram shown on the right. We can see that by

applying a horizontal cut point around the 0.34 distance mark, we can split the dendrogram into

two major clusters: (wine5,(wine1,wine3)) and (wine2,wine4).

3.7: Hierarchical Clustering on 100 Wines

We took the dataset presented in Chapter 2.3, which consists of the Top 100 wines for 2011

according to Wine Spectator. The attributes pulled manually from these wines helped form the

initial computational wine wheel, and we wanted to see if just these 100 wines were enough to

34

allow accurate clustering. For the 100 wines in this experiment, we have 376 total unique attributes.

We applied agglomerative hierarchical clustering on the dataset, using weighted Jaccard’s Distance

as a measurement of dissimilarity as well as single linkage when needing to cluster multi-

observation clusters. To initially observe our output, we chose to use the Hierarchical Clustering

Explorer (HCE) tool [28]. This tool allowed us to insert our initial distance matrix since Jaccard’s

Distance was not offered natively. Once the data was processed we are given a movable, horizontal

cut point in which to decide which clusters to view on screen. FIGURE 3.5 and 3.6 below show

the complete final dendrogram as well as a subset we might consider important [38].

FIGURE 3.5. HCE Results (Full) of 100 Wines of 2011

35

FIGURE 3.6. HCE Results (Subset) of 100 Wines of 2011

The similarity measure in both figures are slightly misleading though and we want the readers to

be aware that HCE shows similarity relative to the two closest points in the dataset. Wine13 and

Wine14 from the left (Bodegas Resalte and Castello di Monsanto) are the two closets initial wines

to be clustered. Since the cut bar only goes from 0% (top) to 100% (bottom) similarity, it might be

inferred that two distance between those two wines is 0 and that there similarity is 100%. In reality,

their Jaccard’s distance is 0.447368. That means if the tree is examined from the bottom to the top,

then every cluster’s similarity is 100% to 0% relative to the initial minimum Jaccard’s distance of

0.447368.

FIGURE 3.6 allows us to see the clusters available when the cut point is moved to only

showing wines with at least 60% similarity compared to the closest two wines. Also, for this

example we also do not consider any wine left alone to be considered a valid cluster. This is merely

to test out the waters with the initial wine dataset, so we chose this point merely because it visually

offered a larger number of clusters containing at least two observations. Our goal is to try to prove

that the clusters are coherent, and to do that we can examine the shared attributes that make up each

of the eleven presented clusters.

36

Cluster # # of Wines Common Attributes found in >50% of a cluster’s wines

1 10 Plum(10), Mineral(7), Long Finish(7), Tennins_Medium(6)

2 2 Floral(2), Blackberry(2), Berry(2), Mineral(2), Firm(2)

3 6 Blackberry(6), Long_finish(5), Spice(4)

4 3 Spice(3), Raspberry(3), Tannins_medium(2), Black Cherry(2),

Mineral(2), Smooth(2). Harmony(2), Rich(), Long Finish(2)

5 2 Tannins_Medium(2), Acidity_High(2), Violet(2), Black Currant(2)

6 2 Ripe(2), Tannins_High(2), Mineral(2), Complex(2), Well-

Structured(2), Rasberry(2)

7 2 Toasty Wood(2), Spice(2), Black Licorice(2), FullBodied(2),

Pure(2), Finesse(2), Mineral(2)

8 2 Pepper(2), Spice(2), Complex(2), Full-Bodied(2), Sage(2)

9 2 Dense(2), Herbs(2), Mineral(2), Red(2), Smoke(2)

10 2 Spice(2), Fig(2), Finesse(2), Rich(2), Delicacy(2), Melon(2),

Layers(2)

11 2 Peach(2), Mineral(2), Mango(2), Tangerine(2), Smooth(2)

TABLE 3.3. Cluster Attributes for Subset Cluster

TABLE 3.3 shows all 11 clusters in this subsection, as well as the total number of wines and the

most common attributes for each cluster. There are various ways to actually use these results and

to confirm they make sense. One good thing for this kind of result is that it is good for consumers

looking for specific features that they most enjoy. For example, if “Plum”, “Mineral”, and “Long

Finish” are the search criteria, then Cluster #1 could be offered as a selection. Another curious

observation is that although the wines in a given structure generally share similar attributes, they

can actually have wide price ranges. Cluster #1 actually ranges in price from $30 (Januik Cabernet

Sauvignon Columbia Valley 2008 and Tablas Creek Cotes de Tablas Paso Robles 2009) to $125

(Domaine Serene Pinot Noir Dundee Hills Grace Vineyard 2008). If a consumer cannot afford a

higher priced wine, then notable substitutions can be made that offer a similar palette.

Other than the sensory attributes and price, we can also look into the geographical attributes

of the clusters. We might assume that wines with the same region or varietal to have similar

properties, and we can actually see that in these results. For all 11 clusters in this subsection, every

cluster is either all red wines or all white wines. Also, many of these clusters share similar country

and region information as well. For example, Cluster #2,6,7,8,10 are all from California. Cluster

#5 contains only Italian wines. Also, Cluster #9 are specifically from Castilla y Leon, Spain.

37

Lastly, there are clusters that also seem to have captured the same varietal. For instance, Cluster

#10 are all Chardonnay wines and Cluster #11 are all Sauvignon Blanc wines [38].

We are confident in these results and decided to explore more on examining individual

clusters by their wine type, varietal, and geographic origin on a larger array of wines. We will

discuss these results in the next section.

3.8: Hierarchical Clustering on 999 Wines

In the previous section, we tested a wine dataset built only on 100 wines. We used a third-

party application to view our clustering results to see if they made sense and we believe we were

able to find meaningful clusters. However, we did not believe that 100 wines was enough to

conclusively build our computational wine wheel, so we decided to vastly increase our sample size

from 1 year of Top 100 wines to 10 additional years of Top 100 wines. It should be noted though

that we were unable to retrieve one of the wine reviews, so we only ended up finding 999 additional

wines rather than the full 1000. For this section we built an agglomerative hierarchical clustering

application ourselves as we wanted the ability for automated custom clustering analysis. Using the

non-savory dataset presented in Chapter 2.4, we want to introduce a model of automated analysis

specifically designed for our wine dataset. Below are 3 formulas we have designed to give a score

to an individual cluster, give a score to an individual cut point, and to introduce the concept of a

quality cluster.

𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑆𝑐𝑜𝑟𝑒𝐶 = (∏ 𝑚𝑎𝑥𝑃𝑒𝑟𝑐𝑒𝑛𝑡(𝐴𝑖)

𝑀

𝑖 = 1

) 𝑊𝐶

C = Cluster
M = Number of Non-Savory Attributes

A = Set of Non-Savory Attribute

WC = Total number of wines in Cluster

EQUATION 3.8. Cluster Score for a Wine Cluster

𝐶𝑢𝑡𝑃𝑜𝑖𝑛𝑡𝑆𝑐𝑜𝑟𝑒𝐶𝑃 = ∑ 𝐶𝑖

𝑁

𝑖=1

CP = Cut Point
N = Total Number of Clusters in Cut Point

C = Set of Clusters’ Scores

EQUATION 3.9. Cut Point Score for a Wine Dendrogram

38

𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒𝐶 =
(∑ 𝑚𝑎𝑥𝑃𝑒𝑟𝑐𝑒𝑛𝑡(𝐴𝑖)𝑀

𝑖=1)

𝑀

C = Cluster

M = Number of Non-Savory Attributes
A = Set of Non-Savory Attribute

EQUATION 3.10. Quality Score for a Wine Cluster

The first component is the Cluster Score, which attempts to define a cluster primarily on the most

common value in each non-savory attribute. We find the product of the percent distribution for

each of those most-common values. We then multiply that result by the total number of wines in

the cluster and the result will be the score corresponding to that cluster. We can walk through an

example given by the two tables below to show just how the score is derived.

TABLE 3.4. Non-Savory Cluster Example 1

TABLE 3.5. Non-Savory Cluster Example 2

In both tables, the final row represents the percent distribution of the most common value in that

column. In TABLE 3.4, we can derive a cluster score by finding the product of those percentages

as well as multiplying that result against the four wines present. We would get a cluster score of

(1.0 * 0.75 * 0.75 * 0.75) * 4 = 1.6875. Using the same method on TABLE 3.5, we would get a

cluster score of (1.0 * 0.5 * 1.0 * 1.0) * 2 = 1. There are two different entities adding weight to

this score: the consistency of attribute values and the number of wines. In our example, even

though TABLE 3.5 is off by a single value in a single attribute, TABLE 3.4’s score is higher

because it contains additional identical wines that pushes its weight higher. However, if TABLE

39

3.5’s wines were identical, it would have produced a score of 2, which would have been better as

TABLE 3.4’s fourth wine introduced enough diversity to keep it score lower.

Now that we have introduced a scoring system for individual clusters we want to be able

to score a cut point, which is the main way a user might analyze a dendrogram. Since we define a

cluster as having at least two wines, the Cut Point Score is simply the summation of all cluster

scores at that cut point for clusters with at least two wines.

Lastly we want to introduce a final analysis mechanism in the form of a Quality Cluster

Score, which is a user-specified threshold designed to define what a good cluster is. The quality

score can be thought of as a percentage between 0% and 100%, and is derived by taking the sum

of the max attribute percentages for a cluster and dividing that number by the total number of non-

savory attributes. Looking back at TABLE 3.5, we get a quality score of (1.0 + 0.5 + 1.0 + 1.0) /

4 = 0.875, or 87.5%. This means that a user can set a threshold of 75% for good clusters, so the

cluster in TABLE 3.5 would pass. The quality score does not have to be used, but it gives

alternative measuring capabilities.

We then performed the hierarchical clustering on the 999 savory dataset discussed in

Chapter 2.4. Since showing and manually analyzing a dendrogram of 999 observations is difficult,

we wanted our system to automatically try and apply the Cut Point Scores and Quality Scores

described above. FIGURE 3.7 and FIGURE 3.8 are graphical representations of the entire

dendrogram across all used Jaccard’s Coefficient percentages. It might be worth noting that the

actual algorithm uses Jaccard’s Distance to cluster, but the results are showing the Coefficient,

which represents the similarity rather than the dissimilarity.

40

FIGURE 3.7. Scores across Entire Dendrogram of 999 Wines

FIGURE 3.8. Scores across Entire Dendrogram of 999 Wines (without Wine Amounts)

41

Both figures are the same dataset, but FIGURE 3.7 adds in the total number of wines at the cut

point to show how much of the data is being clustered at any given time. FIGURE 3.8 was created

to exclude this number so better visual quality can be given to the more important scores. The x-

axis in both figures represents all possible ranges of similarity percentages between 100% and 0%.

As the graph indicates, the closest two wines were about 56.52% similar, and as the similarity

percentage decreases, we chart the number of clusters, the similarity cut-point score, and the

number of quality clusters at that cutpoint. For the quality score, it should be noted that we applied

a quality threshold of 70% for these results. While it may seem to be the case, it should be noted

that the cut point with the highest number of clusters does not always reflect the cut point with the

highest number of total clusters. Generally, with our data set though, there does seem to be a major

correlation between increased cut point score and increasing number of clusters. This is not always

the case though as we will examine the cut point with the highest cut point score, and it actually

does not contain the most clusters, but just barely. We hope that this occurrence highlights the

possibility that quality clusters can sometimes outweigh quantity of clusters, which is what users

should be after. The cut point with the best score was valued at 112.063 and was cut at 35.92% of

the dendrogram. This means that any of the 72 clusters here will be at least that amount or higher

in similarity. This cut point contains just about 300 out of the 999 possible wines. Since hierarchical

clustering analysis can be highly subjective, we hope to show that the clusters present at this cut

point not only show a high similarity in sensory attributes from the wine wheel, but high similarity

in non-sensory attributes as well. This can show high correlation between clustering on sensory

evaluations how that alone has the capability of grouping wines are type, varietal (grape type),

country of origin, and world type. In FIGURE 3.9, we examine the output of a cluster at this cut

point.

42

Cluster #66 (Similarity = 36.1702)

1) BOOKER SYRAH PASO ROBLES FRACTURE 2010

2) DIERBERG PINOT NOIR SANTA MARIA VALLEY 2005
3) KOSTA BROWNE PINOT NOIR RUSSIAN RIVER VALLEY 2004

4) LORING PINOT NOIR STA. RITA HILLS CLOS PEPE VINEYARD 2005

TYPE RED => 100% Sensory Attributes #Wines

 Earthy 4

VARIETAL PINOT NOIR => 75% Rich 4

 SYRAH => 25% Berry 4
 Blackberry 3

COUNTRY USA => 100% Raspberry 3

 Loam 3
WORLD NEW => 100%

FIGURE 3.9. Example Red Wine Cluster from Best Cut Point

The cluster contains four wines, which are all new-world, red wines made in the United States. The

only subtle difference is one of the wines was made with Syrah grapes versus the majority Pinot

Noir. Out of a max cluster score of 4, we find that this cluster receives a score of (1.0 * .75 * 1.0

* 1.0) * 4 = 3.0. This might seem like a large deviation from the highest possible score, but that is

only because the cluster contains a smaller number of total wines. For such a small cluster though,

the score is nice, but we like it mostly because of its quality score, which is much closer to the max.

This cluster receives a quality score of (1.0 + 0.75 + 1.0 + 1.0) / 4 = 0.9375, or 93.75%. While

these scores are only representative of the non-savory attributes, we have outlined the majority

savory attributes that the wines were actually clustered on to give an idea of what the cluster’s

sensory attributes contain. We see that these four wines are centered on rich earthy and berry

flavors. Reviewers seemed to have specifically pulled out blackberry and raspberry notes, as well

as loam, which indicates overall pleasant earthy flavors. This cluster is an excellent example of a

quality cluster, but we can actually find better. FIGURE 3.10 describes a perfect cluster, at least

when referencing the non-savory scores.

43

Cluster #11 (Similarity = 36.3636)

1) AUBERT CHARDONNAY SONOMA COAST RITCHIE VINEYARD 2008

2) BYRON CHARDONNAY SANTA MARIA VALLEY 2005
3) STAGLIN CHARDONNAY RUTHERFORD 2002

4) LEWIS CHARDONAY RUSSIAN RIVER VALLEY 2007

5) SBRAGIA FAMILY CHARDONNAY NAPA VALLEY GAMBLE RANCH
VINEYARD 2004

 Sensory Attributes #Wines

 Citrus 5

TYPE WHITE => 100% Pear 4

 Smoke 4

VARIETAL CHARDONNAY => 100% Toasty Wood 4
 Rich 4

COUNTRY USA => 100% Complex 3

 Concentrated 3

WORLD NEW => 100% Layer 3
 Fig 3

 Dimension 3

FIGURE 3.10. Example White Wine Cluster from Best Cut Point

All five wines in this cluster are new-world Chardonnays from the United States. Since the max

percentage for all non-savory attributes is 100%, then the cluster receives a cluster score of 5 and

a quality score of 100%. While this cluster does not contain a differing varietal, this type of cluster

allows us to further examine the savory attributes present between the wines. From this example,

we are able to make some assumptions that CITRUS, PEAR, SMOKE, TOASTY WOOD are

probably more likely to only belong to white wines, and in this case specifically, the Chardonnay

varietal. RICH was also described in 80% of the wines in this cluster, but it is good to remember

this is lower-weighted attribute. However, even lower weighted savory attributes can have some

good cluster descriptive capabilities. In this cluster, we see that a majority of these wines were

described as COMPLEX, with LAYER[S] and DIMENSION[S]. A wine consumer might be more

interested in a wine from this cluster should he want a chardonnay that has multitudes of

overlapping flavors and body style while tasting.

We have shown that based on our computational wine wheel, hierarchical clustering of the

dataset results in viable clusters that can have quality groupings in both savory and non-savory

attributes. It is good to remember that our dataset has a very large number of dimensions, so the

44

average number of attributes per wine is small. This means that a majority of the clusters are going

to be small, but most likely very similar, such as in FIGURE 3.9 and FIGURE 3.10. Our abilities

to find these clusters shows promise, and that the computational wine wheel and review parsing

techniques should be refined and continued.

45

CHAPTER 4: BICLUSTERING

 The classical clustering algorithms, such as hierarchical clustering and k-means clustering,

are usually very good places to start when attempting to explore data. However, they are flawed in

a sense as both algorithms are attempting to detect patterns in observations across all given

attributes of a dataset. Sometimes it might be more important to find patterns that consist of a

subset of attributes, as is primarily the case with locating patterns within gene expression data. For

biological gene data, a subspace clustering mechanism was needed, and while the algorithm idea

was created in the 1970s, it was not popularized until 2000 when Cheng and Church proposed a

variance-based biclustering method and successfully applied it to the field [29]. Their paper is still

considered one of the most influential aspects to field of gene expression clustering.

The overall idea of biclustering is fairly straight forward. Given an m x n matrix, a

biclustering algorithm tries to find subsections of rows that have similar behavioral patterns over a

subsection of columns. A bicluster is equivalent to a biclique in a corresponding bipartite graph.

This essentially means that all of a bicluster’s rows, or observations, are all connected to every

column, or attribute, presented in the bicluster. For this statement to be true, then a bicluster is

generally thought of as having constant values throughout the cluster, constant values across either

all rows or all columns, or coherent values of some kind [30]. Generally speaking, coherent values

refer to a pattern where values in the bicluster could be anything from additive, multiplicative, or

have some other kind of special mathematical relationship.

For our computational wine wheel, the idea of a bicluster should be explored as it presents

the opportunity to find subspaces in our data where subsections of columns define a cluster instead

of all attributes contained from that cluster’s wines. We introduced the idea of strongly and weakly

influential attributes with our weight system. However, perhaps biclustering can transcend the need

for important attributes, and simply identify the true patterns between wines. This is because we

do not take distance between wines into effect, so we have no need for the weighted attributes. The

following sections in this chapter will introduce the BiMax algorithm, show a running example,

46

and finally will discuss the algorithm’s effect on wine data generated using our computational wine

wheel as presented in Chapter 2.5.

4.1: BiMax BiClustering

The BiMax BiClustering algorithm was a reference method developed by Prelic et al. for

baseline comparison of biclustering algorithms in general [31]. The process is fairly simple in that

it searches for biclusters that consist entirely of 1s in a binary matrix. This is perfect for datasets

generated with the computational wine wheel in mind because a wine fits the binary requisite; a

wine either has an attribute or it does not. With this in mind, our goal is to use the BiMax algorithm

to find all inclusion-maximal biclusters of wines and attributes. This means a bicluster cannot be

fully contained within another bicluster. We hope to show that resulting clusters show accurate

perceptions of grouped wines and attributes that make sense. This section will introduce the

methodology behind the BiMax algorithm.

To introduce mathematically what a bicluster is, we can look at its definition. In terms of

our computational wine wheel, a bicluster (𝑊, 𝐴) corresponds to a subset of wines 𝑊 ⊆ {1, … , 𝑛}

that jointly share a subset of attributes 𝐴 ⊆ {1, … , 𝑚}. The pair (𝑊, 𝐴) ∈ 2{1,…,𝑛} 𝑥 2{1,…,𝑚} is

considered inclusion maximal if and only if:

(1) ∀ 𝑖 ∈ 𝑊, 𝑗 ∈ 𝐴 ∶ 𝑒𝑖𝑗 = 1

(2) ∄ (𝑊′, 𝐴′) with (a) meets criteria (1) and (b) 𝑊 ⊆ 𝑊′ ∧ 𝐴 ⊆ 𝐴′ ∧ (𝑊′, 𝐴′) ≠ (𝑊, 𝐴)

EQUATION 4.1. BiMax BiCluster Definition

Criteria (1) states that given a possible bicluster, every possible value must be a 1. Criteria (2) is

the inclusion-maximal stipulation that says a bicluster (W,A) is considered inclusion-maximal as

long as there does not exist another bicluster (W’,A’) in which both the wines and attributes of

(W,A) are true subsets of (W’,A’). Also, there is no sense of duplication so (W,A) and (W’,A’)

cannot be fully equal as well. It is worth noting that the basis of being a subset is determined by

testing the wines and attributes independently of each other, as if the wines in W are not considered

a subset of the wines in W’, then there’s no need to compare the attributes between the clusters.

47

Since we have defined what a bicluster is, we can dive into the actual processing of an

input data matrix. The BiMax algorithm is a divide and conquer approach that recursively divides

an input matrix into what can be considered three different matrices, one of which contains only

values of 0 and can be thrown out. The remaining two possibly-overlapping matrices are then each

recursively processed until a bicluster is found. The figure below shows how the initial data is

reorganized to find the sub-matrices U and V, represented by the blue and gold rectangles,

respectively.

FIGURE 4.1. BiMax BiClustering Generic Step Before and After

In FIGURE 4.1, the left matrix represents a sample input matrix with eight rows and nine columns.

The right matrix represents the end result of this initial conquer step. Since we can tell right away

that the entire matrix is not entirely filled with 1 values, our first step is to find a row that has both

1s and 0s. Row R1 works perfectly for this so this will be our chosen row. The first step is to then

shift the columns of the matrix around so that all 1-valued columns for row R1 are shifted all the

way to the left. For this example, only column A6 needs to be moved to right after column A3.

Once this shift is finished, we can think of the matrix as now having two vertical sections called

Cu and Cv as depicted in FIGURE 4.1. Column section Cu represents all columns with values of

1 as shared by our chosen row. Column section Cv conversely represents all columns not attributed

to our chosen row. With the columns correctly arranged, we now want to rearrange the matrix so

that the rows are separated into three succinct row sections: Ru, Rw, and Rv. Row section Ru

contains all rows where only columns in Cu contain a value of 1. In our example, that subsection

48

of rows are R1, R6, and R7. Row section Rw contains all rows where there are columns in both Cu

and Cv with a value of 1. These rows include R4 and R5. Row section Rv is then all rows where

only columns in Cv contain a value of 1. These rows include R8, R2, and R3. Once we know row

and column order to fulfill these tasks, we can form our newly arranged matrix and divide it into

two sub-matrices. The blue outline in FIGURE 4.1 corresponds to sub-matrix 𝑈 = (𝑅𝑢 ∪ 𝑅𝑤, 𝐶𝑢),

and the gold outline corresponds to the sub-matrix 𝑉 = (𝑅𝑤 ∪ 𝑅𝑣, 𝐶𝑢 ∪ 𝐶𝑣). Should an area exist

constrained by (Ru,Cv), then it will be filled with only 0 values and will subsequently be ignored.

Matrices U and V are then recursively called and the above process is repeated until matrices are

found where all values are 1. At that point, assuming the resulting matrix is inclusion-maximal,

we consider it a maximal bicluster for the input data matrix.

 There is one small caveat about making sure a bicluster is inclusion-maximal. Should the

sub-matrices U and V contain any shared rows (Rw), it is possible that when a bicluster is found it

may actually not be maximal. To make sure it is, each time the sub-matrix V is processed, we can

pass along a “callstack” of columns that need to be checked at each level of the recursive calls. For

each recursive function of V, we add a row to the callstack containing all columns in Cv at that

current level. This callstack can keep growing depending on how many levels it takes to find a

possible bicluster. Once a bicluster is found, it can be considered inclusion maximal if at least one

column in the bicluster exists on each level of the callstack for the current recursive chain. This

will guarantee that any bicluster found somewhere in V does not already exist as a superset in U.

The next section will detail the processing and the callstack in more detail.

4.2: BiMax BiClustering Example

Before we dive into analyzing our wine data, we will run through a quick example using

the same example data set used in Chapter 3.6 for Hierarchical Clustering. For the BiClustering

example, we will define some perquisites that a bicluster must have at least two rows and at least

two columns or we will reject it. The dataset in FIGURE 4.2.1 shows our initial matrix, which is

composed of 5 rows (wine1, wine2, wine3, wine4, wine5) and 4 columns (cherry, blueberry, plum,

49

spice). For our running example, we will abbreviate the rows to (W1,W2,W3,W4,W5) and the

columns to (C,B,P,S).

 cherry blueberry plum spice

wine1 1 0 1 0

wine2 0 0 1 1

wine3 1 0 1 0

wine4 0 0 1 1

wine5 1 1 1 0

FIGURE 4.2.1. BiClustering Example – Initial Data

For the first iteration of operations in this example we will show the resulting table for each step.

Subsequent illustrations will only show the beginning data and the ending result for each step.

FIGURE 4.2.2 shows the initial data and the column and row operations we perform on it.

 C B P S

W1 1 0 1 0

W2 0 0 1 1

W3 1 0 1 0

W4 0 0 1 1

W5 1 1 1 0

INITIAL DATA SET

 C P B S

W1 1 1 0 0

W2 0 1 0 1

W3 1 1 0 0

W4 0 1 0 1

W5 1 1 1 0

COLUMN OPERATIONS

 C P B S

W1 1 1 0 0

W3 1 1 0 0

W2 0 1 0 1

W4 0 1 0 1

W5 1 1 1 0

ROW OPERATIONS

 C P B S

W1 1 1 0 0

W3 1 1 0 0

W2 0 1 0 1

W4 0 1 0 1

W5 1 1 1 0

FINAL MATRIX

FIGURE 4.2.2. BiClustering Example – Step 1

50

The first operation to perform on the matrix is to determine whether it is a potential bicluster or

not. That is, we determine if every value in the matrix is 1. This matrix contains mixed values, so

we need to transform it into a matrix that can be divided via the BiMax method. For this we need

to first find a row that contains both values of 1 and 0. In this example, we can choose the very

first row (W1). Once we have found our designated row, we need to perform the appropriate

column moves so that Row W1 contains all of its columns with values of 1 on the left. This matrix

is fairly simple so the only column operation is to move Column P directly after Column C. The

result should look like the matrix shown in the COLUMN OPERATIONS section of FIGURE

4.2.2. The next operations are to rearrange the rows so that they form the Ru, Rw, and Rv row

subsections. Note that we define Cu as being the set of columns that only Row W1 has 1-values in

and we define Cv as the set of columns that Row W1 does not have 1-values in. With this in mind,

we find Ru by shifting all rows to the top of the matrix that only have values of 1 in columns only

found in Cu. In our example, we move Row W3 directly after W1 as it is the only other row that

has 1-values in Cu. Next we need to find Rw by placing all rows that have 1-values in both Cu and

Cv after the Ru rows. We see that all the remaining rows (W2, W4, W5) all contain 1-values in

both Cu and Cv so there is nothing left to move since their current spot is fine. What should be left

at this point are all rows that only have 1-values in Cv, but our example contain no such rows. The

result of the row operations can be seen in the ROW OPERATIONS section of FIGURE 4.2.2. At

this point, we have concluded the column and row operations and now only need to divide the

matrix into two sub-matrices. As shown in the FINAL MATRIX section of FIGURE 4.2.2, the

first Sub-matrix U is shown by the yellow-highlighted rows and column. In this example, it is

composed of all five rows and the columns C and P. The second Sub-matrix V is shown by the

rows and columns with the blue background. This sub-matrix is composed of three rows

(W2,W4,W5) and all columns. We need to recursively apply the same column, row, and divide

operations on each of these sub-matrices until we are left with a matrix with all 1-values, which

will correspond to a potential bicluster. We will continue this example with the illustrations below.

51

In FIGURE 4.2.3 and FIGURE 4.2.4, the left column will represent the total recursive calling

command for the current chain. The middle column will show a before and after image of the

current matrix data. Lastly, the final column will show the callstack (Z) at that point.

Top -> U (left)

 C P

W1 1 1

W3 1 1

W2 0 1

W4 0 1

W5 1 1

 P C

W2 1 0

W4 1 0

W1 1 1

W3 1 1

W5 1 1

Z = [[C,P]]

Top -> U (left) -> U

(left)

 P

W2 1

W4 1

W1 1

W3 1

W5 1

Potential BiCluster

Found

Wines = 5

Attributes = 1
Does not meet

thresholds

Z = [[C,P]

[P]]

Top -> U (left) -> V
(right)

 P C

W1 1 1

W3 1 1

W5 1 1

Potential BiCluster
Found

Wines = 3

Attributes = 2
Valid BiCluster

Z = [[C,P]
[C]]

FIGURE 4.2.3. BiClustering Example – Step 2 (initial,left)

In FIGURE 4.2.3, we show the recursive results of processing the Sub-matrix U from the initial,

top level. We also introduce the first addition of columns to the callstack, which is designed to

check and throw out biclusters that are not maximal. For every recursive call on Sub-matrix U, we

also add of U’s columns as a list to the callstack. This is actually not necessary for U, but we want

to drive home the point of the callstack. For every recursive call on Sub-matrix V, we add only the

columns in the current matrix’s Cv as a list to the callstack. When a potential bicluster is found, it

must have at least one column present in every level of the callstack, or it is not considered maximal.

We will see an example of this later. For the processing of the Top Level -> Sub-matrix U, we see

that it gets divided into two possible biclusters. Both biclusters pass the callstack check by having

columns in all levels of their respective callstacks. However, only the Top->U->V sub-matrix

passes as the Top->U->U submatrix does not meet the minimum attribute threshold of 2. With

52

that, the entire top level U sub-matrix has been explored, so we will now the recursive function

returns up in order to now process the topmost V submatrix as shown below.

Top -> V (right) C P B S

W2 0 1 0 1

W4 0 1 0 1

W5 1 1 1 0

 P S C B

W2 1 1 0 0

W4 1 1 0 0

W5 1 0 1 1

Z =

[[B,S]]

Top -> V (right) -

> U (left)
 P S

W2 1 1

W4 1 1

W5 1 0

 P S

W5 1 0

W2 1 1

W4 1 1

Z =

[[B,S]
[P,S]]

Top -> V (right) -

> U (left) -> U

(left)

 P

W5 1

W2 1

W4 1

Potential BiCluster Found

Wines = 3

Attributes = 1
Does not meet thresholds, nor

callstack check

Z =

[[B,S]

[P,S]
[P]]

Top -> V (right) -
> U (left) -> V

(right)

 P S

W2 1 1

W4 1 1

Potential BiCluster Found
Wines = 2

Attributes = 2

Valid BiCluster

Z =
[[B,S]

[P,S]

[S]]

Top -> V (right) -

> V (right)
 P S C B

W5 1 0 1 1

 P C B S

W5 1 1 1 0

Z =

[[B,S]

[C,B]]

Top -> V (right) -

> V (right) -> U
(left)

 P C B

W5 1 1 1

Potential BiCluster Found

Wines = 1
Attributes = 3

Does not meet thresholds

Z =

[[B,S]
[C,B]

[P,C,B]]

FIGURE 4.2.4. BiClustering Example – Step 3 (initial,right)

In FIGURE 4.2.4, we show the processing of Sub-matrix V from the initial, top level. This sub-

matrix eventually finds three potential biclusters, but only the Top->V->U->V bicluster passes both

the callstack and the minimum thresholds. The Top->V->V->U bicsluter fails the minimum

threshold. It is the Top->V->U->U bicluster that is worth noting, as even though it does not meet

the minimum attribute threshold, it is special in that it also does not meet the callstack check. It

passes all levels of the callstack except for the very top level, which corresponds to the initial data

matrix. We can see in Top->V that the slice (W2,W4,W5)x(P) is actually a subset of the Top->U-

53

>U bicluster. Even though it would have failed threshold requirements anyway, it is important to

understand that we are able to detect non-maximal biclusters the moment they come up thanks to

the callstack. This example resulted in five possible biclusters being found, yet one failed the

callstack check, and only two of them actually met our threshold requirements. Taking a look at

FIGURE 4.2.5, we can look back on the original data and try to visual identify where these two

valid biclusters were.

 P C

W1 1 1

W3 1 1

W5 1 1

 cherry blueberry plum spice

wine1 1 0 1 0

wine2 0 0 1 1

wine3 1 0 1 0

wine4 0 0 1 1

wine5 1 1 1 0

 P S

W2 1 1

W4 1 1

FIGURE 4.2.5. BiClustering Example - Results

Although they did not meet the threshold requirements, the two biclusters that did not make it are

colored with red text. In case the colors are not available, those two rejected clusters are [(wine1,

wine2, wine3, wine4, wine4) x (plum)] and [(wine5) x (cherry, blueberry, plum)].

4.3: BiClustering 50 Wines

This section will describe our biclustering and analysis process of 1 of the 5 sets of 50

wines as described in Chapter 2.5. We chose to only look into one vintage as Chapter 5 will focus

on combining all five vintages together. For the 50 wines in the 2010 vintage, we implemented

and applied the BiMax biclustering algorithm exactly as presented in this chapter. The overall

bicluster summarization is described in FIGURE 4.3.

54

FIGURE 4.3. Summarization of Biclusters of 50 Wines (2010)

This figure represents the total number of maximal biclusters found for the 2010 50-wine dataset.

The table values represent the total number of biclusters that share a specific number of wines

(vertical axis) versus a specific number of savory attributes (horizontal axis). In the table, there are

darkened, rectangular borders that are meant to be a visual reference to show all biclusters where

the minimum number of rows equals the minimum number of columns. For example, in this

vintage there are no clusters that have at least five wines and at least five attributes. For a dataset

with 50 wines and 259 possible attributes, this may seem like a low combination, but it makes sense

as the number of total possible attributes in any given wine is fairly small. For this reason, we

assume that any biclusters with many wines and attributes must have a stronger correlation to each

other than biclusters where the total wines or total attributes are extremely lopsided, such as those

biclusters with greater than 10 wines, but only 1 shared attribute. To check the quality of our

55

biclusters, we have to manually inspect example biclusters as we currently have no automated

quality functions as we had developed for hierarchical clustering chapter.

We will first attempt to explore those biclusters that fall into the category of at least 4 wines

and 4 attributes. In total, there were 17 total biclusters that fell into this group, which represents

some of the most robust biclusters from this vintage, region, and varietal. We will examine a couple

biclusters as well as some common themes below.

BiCluster #5/17 (Min Wines = 4, Min Attributes = 4)
Cabernett Sauvignon – Napa Valley (2010)

Wine Producer – Designation (4) Shared Attributes (4)

CHAPPELLET SIGNATURE

BERINGER PRIVATE RESERVE
ARAUJO EISELE VINEYARD

CAVUS STAGS LEAP DISTRICT

BLACK LICORICE

RICH
DARK BERRY

DENSE

FIGURE 4.4. BiCluster from 50 Wines – Example 1 (Strong)

BiCluster #9/17 (Min Wines = 4, Min Attributes = 4)

Cabernett Sauvignon – Napa Valley (2010)

Wine Producer – Designation (5) Shared Attributes (4)

BEAULIEU VINEYARD GEORGES DE LATOUR PRIVATE
RESERVE

DIAMOND CREEK VOLCANIC HILL

DALLA VALLE MAYA
BARNETT SPRING MOUNTAIN DISTRICT RATTLESNAKE

HILL

DAVID ARTHUR ELEVATION 1147

GREAT
TANNINS_LOW

FINISH

FLAVORS

FIGURE 4.5. BiCluster from 50 Wines – Example 2 (Weak)

FIGURE 4.4 and FIGURE 4.5 show 2 of the 17 possible biclusters that we can examine from this

group. The bicluster in FIGURE 4.4 shows four wines along with the four attributes shared among

them. Bringing in the concept of weighted attributes from Chapter 2, we see important attributes,

such as BLACK LICORICE and DARK BERRY. These are distinctive flavors that a taster might

be accustomed to when sampling a Cabernet Sauvignon. This bicluster was also described as RICH

and DENSE as well. FIGURE 4.5 shows a slightly bigger bicluster as it contains five total wines

and four attributes. The biggest difference though is that this bicluster does not contain any

important attributes that we might have considered in the Hierarchical Clustering section. We built

56

in no concept of weight or distance into the biclustering, so all attributes are treated equally.

Looking at this bicluster, it may be of decent size on both ends, but the actual attribute selection is

fairly weak and generic, and probably would not help a consumer when searching for potential

wines. However, there are still advantages as the biclusters allow us to categorize wines with true

subsets of attributes. Unlike hierarchical clustering, which would present groups of wines using

all attributes among them, biclustering allows us to show many different, but smaller, groupings of

the same wines across varying attribute patterns. This would give potential for consumers to select

small flavor profiles and expect higher quality results since the biclusters might have filtered out

unneeded attributes. To reinforce this idea, we can explore common themes found among

biclusters. It makes sense that by biclustering only cabernet sauvignon wines from the Napa Valley

region that there should be significant overlap among attributes between wines. Additionally,

because of the sheer number of total attributes and by comparison, the low amount of attributes per

wine, it is reasonable to see a very large amount of resulting biclusters, many of which share a very

small subset of attributes. Among the 17 biclusters found in this group, 10 biclusters contain

EARTHY or LOAM attributes, and another 6 biclusters are focused around the DENSE attribute.

Should a flavor palette be used to search for (EARTHY or LOAM), then we could present the user

with a set of wine groups that might alter against the following specific attributes: CEDAR, DARK

BERRY, and BLACK LICORICE.

When examining biclusters for our wine dataset, we do not have to try to find clusters that

are maximal in terms of both number of wines and attributes. We can also look for interesting wine

and attribute combinations in those clusters that have either low number of wines and high number

of attributes, or those with high number of wines and low number of attributes. The former suggests

a smaller subset of wines stayed consistent across a majority of attributes across vintages, while the

later suggests a larger subset of wines that might share a small pool of distinctive attributes. The

figures below show examples from both types of biclusters found in group of biclusters that contain

at least three wines and at least three attributes. This group contained a total of 208 biclusters.

57

BiCluster #98/208 (Min Wines = 3, Min Attributes = 3)

Cabernet Sauvignon – Napa Valley (2010)

Wine Producer – Designation (3) Shared Attributes (6)

EHLERS ESTATE ST. HELENA 1886

BEAULIEU VINEYARD TAPESTRY RESERVE

BERINGER PRIVATE RESERVE

EARTHY

FLAVORS

LOAM
FINISH

DENSE

TRACTION

FIGURE 4.6. BiCluster from 50 Wines – Example 3 (Low Wines, High Attributes)

BiCluster #8/208 (Min Wines = 3, Min Attributes = 3)

Cabernet Sauvignon – Napa Valley (2010)

Wine Producer – Designation (7) Shared Attributes (3)

BURLY

CAKEBREAD

BOND PLURIBUS
ALPHA OMEGA

DIAMOND CREEK RED ROCK TERRACE

FORMAN
COLGIN IX ESTATE

CEDAR

LOAM

EARTHY

FIGURE 4.7. BiCluster from 50 Wines – Example 4 (High Wines, Low Attributes)

FIGURE 4.6 shows a bicluster with three wines and six attributes. While there are many attributes

shared between the three wines, the only important attributes are EARTHY and LOAM. However,

if a consumer is only interested in these two savory flavors, then this and other similar biclusters

allow the user to search via subjective descriptors. In this case, we present a set of DENSE wines

that keep TRACTION through a FLAVOR[ABLE] FINISH. Alternatively, FIGURE 4.7 shows a

bicluster with seven wines, but only three attributes. In this example, we continue the theme of

EARTHY and LOAM flavors, but explore adding in additional highly-weighted attributes, such as

CEDAR. If a consumer is only interested in these three savory attributes, then this bicluster offers

a wide array of wines to try without getting into individual wine descriptors.

The beauty of biclustering is that many of the biclusters share subsets of both wines and

attributes, but all are still maximal when taking the entire contents of the bicluster into account.

We have presented examples that show how limiting or expanding wine attributes can change the

biclusters that might come up in a potential attribute profile search. Depending on the search

58

criteria used, biclusters can either be generic with many wines, or specific with fewer wines.

However, this is one issue with biclustering a single vintage of wines in that we only see patterns

across a given year. Since wines are produced yearly, it would be nice to try to find these patterns

across many years, which should help identify consistent and dominant wine attributes in a region.

We try to solve this problem using a triclustering method as presented in the next chapter.

59

CHAPTER 5: TRICLUSTERING

Just as with biclustering, triclustering is becoming a popular method to explore gene

expression microarray data. At its core, triclustering can actually be thought of as an extension to

biclustering. Instead of working with two dimensional matrices, triclustering focuses on finding

behavioral patterns between row and columns along a time series. For gene microarray analysis,

the time series can be usually thought of as the same genes and sample attributes along different

experiments, with the results being genes that share expression profiles under different scenarios.

By adding the third dimension to the data, triclustering can be thought of as reinforcing the

biclusters that could have been found on a single time slice. Should biclusters exist beyond their

single time scope, their inferences hold greater weight. There has already been work done in the

gene expression field for triclustering as detailed by Zhao et al. [32] and Bhar et al [33]. Their

approaches assume that the data is a bit more complex than true binary choices like our wine data.

Also, Zhao at al. propose a weighted, directed range multigraph to find biclusters within a given

time slice. Then those biclusters are searched among each other to find the maximal versions of

each that share multiple time slices. We want to post our exploration into a technique that borrows

ideas from the BiMax algorithm in order to extend it into the three dimensional space. This chapter

will discuss our look into a novel TriMax TriClustering reference algorithm, which should act as

an extension to the BiMax BiClustering algorithm discussed in Chapter 4. To our knowledge, there

is no preexisting work that attempts to find triclusters using our method, nor is there a reference

algorithm for triclustering that emulates the role BiMax performs for biclustering.

5.1: TriMax TriClustering

Just as with BiMax BiClustering, Trimax Triclustering should be considered a reference

algorithm in that it attempts to cluster on the most basic level and makes no assumptions of differing

values in the data. That means it expects all values to either be zero or non-zero, so completely

binary in nature. For our specific dataset, we will assume all data values are either 1 or 0. We will

start with the definition, which should look very similar to the BiMax definition. We consider a

60

tricluster (𝑊, 𝐴, 𝑇) to correspond to a subset of wines 𝑊 ⊆ {1, … , 𝑛} that jointly share a subset of

wine attributes 𝐴 ⊆ {1, … , 𝑚} across a subset of time slices 𝑇 ⊆ {1, … , 𝑜}. The tuple (𝑊, 𝐴, 𝑇) ∈

 2{1,…,𝑛} 𝑥 2{1,…,𝑚}𝑥 2{1,…,𝑜} is considered inclusion maximal if and only if it meets the following

two criteria.

(1) ∀ 𝑖 ∈ 𝑊, 𝑗 ∈ 𝐴, 𝑘 ∈ 𝑇 ∶ 𝑒𝑖𝑗𝑘 = 1

(2) ∄ (𝑊′, 𝐴′, 𝑇′) with (a) meets criteria (1) and (b) 𝑊 ⊆ 𝑊′ ∧ 𝐴 ⊆ 𝐴′ ∧ 𝑇 ⊆ 𝑇′ ∧
(𝑊′, 𝐴′ , 𝑇′) ≠ (𝑊, 𝐴, 𝑇)

EQUATION 5.1 TriMax TriCluster Definition

Criteria (1) states that given a possible tricluster, every possible value must be a 1 across all rows,

columns, and time slices. Criteria (2) is the inclusion-maximal stipulation that says a tricluster A

is considered inclusion-maximal as long as there does not exist another tricluster B in which the

grouping of wines, attributes, and time slices of A are a subset of B. If a tricluster A is found, there

also cannot be a tricluster B, such that A = B. Now that we have defined a tricluster, we can

discussed the algorithm to find them. However, there should be two points noted before we discuss

the algorithm. (1) Our proposed algorithm uses the BiMax algorithm, so a good understanding of

the algorithm, as we discussed in Chapter 4, is necessary to proceed. (2) We believe our program

is able to find all triclusters, but unlike BiMax which knows at runtime whichs biclusters to ignore

thanks to its column callstack, TriMax has to filter out duplicate or subset triclusters after finding

all possible triclusters. We will examine an example dataset that shows how duplicates arise, but

first we will run through the algorithm itself. The pseudocode is presented in FIGURE 5.1.

61

TriMax TriClustering Reference Algorithm

 𝐼𝐷 = 𝐷 = {{𝑤𝑖}𝑖=1
𝑎 }𝑖=1

𝑡

 𝑇𝑟𝑖𝐿𝑖𝑠𝑡 = {∅}

 𝑻𝒓𝒊𝑴𝒂𝒙𝑻𝒓𝒊𝑪𝒍𝒖𝒔𝒕(𝐷, 𝑚𝑊𝐴𝑇, 𝑣𝑇):
1 𝒇𝒐𝒓 𝒂𝒏𝒚 𝑡 ∊ 𝐷𝑇 𝒘𝒉𝒆𝒓𝒆 𝑡 ∊ 𝑣𝑇 𝒂𝒏𝒅 𝒂𝒍𝒍 𝐷𝑊,𝐴,𝑡 = 1

2 𝒓𝒆𝒕𝒖𝒓𝒏

3 𝒇𝒐𝒓 𝑡 ∊ 𝐷 𝒅𝒐:

4 𝒊𝒇(𝑡 ∊ 𝑣𝑇 𝒐𝒓 (𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑖𝑛 𝑡 = 1 𝑜𝑟 0)):

5 𝒊𝒇(𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑖𝑛 𝑡 = 0):

6 𝑎𝑝𝑝𝑒𝑛𝑑(𝑣𝑇, 𝑡)

7 𝐜𝐨𝐧𝐭𝐢𝐧𝐮𝐞 to next time slice

8 𝐵 = 𝑩𝒊𝑴𝒂𝒙𝑩𝒊𝑪𝒍𝒖𝒔𝒕(𝑡, 𝑚𝑊𝐴𝑇)

9 𝒇𝒐𝒓 𝑏 ∊ 𝐵 𝒅𝒐:

10 𝑛𝑒𝑤𝐷′ = {𝑏}𝑡=1
𝐼𝐷𝑇

11 𝑻𝒓𝒊𝑴𝒂𝒙𝑻𝒓𝒊𝑪𝒍𝒖𝒔𝒕(𝐷′, 𝑚𝑊𝐴𝑇, 𝑣𝑇)

12 𝑎𝑝𝑝𝑒𝑛𝑑(𝑣𝑇, 𝑡)

13 𝒊𝒇(𝑙𝑒𝑛(𝐷𝑊, 𝐷𝐴 , 𝐷𝑇) ≥ {𝑚𝑊𝐴𝑇}):

14 𝑎𝑝𝑝𝑒𝑛𝑑(𝑇𝑟𝑖𝐿𝑖𝑠𝑡, 𝐷𝑊,𝐴,(𝐷𝑇−𝑣𝑇)): unless 𝐷𝑇 − 𝑣𝑇 = {∅}

15 𝒓𝒆𝒕𝒖𝒓𝒏

16

17 ∀ 𝑡 ∈ 𝑇𝑟𝑖𝐿𝑖𝑠𝑡: 𝑟𝑒𝑚𝑜𝑣𝑒 𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑠/𝑠𝑢𝑏𝑠𝑒𝑡𝑠

FIGURE 5.1. Proposed TriMax TriClustering Reference Algorithm Pseudocode

The pseudocode for our proposed TriMax TriClustering algorithm is shown in FIGURE 5.1. As a

base concept, we want to take biclusters found in each time slice and see if they can extend across

any and all other time slices. To accomplish this, we start with our dataset D and process each of

D’s t time slices iteratively. For a given bicluster b that is found in a given time slice t, we form a

new dataset D’, which consists of the rows and columns of b, along every time slices of the input

data. That new dataset is then recursively processed using the same methodology until the resulting

dataset D’ consists only of values of 1. Naively, we can consider a completely 1-valued dataset as

a tricluster if it passes the minimum row, column, and time slice amounts set in mWAT. Since our

process does not have any callstacks like the BiMax algorithm, TriMax will natively introduce

duplicate triclusters or triclusters that are subsets, or non-maximal. To combat part of this problem,

62

we introduce a visited array vT, which is populated with the index of a time slice once that time

slice’s recursive processing has finished. This allows any tricluster found to be ignored if it

includes a time slice within vT at any recursive level. If this occurs, ideally it means that the

tricluster has already been found previously. However, this only attempts to filter out triclusters

between given time slices. It does not work on duplicate or non-maximal subsets formed from

partially overlapping biclusters originating from the same time slice. FIGURE 5.2 shows an

example of duplication issues caused by overlapping biclusters in a given time slice T1.

FIGURE 5.2. Tricluster Found from Multiple Intra-Timeslice Biclusters

In FIGURE 5.2, we can say we would process time slice T1 first by expanding the three biclusters

found within it: {W1,W2,W3,W4}x{A1}, {W2,W3}x{A1,A2,A3}, and {W2,W3,W4}x{A1,A2}.

As shown by the blue squares, all three biclusters share the following subset of rows and columns:

{W2,W3}x{A1}. By expanding all three, the same tricluster, as presented on the right of FIGURE

5.2, will be found three times, and thusly will have to be filtered down to one instance afterwards.

Even with the slight timing inefficiency here in the post processing, we believe this method will

still find all maximal triclusters between all time slices given in a three dimensional data set. The

next section will detail the results when applying triclustering to our multi-vintage 50-wine dataset.

63

5.2: TriClustering 50 Wines across 5 Years

To test out the TriMax algorithm, we used the dataset presented in Chapter 2.5, except this

time we used the full 5 years’ worth of vintages. We applied the TriMax algorithm presented in

the previous section, and in total we found 23,225 possible triclusters. Since we knew a large

percentage of these would actually be duplicates or non-maximal, we performed the pairwise subset

comparison and pulled out a total of 7,296 superset triclusters. Of all the triclusters found, 6,357

of them only exist in a single time slice. These can actually be thought of biclusters in a three

dimensional space that only existed individually. We found 735 triclusters that spanned 2 time

slices. We found 166 triclusters that spanned 3 time slices, and 31 triclusters that spanned 4 time

slices. Lastly, we found 7 triclusters that spanned all 5 time slices. FIGURE 5.3.1 through

FIGURES 5.3.5 summarize the findings just as we did in FIGURE 4.3 for biclusters.

FIGURE 5.3.1. TriMax Results on 50 Wines in 1 Time Slice

64

FIGURE 5.3.2. TriMax Results on 50 Wines in 2 Time Slices

FIGURE 5.3.3. TriMax Results on 50 Wines in 3 Time Slices

65

FIGURE 5.3.4. TriMax Results on 50 Wines in 4 Time Slices

FIGURE 5.3.5. TriMax Results on 50 Wines in 5 Time Slices

We will now explore some of the triclusters that we found above. To show a tricluster that managed

to expand across all time slices, we can look at a tricluster in FIGURE 5.3.5 that has eight wines

and one attribute.

Tricluster #102
Cabernet Sauvignon – Napa Valley

Wine Producer – Designation (8) Shared Attributes (1) Vintages (5)

BARNETT SPRING MOUNTAIN DISTRICT

RATTLESNAKE HILL

BERINGER PRIVATE RESERVE
BOND MELBURY

BOND QUELLA

BOND ST. EDEN
BOND VECINA

DIAMOND CREEK GRAVELLY MEADOW

DIAMOND CREEK VOLCANIC HILL

GREAT 2010

2009

2008
2007

2006

FIGURE 5.4. TriCluster from 50 Wines – Example 1

While FIGURE 5.4 only has a single, least-weighted attribute, the triclustering aspect lets us know

that all eight of these wines are considered GREAT for five years in a row. We can also see that

66

four of the wines share the same producer, so it is probable that any other wine produced by BOND

would also probably be considered great. Apart from groups of many wines, we can also look out

how a single wine changes between vintages as seen in the figure below.

Tricluster #3456,3457,3458

Cabernet Sauvignon – Napa Valley

Wine Producer – Designation (1) Shared Attributes (4) Vintages (3)

CASA PIENA BLACKBERRY

CONCENTRATED

GREAT
TIGHT

FINISH (2007)

MINERAL (2007)
CURRANT (2006)

FOCUSED (2006)

TANNINS_HIGH (2006)

2008

2007

2006

FIGURE 5.5. Three TriClusters from 50 Wines – Example 2

FIGURE 5.5 shows us a single wine that has four attributes across three vintages. The distinctive

BLACKBERRY taste is found across all three years, as well as a TIGHT, CONCENTRATED, and

GREAT tasting. Using 2008 as a base year, we can add in 2007 and gain the FINISH and

MINERAL attributes. Alternatively, we can add in 2006 and gain FOCUSED and

TANNINS_HIGH. These three triclusters allow us to research a specific wine and see how the

attributes change over time. Anything can affect a given vintage from bad weather to slight changes

in harvesting and fermentation processing. Unless something major changes though, we can

probably use the entire range of possible attributes to forecast what this specific wine might entail

in the future. Lastly, we will show an example with at least two items in every category.

Tricluster #1155
Cabernet Sauvignon – Napa Valley

Wine Producer – Designation (2) Shared Attributes (2) Vintages (4)

CASA PIENA

DANCING HARES

BLACKBERRY

GREAT

2009

2008
2007

2006

FIGURE 5.6. Tricluster across 4 Years – Example 3

67

FIGURE 5.6 shows a tricluster that has two wines containing two attributes across four consecutive

vintages. The main purpose of this figure is just to provide an example of triclusters with many

vintages that are not limited to just one wine or wine attribute. While both wines and attributes are

still fairly small, this just further provides opportunity for specialized searching and classification.

 Since the dataset used for this chapter contained only a specific varietal from a specific

region, we were able to get highly defined cluster results. We believe that triclustering data from

a variety of types and sources should produce interesting results and it will be worth exploring

those datasets in the future. We would have tried for wines contained within our computational

wine wheel, but we could not be guaranteed to find reviews on a large set of wines for a specific

span of years, so we chose a narrow approach by choosing only one type of wine from a single

region.

68

CONCLUSION

This paper has introduced the data analysis area of Wine Informatics, which comprises of

the gathering and analysis of specialized data sets consisting of key attributes extracted from

professional wine tasting reviews. Within the Wine Informatics field itself, we have also

introduced the concept of a computational wine wheel, which corresponds to a specific set of wines

and the key attributes belonging to those wines. For our specific methods of analysis, we chose to

focus on the following three clustering methods: Single Linkage Agglomerative Hierarchical

Clustering, BiMax Biclustering, and a proposed TriMax Triclustering. Using all three of these

methods, we have extracted clusters of varying structures in an attempt to show that the data inside

the computational wine wheel can present highly correlated sets of wines and attributes that not

only make sense, but can possibly be used by consumers, wine enthusiasts, wine suppliers, and

specialized wine websites. For hierarchical clustering specifically, we introduce a set of cluster

quality metrics that can help automatically derive quality scores when using large sets of wines.

Instead of deriving the quality on the attributes used in the clustering, we used set of non-savory

attributes that do not affect the clustering process at all. We show that we are able to successfully

group types of wines by type, varietal, country, and world type based only on the review attributes

of the tasting. We also tackle a dataset of wines of the same varietal and region (Cabernet

Sauvignon and Napa Valley) in order to see how subspace biclustering resulted. We were able to

pull out cohesive clusters that highlight subsets of wine and attribute combinations. These clusters

show promise in allowing palette searching for similar wines. Lastly, we applied the same dataset

used in biclustering, except across multiple years, in a proposed triclustering method. We used this

show that biclusters found in a given vintage might actually extend across time, meaning we found

wines that stayed consistent across vintages. This could strengthen the chances that a future vintage

of a wine might share similar properties. We showed that it is indeed possible to cluster similar

wines using just the review tasting notes, and that it will be worth continuing to work with this data

in order to make it more useful for many aspects of the wine industry.

69

FUTURE WORKS

 This paper presents several major opportunities to expand on the work presented. The first

path involves expanding the computational wine wheel dictionary by looking into automated ways

of extracting new wine attributes from wine reviews. Also, further review of the dataset is

welcomed as this represents the effort of only a few individuals. Another avenue is taking our

dataset and using clustering algorithms that this paper did not explore. Given the nature of the

dataset, we feel that hierarchical clustering, biclustering, and triclustering were great entry points,

but a wider range of application would help to further reinforce the data. Lastly, we introduced a

new reference subspace clustering algorithm called TriMax TriClustering. We believe the direction

the algorithm takes in one that can result in a complete list of maximal triclusters, just as BiMax

does for maximal biclusters. However, the algorithm still results in some duplicated or non-

maximal triclusters that require post-processing to filter out. While the tricluster results are still

valid, the algorithm methodology will need further review in order to ensure efficient and accurate

results after the first pass of the data. We would like to see TriMax truly be the successor to BiMax

in all aspects.

70

REFERENCES

[1] Kaku, Michio. Physics of the Future: How Science Will Shape Human Density and Our

Daily Lives by the Year 2100. Doubleday, 2011. Print.

[2] Gantz, John. Reinsel, David. “THE DIGITAL UNIVERSE IN 2020: Big Data, Bigger

Digital Shadows, and Biggest Growth in the Far East”, IDC. December 2012. Available from

EMC, accessed on 21 January 2014. <http://www.emc.com/collateral/analyst-reports/idc-the-

digital-universe-in-2020.pdf>.

[3] Conway, Drew. “The Data Science Venn Diagram.” September 30, 2010. Available from

Drew Conway, accessed on 21 January 2015. <http://drewconway.com/zia/2013/3/26/the-data-

science-venn-diagram>.

[4] Han, Jiawei, and Micheline Kamber. Data Mining: Concepts and Techniques. San Francisco:

Morgan Kaufmann. pp. 227-459, 2001.

[5] Rokach, Lior, and Oded Maimon. "Clustering methods." Data mining and knowledge

discovery handbook. Springer US. pp. 321-352, 2005.

[6] Govaert, Gerard. Nadif, Mohammed. Co-clustering: models, algorithms and applications.

London: Wily-ISTE. 2013.

[7] Ester, Martin. Kriegel, Hans-Peter. Sander, Jörg. Xu, Xiaowei. A density-based algorithm for

discovering clusters in large spatial databases with noise. Proceedings of the Second

International Conference on Knowledge Discovery and Data Mining (KDD-96). AAAI Press.

pp. 226–231. 1996.

[8] Quinlan, J. R. "Simplifying decision trees". International Journal of Man-Machine Studies.

Volume 27, Issue 3: pp 221-234. 1987.

[9] Kecman, Vojislav. Learning and Soft Computing - Support Vector Machines, Neural

Networks, Fuzzy Logic Systems. The MIT Press. Cambridge, MA, 2001.

[10] Agrawal, Rakesh. Srikant, Ramakrishnan. Fast algorithms for mining association rules in

large databases. Proceedings of the 20th International Conference on Very Large Data Bases,

VLDB, pp 487-499. Santiago, Chile, 1994.

[11] Johnson, H. Vintage: The Story of Wine. Simon & Schuster. pp. 11–6, 1989.

[12] Colby, Chris. “Why Grapes?” Beer and Wine Journal. 11 July, 2013. Web. 1 February,

2015. <http://beerandwinejournal.com/why-grapes/>.

[13] Goode, Jamie. "How Wine Is Made: An Illustrated Guide to the Winemaking

Process." Wineanorak. August, 2011. Web. 1 February, 2015.

<http://www.wineanorak.com/howwineismade.htm>.

http://rakesh.agrawal-family.com/papers/vldb94apriori.pdf
http://rakesh.agrawal-family.com/papers/vldb94apriori.pdf

71

[14] Robinson, J. The Oxford Companion to Wine. Third Edition. Oxford University Press. pp

273-274, 2006.

[15] MacNeil, K. The Wine Bible. Workman Publishing. pp 100-104, 2001.

[16] Brochet, Frédéric. Chemical Object Representation in the Field of Consciousness. 2001.

[17] Morrot, Gil. Brochet, Frédéric. Dubourdieu, Denis. The Color of Odors. Academic Press.

2001.

[18] Sherman, Michael (n.d.). K-means clustering of wine chemistry data: Creating and

evaluating a predictive model and an analysis of the data. Web. 29 March 2015. <

http://www.michaelwsherman.com/ projects/winecluster/report.pdf>.

[19] Parker, Robert. “The Wine Advocate Rating System”. Available from The Wine Advocate,

accessed on 29 March 2015. < https://www.erobertparker.com/info/legend.asp>.

[20] Wine Spectator. N.p., n.d. Web. 29 March 2015. <http://winespectator.com>.

[21] Shanken, Marvin R. Matthews, Thomas. N.d. “Why We Taste Blind”. Available from Wine

Spectator, accessed on 29 March 2015. < http://images.winespectator.com/wso/pdf/

WShowwetasteLTR.pdf>.

[22] Nobel, Ann C. N.d. “Wine Aroma Wheel”. Web. 29 March 2015.

<http://winearomawheel.com/>.

[23] Zaki, Mohammed J. Meira, Jr, Wagner. Data Mining and Analysis: Fundamental Concepts

and Algorithms. Cambridge University Press. pp 367-372. 2014. Print.

[24] Musaloiu-E, Razvan. N.d. “Linux Kernal 2.6.29 + tux3”. Web. 30 March 2015. <http://

www.cs.jhu.edu/~razvanm/fs-expedition/tux3.html>.

[25] Bellman, Richard E. Rand Corporation. Dynamic programming. Princeton University Press.

1957.

[26] Levandowsky, Michael. Winter, David. "Distance between sets". Nature. Volume 234 (5):

pp 34–35, 5 November 1971.

[27] Teknomo, Kardi. “Jaccard’s Coefficient”. Web. 30 March 2015. <

http://people.revoledu.com/kardi/tutorial/ Similarity/Jaccard.html>

[28] Seo, J., Shneiderman, B. "Interactively Exploring Hierarchical Clustering Results", IEEE

Computer, Volume 35, Number 7, pp. 80-86, July 2002.

[29] Cheng,Y. and Church,G.M. "Biclustering of expression data". ISMB 2000 proceedings, pp

93–103, 2000.

http://books.google.it/books?id=wdtoPwAACAAJ

72

[30] Madeira SC, Oliveira AL (2004). "Biclustering Algorithms for Biological Data Analysis: A

Survey". IEEE Transactions on Computational Biology and Bioinformatics 1 (1): 24–45. 2004.

[31] Prelic, A. Bleuler, S. Zimmermann, P. Wille, A. Bühlmann, P. Gruissem, W., Hennig, Lars.

Thiele, L. Zitzler, E. "A systematic comparison and evaluation of biclustering methods for gene

expression data". Bioinformatics, 22(9), pp 1122-1129. 2006.

[32] Zhao, L. Zaki, M J. “TRICLUSTER: An Effective Algorithm for Mining Coherent Clusters

in 3D Microarray Data”. SIGMOND05. 2005.

[33] Bhar, A. Haubrock, M. Mukhopadhyay, A. Wingender, E. “Application of a Novel

Triclustering Method (delta-TRIMAX) to Mine 3D Gene Expression Data of Breast Cancer

Cells”. GCB2013. 2013.

[34] Wine Spectator. N,p.,n.d. “Tasting Note - Dow’s Vintage Port 2011”. Web. 1 April 2015.

<http://www.winespectator.com/wine/ detail/source/search/note_id/351764>.

[35] Wine Enthusiast. N.p., n.d. Web. 29 March 2015. <http://wineenthusiast.com>.

[36] Wine Advocate. N.p., n.d. Web. 29 March 2015. <http://wineadvocate.com>.

[37] Wine Spectator. N.p., n.d. “Top 100 List”. Web. 29 March 2015.

<http://top100.winespectator.com/lists/>.

[38] Bernard Chen, Christopher Rhodes, Aaron Crawford, Lorri Hambuchen "Wineinformatics:

Applying Data Mining on Wine Sensory Reviews Processed by the Computational Wine

Wheel", 2014 IEEE Internaltioanl Workshop on Domain Driven Data Mining (DDDM 2014),

proceeding pp. 142-149.

