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ABSTRACT 

Even with the current state of technology, data growth is increasing so fast that without 

proper storage and analytical techniques, it is increasingly challenging to process and analyze large 

datasets.  This applies to knowledge bases from all fields, but for the purpose of this paper, we will 

be discussing specifically the area of professional wine reviews in a new area we call Wine 

Informatics.  In this area, we gathered over one thousand professional wine tasting reviews and 

manually extracted key attributes that we felt defined a wine.  These attributes were categorized in 

three major ways:  savory flavor attributes, physical characteristics, and overall subjective 

descriptors.  The extraction process led to the creation of what we call a computational wine wheel, 

which is a wine attribute dictionary consisting of 899 categorized and normalized wine attributes, 

as well as a weight system to define a level of importance.  We applied Hierarchical Clustering, 

BiMax Biclustering, and a proposed TriMax Triclustering algorithm onto various wine review 

datasets formed around the computational wine wheel.  We found that all three clustering methods 

produced promising and cohesive results that can be used in various aspects of the wine industry, 

such as defined palate grouping and wine searching.    
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CHAPTER 1:  INTRODUCTION 

There is an intrinsic notion that the computational power of today is essentially limitless, 

especially when we realize that today’s cell phones have more computational power than all of 

NASA had when it sent two astronauts to the moon in 1969 [1].  We can only imagine what future 

computational power will be like given said power is supposed to double every eighteen months 

according to Moore’s Law.  Even with contemporary capabilities though, it would seem that we 

could process anything imaginable.  However, with more computational power comes the ability 

to actually generate new and vastly-growing data every single day.  So much data in fact that it is 

estimated we will have generated 40 zettabytes of data by the year 2020 [2].  With ever-growing 

sizes in raw data, we have problems not only parsing the data itself, but pulling out meaningful 

information from it as well.  The latter part of that statement is the basis behind a generalized 

concept of the Data Science field taking over nearly every industry.  At its core, data science is 

about extracting and being able to successfully apply meaningful knowledge from large datasets.  

However, the process of understanding and retrieving the knowledge cannot stem from a single 

point of investigation.  That means that we cannot simply only perform classical data mining 

techniques on a dataset and expect the results to make sense.  We also cannot have mathematicians 

do basic statistical analysis on the data, as the data could be dirty with respect to its knowledge 

domain.  Lastly, we cannot just have an expert in the field attempt to look over the data, as it could 

be much too large for any single person to investigate.  In our opinion, data science can be described 

accurately using the definition created by Drew Conway, an expert on large-scale methods for 

social and behavioral problems [3].  According to Conway, data science is the combination of 

programming and hacking skills, math and statistics knowledge, and substantial expertise in the 

knowledge domain being evaluated.  It is very important to remember that all three of these sections 

need to be explored because if any one section is missing, the result is an inability to fully 

extrapolate knowledge in the data at hand.  Conway has visually detailed his perspective of data 

science in the venn diagram shown in the below figure. 
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FIGURE 1.1.  Data Science Venn Diagram 
 

Exploring the diagram, we first see that the cross section of “Hacking Skills” and “Substantive 

Expertise” as the “Danger Zone!”  This is because the individual knows how to structure data and 

form into ways easily digested and processed.  However, the knowledge is not there to actually 

understand what the processed data is telling.  An example of a linear regression model being 

applied to the data was used.  In the “Danger Zone!” of the diagram for this example, the user might 

know enough to apply such a model, yet the results would be meaningless without the math and 

statistics knowledge to back it up.  We can see there are two other cross sections, each where an 

overall topic is left out.  This means a user might not have the “Hacking Skills” to produce certain 

algorithms or models, or the user might not have the “Substantive Expertise” in a topic to 

understand what the model or statistical output means according to the data domain itself. 

For this paper, our hacking skills will explore the study of data mining, or data analysis of 

large datasets.  This is really just a term to describe the actual process of exploring data and finding 

patterns or relationships within it.  Examples of popular data mining techniques include clustering, 

classification, and association rules [4].  Clustering can generally be thought of as an unsupervised 

learning method that processes groups of objects into clusters that have high similarity between 
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one another.  Clustering also operates under the assumption that objects in one cluster are dissimilar 

to objects in a different cluster.  Overall most clustering algorithms are fairly open ended and 

require inputs from the user to try to guess the best way to join, parse, and evaluate the quality of 

produced clusters.  Examples of popular clustering techniques include Hierarchical Clustering [5], 

Co-Clustering [6], and Density Based Scanning [7]. Classification on the other hand is generally a 

supervised learning approach.  This means the user has a set of observations and attributes, such 

that each observation has one or more labels attached to it.  The label is a classification designation 

that groups an observation into a specific category.  This initial set of data can then be thought of 

as a training dataset.  Using statistics on the training dataset, the user is able to form models, such 

as Decision Trees [8] or Support Vector Machines (SVM) [9], which can be applied on new testing 

observations.  Testing observations are simply new observations that have an unknown 

classification label, but once they are sent through the trained model, a label can then be assigned 

with hopefully a high degree of confidence. Lastly, there is association rule learning, which is a 

method of finding implication patterns between items in a transactional database or information 

repository.  A basic example would be finding that a consumer at a supermarket buying milk and 

eggs is probably also going to buy bread.  This possible implication pattern is found by finding 

item set groups in the entire dataset that meet a certain support and confidence.  Support is simply 

the number of transactions that contain both item X and item Y.  Confidence is how strong the 

association between the two items is, and represents how often times item Y appears in a transaction 

that contains item X.  By finding the support and confidence for all item sets, a user can filter out 

stronger associations by limiting records above a certain threshold for both measures. The most 

popular Association Rules technique is the Apriori method [10]. All three of these data mining 

techniques have many different methods for producing results, and when choosing a method to 

explore, it is up to the data itself and what the user hopes to achieve from that data.  For this paper, 

we will only be focusing on the clustering tract of data mining, with a major focus on 

Agglomerative Hierarchical Clustering, Biclustering, and a newly proposed method called TriMax 
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TriClustering.  These methodologies will be described in more detail in chapters 3, 4, and 5, 

respectively. 

1.1:  Wine Production 

Our substantial expert knowledge for this paper will be the domain of wine and its flavor 

characteristics. Since we are implementing and analyzing the various clustering algorithms 

ourselves, we have fulfilled the top two portions of the data science venn diagram.  To complete 

the full cross-section, we need to prove we have enough knowledge of the subject to make an 

accurate analysis of all results.  We will be attempting to cluster wines based on data extracted from 

expert wine tasting reviews.  Before we talk about what goes into tasting a wine, a little more 

background is needed.  Wines are primarily made from fermented grapes and have been produced 

for thousands of years and all over the world.  Grapes are favored as yeast is able to more easily 

convert the natural sugars into carbon dioxide and alcohol, without the need of other additives or 

catalysts [11]. Grapes also generally contain the right amount of acidity and tannins, which allow 

wines to maintain good balance and structure [12]. Once grapes begin to ripen, they are picked 

either by hand or by machine and are taken in for sorting and fermentation.  To note a special 

difference, typically red wine grapes are fermented with their skins and white wine grapes are 

pressed to separate the juice and skin.  This is actually where red wine gets its red hue as the juice 

extracts color and other properties from the skin itself [13].  At this point it is up to the winemaker 

to add natural or cultured yeast to help with the fermentation process. Once the fermentation process 

is complete and the wine has been pressed from any remaining skins or yeast, the wine is then 

stored in a cool place for anywhere from six months to three years.  The wine is usually stored in 

wood barrels, and the type and size of these barrels can actually have a dramatic impact on how the 

wine eventually develops.  To make sure the wine matures perfectly, the wine needs to receive as 

little oxygen as possible.  Once a wine has been aged appropriately, the wine can then be filtered 

and finally bottled.  Throughout this entire process, even before picking, a wine’s future aroma and 

flavor compounds are seeping into the grapes from various sources.  Natural compounds are formed 
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from the soil type and area of growth.  As fermentation begins, chemical reactions are occurring 

between volatile and non-volatile compounds between the grapes and the yeast, and as the wine 

ages and matures, these reactions still happen, but at a much slower pace.  While not unique to 

grapes, they have the more individual variety of possible aromas that can develop from these 

chemical compounds.  The actual process entails these compounds combining with sugars to form 

odorless glycosides, and through the process of hydrolysis, they revert back to an aromatic form 

[14].  Apart from these naturally occurring processes, there are also external forces during the aging 

process that can inject other flavor compounds as well.  The most notable is vanillin which seeps 

into the wines from the oak barrels they are sometimes stored in, which might give hints of vanilla 

to the taster.  Since wine tasting can have so many unique flavors, the tasting experience is special 

as tasting a wine is really just smelling all the vaporized aroma compounds.  Special cells called 

olfactory receptors, which are sensitive to different aromas, will send information via the olfactory 

bulb to the brain on how to interpret each aroma [15].  The variety of aromas in a wine can be 

staggering, and depending on the knowledge and sensitivity levels between individuals, two people 

can taste the same wine and report different aromas.  The mind is a powerful agent as personal 

experience and bias of certain aromas can dramatically alter the perception of what an individual 

is tasting. There is not necessarily a wrong description of an aroma, but an inexperienced wine 

taster might not have the knowledge depth to accurately depict and describe everything.  Consider 

also that different people have varying sensitivity levels and may not even recognize a certain 

aroma is even present.  The next section will briefly discuss a simple review process and just how 

little bias it takes to alter individual perceptions. 

1.2:  Wine Tasting Reviews 

Given the knowledge of the wine creation process and how varying aromas are developed 

within the wine, an actual tasting could then proceed.  This process can be very delicate as a wine 

is examined not only for its tasting quality, but for physical appearance and physiochemical 

properties as well.  A taster will usually evaluate the appearance of the wine, how it smells in the 
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glass before tasting, the different sensations once tasted, and finally how the wine finishes with its 

aftertaste.  The taster will be looking for how complex the wine is, how much potential it has for 

aging for drinkability, and if there are any faults present.  The experience required can be expansive 

as any given wine needs to be carefully assessed within comparable wine standards according to 

its price, region, varietal, and style.  Also, if known, the actual wine production techniques will 

allow the taster to examine further characteristics.  Should there be multiple wines being evaluated, 

there are a couple different types of tastings: vertical and horizontal.  In the former, varying 

vintages, or years produced, are tasted from the same winery to evaluating different ages.  The latter 

testing involves the same vintages from different wineries to help emphasize the differences in 

styles.  However, professional wine tastings are held to a much higher standard are usually done 

with what is called a blind tasting.  This is where the taster is not allowed to see the label of the 

wine or even the shape of the bottle.  Oftentimes, the taster is also not disclosed the actual color of 

the wine that is consumed. Research has shown how powerful perception and bias is when there 

exists a strong expectancy based on preconceived notions of any aspect of a wine.  A French 

researcher named Frédéric Brochet performed two experiments to show how vastly the bias can 

affect a tasting. The first experiment involved a mid-range Bordeaux wine to be split into two 

different bottles.  One bottle was presented as a cheap table wine, and the other as a very high end 

specialty.  The volunteers described the high-end bottle as “woody, complex, and round”, while 

they noted the cheaper bottle as being “short, light, and faulty [16].” Brochet’s second experiment 

involved a white wine being presented and eventually described as “fresh, dry, honeyed, [and] 

lively” from students studying wine.  That same wine was then dyed red and presented again, but 

this time the students described the wine as “intense, spicy, supple, [and] deep [17].”  The latter 

description is a usual depiction of red wines and is vastly different from the first inspection of the 

same white wine.  Although some people like to use these results as evidence against wine tastings, 

Brochet’s experiments merely highlight the need for a standardized blind test when performing any 

professional wine tasting. 
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To show an example of what might result from a professional blind tasting, below is an 

example wine tasting review for Wine Spectator’s number one wine of 2014. 

Dow’s Vintage Port 2011 

Powerful, refined and luscious, with a surplus of dark plum, kirsch and cassis flavors that 

are unctuous and long. Shows plenty of grip, presenting a long, full finish, filled with Asian 

spice and raspberry tart accents. Rich and chocolaty. One for the ages. Best from 2030 

through 2060. –Kim Marcus [34]1 

 

It is important to again note that these attributes are specific to this taster’s opinions and evaluation.  

A different taster might exclude or find differing attributes.  However, given a fair amount of tasting 

experience, the expected differences between two reviewers should be subtle, especially when 

noting the strongest attributes. 

This paper will present a methodology for extracting key attributes from wine reviews like 

the example shown above.  We will detail the formation of a Computational Wine Dictionary, 

which will serve as a basis for future, automated extraction of attributes from wine reviews.  Given 

the dictionary and a couple datasets of wine reviews, we will explore varying clustering techniques 

in an attempt to show that it is possible to group similar wines together using only the sensory 

attributes given in professional wine reviews.  We believe our examination and subsequent 

evaluation of wine sensory information can form the base of new area called Wine Informatics.  

There is some existing research into evaluating and clustering wines, but its data is purely based on 

the actual chemistry of the wine, which are primarily numerical categories like alcohol, color 

intensity, and phenol amounts [18].  This paper aims to show that even based on technically 

subjective criteria, it is still possible to cluster wines using non-physiochemical data.  We will 

examine our datasets and introduce the computational wine wheel in Chapter 2.  Chapters 3 through 

5 will discuss using these datasets as inputs to Hierarchical Clustering, Biclustering, and 

Triclustering, respectively.  Finally we will conclude our paper with a summarization of results and 

give details on future work for this study and Wine Informatics as a whole.  

                                                             
1 A Wine Spectator membership account may be required to view the tasting note. 
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CHAPTER 2: DATA 

 

Diving deeper into the area of Wine Informatics can be a daunting task since the idea of 

looking at non-quantitative attributes of wine requires quite a bit of thought and preprocessing.  To 

make it easier on our research and to form some consistency within the data, we thought it would 

be best to limit our initial data compilation to a single source.  There are thousands of local and 

global wine reviewers, whether independent blogs or large publications.  Some of the major 

publications include Wine Spectator [20], Wine Enthusiast [35], and Wine Advocate [36].  These 

three are arguably the most popular and they all use a derivation of the 50-100 point scale developed 

by Robert Parker, who runs The Wine Advocate publication and has had a tremendous impact on 

the wine industry.  The point scale is used widely and is categorized in TABLE 2.1.  The first 

column defines Parker’s original scoring system, which has five 10 point ranges.  Wine Spectator’s 

derivation is detailed in the second column, which mostly uses 5 point ranges. 

RP SCORE WS SCORE DESCRIPTION 

96 – 100 95 – 100 Extraordinary/Classic wine 

90 – 95 90 – 94 Outstanding; a wine of superior character and style 

80 – 89 85 – 89 Very Good; various degrees of finesse 
70 – 79 80 – 84 Average; little distinction, yet soundly made 

60 – 69 75 – 79 Below Average; noticeable deficiencies 

50 – 59 50 – 74 Poor or Undrinkable; not recommended 

 

TABLE 2.1.  Popular Point Scale for Wine Reviews [19] 

 

With the 50 point rating system we a generally able to compare a wine across multiple sources.  

However, for creating our dataset, we decided to go with Wine Spectator only because of ease of 

review access and the comparable style of reviews even between different reviewers. 

2.1:  Wine Spectator 

To start aggregating wine reviews, we decided to use Wine Spectator, which is a lifestyle 

magazine that focuses on wine and wine culture [20].  The magazine has been in production since 

1976 and each issue can contain more than one thousand wine reviews.  Luckily, the company has 

also since published hundreds of thousands of their reviews directly to their website for subscribers 
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to view.  The reason Wine Spectator is a good fit for us is their strict wine tasting process, as well 

as the concise nature to their reviews and tasting notes.  Wine Spectator prides themselves on 

evaluating using blind tastings, and sometimes double-blind, the latter meaning the reviewer has 

absolutely no information at all on the wine in the glass.  Typically though, a single-blind 

methodology is chosen, in which the reviewer is given the vintage, appellation, and grape varietal, 

but the vineyard, producer, and wine price information is not disclosed.  To quote their 

methodology instructions, “the goal is to arrive at the appropriate balance; enough information to 

contextualize the wine, but not so much information that “imaginary references” begin to distort 

judgment [21]2.”  Once a tasting has concluded and the reviewer has noted their impressions, a 

review, or tasting notes, is published.  As compared with other big name wine publications, the 

reviews from Wine Spectator are extremely concise without losing quality information concerning 

the wine itself.  While other reviews might often to try to bring in life anecdotes or superfluous 

region information, Wine Spectator tends to only specify actual tasting notes.  An example review 

is seen below for the top rated wine for 2014, as also shown in Chapter 1. 

Dow’s Vintage Port 2011 (#1/10 top wines of 2014) 

Powerful, refined and luscious, with a surplus of dark plum, kirsch and cassis flavors 

that are unctuous and long. Shows plenty of grip, presenting a long, full finish, filled with 

Asian spice and raspberry tart accents. Rich and chocolaty. One for the ages. Best from 

2030 through 2060. –Kim Marcus 

 

In this version of the example review, we have bolded what we might consider to be key attributes 

to the review itself, and these attributes range from actual savory properties, such as “chocolate” 

and “Asian spice”, to subjective properties, such as “powerful” and “refined.”  Our goal is to extract 

enough key attributes from these professional wine reviews so that we can form a solid foundation 

of a wine attribute dictionary for the area of Wine Informatics. While we are planning on mining 

reviews solely from this review source, we do have a bit of diverseness in that Wine Spectator has 

many editors that perform tastings, so there is no single point of bias giving out all tasting notes. 

                                                             
2 A Wine Spectator membership account may be required to view the full letter. 
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2.2:  Original Wine Aroma Wheel 

The tasting notes given in a review are very important as they describe the heart and soul 

of a wine.  Even without knowing the producer or varietal, a well-described review can adequately 

sway a potential consumer into a purchase.  Our idea is to build a Savory Wine Dictionary where 

common, yet important attributes can be stored and referenced as needed.  Luckily, this idea was 

already introduced in 1980 by a sensory chemist and retired professor named Ann C. Nobel [22].  

She created what she called the Wine Aroma Wheel and a representation of it can be seen below. 

 
 

FIGURE 2.1.  Wine Aroma Wheel 

 

The wheel is composed of twelve categories of overall wine aromas someone might experience 

when tasting a wine.  The idea for the wheel was to help people describe tastes or aromas that might 

be hard to formulate without having given previous impressions.  While Nobel’s wine aroma wheel 
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is a good start, we did not believe it would be enough for us in its original form.  Without being 

overly specific there are times when certain distinct flavor attributes are not unique enough to 

encapsulate all flavors.  An example of this would be the FRUITY -> (TREE) FRUIT -> APPLE 

attribute.  As we will show later with our expansion attributes, things like APPLE and GREEN 

APPLE are unique enough to warrant a distinction in the (TREE) FRUIT subcategory.  However, 

we cannot add flavors arbitrarily as it might not reflect actual flavors and aromas found in real 

world wines.  We need a wine aroma wheel that, while expansive, is accurate and can be used easily 

by ourselves and others for automated processing of raw wine reviews.  As we will discuss in the 

next sections, there quickly becomes a point where manually extracting flavor properties from 

wines becomes incredibly difficult and time consuming.  Conversely, without a properly checked 

base of initial, accurate descriptions and properties, any automated attempt could be futile and 

possibly miss something important. 

2.3:  Computational Wine Aroma Wheel for 100 Wines 

By expanding the wine aroma wheel, we hope to form what we call a computational wine 

wheel. To form this dataset, we initially extracted all reviews from Wine Spectator’s Top 100 

Wines of 2011 [37].  The idea here was that all of Wine Spectator’s Top 100 lists contain only 

wines that have a review score of 90 or higher.  By only picking those wines considered outstanding 

or classic, we will be gathering savory attributes that most wines should have and descriptive 

attributes that all wines hope to achieve during a tasting.  The extraction process for these reviews 

was purely manual as we handpicked key attributes as well as noted secondary information about 

the wine.  In total we gathered the following information:  name, vintage, review, varietal, regional 

information, and price.  However, it is worth noting that for our processing purposes the review is 

the single most important piece of information for a wine. For the review and attributes themselves, 

there were a few types of attributes we are concerned with. Besides actual biological flavor 

attributes, we also tried to include anything corresponding to a wine’s physical structure, including 

things like acidity, body, structure, weight, tannins, and finish.  These are properties of wine that a 
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taster will physically taste or feel, such as how acidic the wine tastes or how well the wine coats 

the tongue.  Lastly, we also decided to keep generic, subjective terminology that may or may not 

be the same between two different tasters.  For example, one taster may find a wine “vivid” and 

“beautiful” while another taster may make no mention.  Originally we thought about generalizing 

words into their derived connotations, such as “grand” rating higher than a word like “fine.”  

However, since we are extracting the top rated wines, the level connotative differences would be 

subtle and hard to differentiate.  By that, we mean the tiny difference in positive connotations 

between two words may not be worthwhile in investigating.  Instead, we opted to keep as many 

subjective descriptors that we could find, as we found that many reviews still share many positive 

descriptions and generally, different tasters are generally referring to the same aspects when using 

a word such as “vivid.”  We do not believe the context would be too different between separate 

tasters using the same word to describe a wine. 

Showing the previous example review again, we want to highlight how we would extract 

the review’s key attributes into the three mentioned categories:  savory, body, and descriptive.  

Dow’s Vintage Port 2011 (#1/10 top wines of 2014) 

Powerful, refined and luscious, with a surplus of dark plum, kirsch and cassis flavors 

that are unctuous and long. Shows plenty of grip, presenting a long, full finish, filled with 

Asian spice and raspberry tart accents. Rich and chocolaty. One for the ages. Best from 

2030 through 2060. –Kim Marcus 

 

For this review, red words indicate specific flavors and aromas that could possibly be found on 

Nobel’s wine aroma wheel.  Orange words indicate traits corresponding to the physical wine itself 

like its body and finish.  That is, how the wine feels physically to a taster.  Lastly, blue words 

indicate subjective adjectives used by the taste to describe the overall wine.  Should a word or 

phrase not exist in the original wine aroma wheel, we would add it.  Also, if a word or phrase does 

not fit into any previous categories or subcategories, we would create one for it.  This methodology 

generally worked well, but one thing we found while extracting properties from the 100 wines from 

2011 was that there was slight contextual overlap between different reviews.  That is, there would 
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be two different reviews using slightly different words to express the same tasting notes.  A simple 

example would be one review using the word “distinctive” and another review saying a wine was 

“very distinct.”  The human thought process would naturally assume these two differences are the 

same thing, but computationally, we might miss the connection.  For this reason, we added a fourth 

level to the wine aroma wheel that we like to call a normalized attribute name.  This portion of the 

wheel would represent a base, or normalized, word to encompass a variety of word usages.  This is 

extremely important not only for differences in word tense or suffixes, but especially the verbiage 

used when describing biological elements like fruits and their descriptions.  An example of this 

would be the taster either using the phrase “lemon peel” or “lemon rind”, both of which refer to the 

outer layer of the lemon.  Another example would be being too verbose when describing a specific 

flavor, such as “cocoa”, “cocoa powder”, and “cocoa-filled”.  Certain phrases like this generally 

refer to the same thing.  However, there are times when the phrases make them distinct enough to 

become unique attributes.  A good example of this would be “blueberry”, “blueberry fig”, and 

“blueberry jam.”  Even though all three are components of the same fruit, the taste and consistency 

of each item convey different connotations and perceptions. 

 In TABLE 2.2, we show a count summarization of the computational wine wheel as formed 

from the top 100 wines for 2011.  We manually extracted 547 total specific attributes across 12 

specific categories.  After normalizing all attributes if possible, we were able to reduce the total 

attributes from 547 to 376 unique attributes.  Even with the reduced size, most people would 

consider this number of attributes to be a very high number of possible dimensions.  With that in 

mind, appropriate processing methods will need to be chosen in order to handle this situation. 
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CATEGORY SUBCATEGORY COUNT 

DISTINCT 

NORMALIZED 

COUNT 

CARAMEL CARAMEL 9 7 

CHEMICAL PETROLEUM 3 1 

EARTHY EARTHY 18 2 

FLORAL FLORAL 15 15 

FRUITY BERRY 18 15 

FRUITY CITRUS 11 11 

FRUITY DRIED FRUIT 21 21 

FRUITY FRUIT 5 4 

FRUITY OTHER 7 7 

FRUITY TREE FRUIT 12 9 

FRUITY TROPICAL FRUIT 15 11 

HERBS/VEGETABLES CANNED/COOKED 7 7 

HERBS/VEGETABLES DRIED 6 6 

HERBS/VEGETABLES FRESH 15 12 

MEAT MEAT 1 1 

MICROBIOLOGICAL LACTIC 3 2 

MICROBIOLOGICAL YEASTY 3 3 

NUTTY NUTTY 3 3 

OVERALL ACIDITY 14 3 

OVERALL BODY 17 10 

OVERALL FINISH 50 6 

OVERALL FLAVOR/DESCRIPTORS 217 179 

OVERALL STRUCTURE 9 2 

OVERALL TANNINS 24 3 

SPICY SPICE 26 21 

WOODY BURNED 11 8 

WOODY PHENOLIC 1 1 

WOODY RESINOUS 6 6 

TOTAL COUNTS   547 376 

 

TABLE 2.2.  Computational Wine Wheel for 100 Wines Aggregate Counts 

 

For our computational wine wheel, we added a couple new overall categories that the original wine 

aroma wheel did not have, such as MEAT.  The most important category added is the OVERALL 

category, which represents the set of subcategories describing the body of the wine and the 

subjective descriptors.  The fourth column represents the new level discussed, as it shows the 

distinct number of unique attributes for any given subcategory.  As we expected, the 

FLAVOR/DESCRIPTORS subcategory represents the most possible attributes, and this actually 
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becomes a small problem when trying to find accurate similarity between two wine reviews.  We 

questioned if two wines are closely related if they intersect fully on savory flavor attributes, but 

nearly none with subjective word descriptors.  We believe they should relate more closely in that 

case, but as the Hierarchical Clustering section will discuss in more detail, we need to apply a 

weight to every normalized attribute to shift the similarity between reviews.  The table below shows 

the numerical weight value assigned to the different categories. 

Attribute Type Weight 

Biological Flavors and Aromas 3 

Physical Wine Characteristics 2 

Important Subjective Descriptors 2 

All Other Subjective Descriptors 1 

 

TABLE 2.3.  Weight Values for the Computational Wine Wheel 

 

Actual biological flavors like “APPLE”, “CHERRY”, and “SPICE” are given the most weight as 

we felt that these aromas might be the most important when comparing two wines for the basic 

features.  Physical wine characteristics, such as “LONG FINISH” and “DENSE,” are given a 

middle tier weight as they are certainly important, but these attributes might vary more wildly.  

Lastly, subjective words such as “BEAUTIFUL” and “VIVID” are given the least weight since 

they are the most common types of attributes and it does not accurately compare two wines on their 

own.  It is also important to mention the third row of the table labeled “Important Subjective 

Descriptors,” as we felt there were some subjective word choices that were more important than 

others.  They were few and far between, but some examples include “POWER”, “RICH”, and 

“SAVORY”.  These are words or phrases that cannot be used as stand-alone descriptors of the 

overall wine, but seemingly transcend their meaning into other categories and possibly are also 

intended to include the context of the physical tasting properties.  We felt two wines sharing these 

special adjectives might actually reflect more similarity.  The attributes that fall into this category 

were few and chosen at our discretion.  After forming this initial computational wine wheel, we 

show what our 100 wine dataset looks like before and after applying the weights. 
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WINE NAME APPLE TANNINS_HIGH VIVID … Attribute N 

Wine 1 1 0 0 … … 

Wine 2 0 1 1 … … 

Wine 3 1 0 1 … … 

… … … … … … 

Wine M … … … … … 

 

TABLE 2.4.  Example Dataset with Non-Weighted Values 
 

TABLE 2.4 shows our multi-dimensional dataset as essentially a binary set of attributes for every 

wine.  A wine either has an attribute or it does not.  Since there are 376 possible normalized 

attributes though, it is possible the review starts to lean more heavily towards the number of 

subjective descriptors than actual flavors and aromas which we consider to be the most important.  

When dealing with comparing sets, this could skew any similarity calculations.  To combat this 

problem we apply the weights mentioned in TABLE 2.3 to form a new dataset that now looks like 

the one presented in TABLE 2.5. 

WINE NAME APPLE TANNINS_HIGH VIVID … Attribute N 

Wine 1 3 0 0 … … 

Wine 2 0 2 1 … … 

Wine 3 3 0 1 … … 

… … … … … … 

Wine M … … … … … 

 

TABLE 2.5.  Example Dataset with Weighted Values 

We still have binary sets of attributes per wine, but any distance methodology using sets can be 

altered to take the weighting into account.  We will explain our methodology for detecting and 

handling weighted similarity in the Hierarchical Clustering chapter. 

2.4:  Computational Wine Wheel for 999 Wines 

After forming the computational wine wheel on the 2011 wines, we figured that 100 wines 

might not be a large enough sample size, so we performed the same attribute extraction on 999 

additional wine reviews from Wine Spectator.  These wines were the Top 100 wines from the years 

2003 to 2010, and 2012 to 2013 [37].  One wine review was not able to be retrieved.  We used the 

computational wine wheel for 2011’s data as a basis to help filter out previously known attributes, 
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and then had our group of students manually examine any new attributes we could find. The below 

table represents the final results of the 999 wine reviews.  We ended up with 13 distinct categories 

and a total of 31 distinct subcategories.  From all wines mined, we found a total of 1,748 specific 

wine attributes, and of those attributes we were able to finalize 889 distinct normalized attributes. 

CATEGORY SUBCATEGORY COUNT 

DISTINCT 

NORMALIZED 

COUNT 

CARAMEL CARAMEL 67 37 

CHEMICAL PETROLEUM 5 2 

CHEMICAL SULFUR 2 2 

EARTHY EARTHY 68 30 

FLORAL FLORAL 60 35 

FRUITY BERRY 54 26 

FRUITY CITRUS 37 22 

FRUITY DRIED FRUIT 61 54 

FRUITY FRUIT 24 8 

FRUITY OTHER 8 8 

FRUITY TREE FRUIT 40 31 

FRUITY TROPICAL FRUIT 47 25 

HERBS/VEGETABLES CANNED/COOKED 10 9 

HERBS/VEGETABLES DRIED 24 20 

HERBS/VEGETABLES FRESH 38 26 

MEAT MEAT 25 13 

MICROBIOLOGICAL LACTIC 11 3 

MICROBIOLOGICAL OTHER 9 3 

MICROBIOLOGICAL YEASTY 4 4 

NUTTY NUTTY 21 15 

OVERALL ACIDITY 33 3 

OVERALL BODY 43 22 

OVERALL FINISH 175 5 

OVERALL FLAVOR/DESCRIPTORS 611 404 

OVERALL STRUCTURE 38 2 

OVERALL TANNINS 79 4 

PUNGENT HOT 2 2 

SPICY SPICE 83 39 

WOODY BURNED 43 25 

WOODY PHENOLIC 2 1 

WOODY RESINOUS 24 9 

TOTAL COUNTS 1748 889 

 

TABLE 2.6.  Computational Wine Wheel for 999 Wines Aggregate Counts 
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Compared to the 2011 counts in TABLE 2.2, this data shows large increases in almost every 

category and subcategory.  This is important to highlight just how important it was to update our 

original dataset.  When doing a direct comparison of both computational wine wheels, we find that 

there are 992 distinct normalized attributes across both.  Of those 992, 103 attributes are unique to 

the 100-wine dataset, 616 attributes are unique to the 999-wine dataset, and 273 attributes are 

shared by both.  Between the three subsets of attributes, we can analyze the impact by adding in 

the additional 10 years of wine data to on overall wine attribute dictionary.  TABLE 2.7 shows the 

counts by weight for each of the three subsets between the two data sets. 

Weight 100 wines – UNIQUE BOTH – SHARED 999 wines – UNIQUE 

3 43 126 319 

2 4 27 14 

1 56 120 283 

TOTAL 103 273 616 

 

TABLE 2.7.  Differences between 100 and 999 Wine Computational Wine Wheels 

The most important aspect is that we only found 43 unique highly-weighted attributes in the 100-

wine dataset, compared to the 319 unique highly-weighted attributes found in the 999-wine dataset. 

On average, that means the additional 10 years’ worth of wines added almost 32 new, unique 

attributes.  That is a strong indication that a 100 sample wine size is not enough to deliver accurate 

results should a review be automatically matched to that version of the computational wine wheel, 

as many key attributes would most likely be missed.  The same applies to the lowest weighted 

attributes, which saw a comparison of 56 versus 283.  For biological taste indicators and subjective 

descriptions, we can only assume that continuing to add wines would grow these sections.  

However, we noticed that the original 100 wines were actually able to encompass a majority of the 

mid-weighted attributes, which mostly contain descriptions of the physical body of the wine.  This 

is because the few key components of a wines body, such as weight and finish, are concepts that 

do not change over time, as it would take a radical change of what wine is to alter these 

subcategories. 
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As we expanded our computational wine wheel, we figured we also needed a way to decide 

if the cluster results provided any significant quality.  To do this, we decided against evaluating 

against the sensory attributes themselves, and instead decided to bring in extra data not contained 

within the wine review.  We call this extra information non-savory attributes and it consists of an 

individual wine’s type, varietal, country, and world.  Type indicates generally if a wine is 

considered red, white, or blended, which means multi-varietal.  Varietal is the specific grape type(s) 

used in the wine.  We also pull information on the country of origin, which also strongly correlated 

to the category of new or old world.  The world designation of a wine is just a general categorization 

of wines based on whether or not they were produced in traditional wine making countries or not.  

For example, most European countries are considered Old World, whereas the United States is 

generally considered New World.  For all 999 wines in this dataset, we retrieved values for all 4 

non-savory attributes, and have listed their names and percentages in the four tables below. 

 

 

Varietal (Grape) Count Percent 

BLEND (RED) 277 27.73% 

PINOT NOIR 87 8.71% 

CHARDONNAY 72 7.21% 

CABERNET SAUVIGNON 67 6.71% 

SYRAH 58 5.81% 

SHIRAZ 53 5.31% 

RIESLING 45 4.50% 

SANGIOVESE 43 4.30% 

SAUVIGNON BLANC 33 3.30% 

MALBEC 31 3.10% 

NEBBIOLO 30 3% 

TEMPRANILLO 23 2.30% 

BLEND (SPARKLING) 22 2.20% 

BLEND (DESSERT) 21 2.10% 

ZINFANDEL 20 2% 

MERLOT 17 1.70% 

BLEND (WHITE) 12 1.20% 

Only showing top 17 results 

 

TABLE 2.8.  Percentage of Wine Varietals from 999 Wines 
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Country Count Percent 

USA 296 29.63% 

FRANCE 224 22.42% 

ITALY 145 14.51% 

AUSTRALIA 79 7.91% 

SPAIN 70 7.01% 

ARGENTINA 32 3.20% 

PORTUGAL 29 2.90% 

CHILE 29 2.90% 

NEW ZEALAND 25 2.50% 

GERMANY 25 2.50% 

SOUTH AFRICA 20 2% 

AUSTRIA 13 1.30% 

HUNGARY 5 0.50% 

GREECE 5 0.50% 

CANADA 1 0.10% 

ISRAEL 1 0.10% 

 

TABLE 2.9.  Percentage of Wine Country Origins from 999 Wines 

 

 

Type Count Percent 

 RED 737 73.77% 

WHITE 214 21.42% 

SPARKLING 24 2.40% 

DESSERT 24 2.40% 

 

TABLE 2.10.  Percentage of Wine Types from 999 Wines 

 

World Count Percent 

OLD 517 51.75% 

NEW 482 48.25% 

 

TABLE 2.11.  Percentage of Wine World Category from 999 Wines 
 

2.5:  Computational Wine Wheel over Time 

Our third and final dataset encompasses 50 Cabernet Sauvignon wines from the Napa 

Valley region in California.  For every wine in this set, we retrieved its review for every year from 

2006 to 2010.  The wines were picked out in a first come, first serve order from the Wine Spectator 
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repository as long as they met the above criteria.  Because of this, there are some wines that share 

the same producer, but each wine has a distinct designation and is technically a different wine 

production.  For this dataset it is best to imagine it as a three dimensional cube of reviews, where 

the height, width, and depth are the wine name, attributes, and vintage, respectively.  This dataset 

is special as there was nothing manual about attribute extraction.  We used the computational wine 

wheel for 999 wines and scripted the output of only matched attributes.  The result of this was 50 

wines with 259 attributes across 5 years.  There are actually two purposes to this dataset.  One 

reason is to attempt to cluster a dataset that was matched automatically to the computational wine 

wheel.  The second reason is to move away from Hierarchical Clustering and to attempt a couple 

algorithms for subspace clustering:  BiClustering and TriClustering.  We will discuss these further 

in Chapter 4 and Chapter 5, respectively.  
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CHAPTER 3:  HIERARHICAL CLUSTERING 

This chapter will give an overview on what clustering is and how we plan to use it in this 

paper.  We will discuss the basics of clustering, as well as an in depth look at agglomerative 

hierarchical clustering.  This includes clustering properties such as distance measurements and 

linkage types.  Lastly, we will apply our hierarchical clustering knowledge on our Wine datasets 

discussed in Chapter 2.3 and 2.4. 

3.1:  Clustering Introduction 

Clustering is generally considered an unsupervised learning and analysis tool.  It is an open-

ended process that is open to many different interpretations and techniques.  Generally though, 

clustering is mostly thought of as a way of grouping objects or observations into intra-similar 

clusters.  A generated cluster is oftentimes considered dissimilar to all other clusters formed.  A 

given clustering algorithm is generally characterized by the model it tries to form.  For example, 

there are connectivity models that build clusters based on distance connectivity.  Clustering models 

like this generally can results in any number of clusters.  Centroid models, such as K-Means, 

generally try to fit data into a predefined number of clusters via a mean vector.  Distribution models 

create clusters based on statistical distributions of the data itself.  Density models form clusters by 

finding dense regions of data.  This is especially useful if dense data form irregular shapes or 

patterns.  Subspace models, such as BiClustering, are special in that they create clusters using both 

observations and relevant attributes at the same time.  We will discuss more on BiClustering in 

Chapter 4.  Apart from specific clustering models, we can also characterize how an observation is 

defined to a cluster.  For example, we can ride under the assumption that each observation either 

belongs to a cluster, or it does not, which is called hard clustering.  Soft clustering, or fuzzy 

clustering, otherwise allows an observation to partially exist in any cluster to a certain degree of 

possibility.  Clustering can also get into stricter rules that can specify that an observation can belong 

to one, and only one, cluster.  With so much diversity in the algorithm details, it is not hard to guess 

that the results might be even more complicated.  Generally there is no such thing as training data 
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with clustering, so the results are unpredictable and there is no one way to analyze the output 

clusters.  It is up to the user to fully understand the data that is being clustered and to reprocess as 

needed to make sure the desired clustering algorithm has valid information.  It is also important to 

make sure the distance or similarity measurements are chosen wisely as this can wildly affect the 

outcome.  The following sections will deal with diving in depth with hierarchical clustering, and 

how we chose to apply it to our computational wine wheels. 

3.2:  Agglomerative Hierarchical Clustering 

For this chapter, we have specifically chosen to work with agglomerative hierarchical 

clustering, which is a bottom-up, connectivity-based clustering approach.    To help explain how 

agglomerative hierarchical clustering works, we have detailed the algorithm in FIGURE 3.1 [23].  

The figure features the algorithm’s basic pseudocode with an explanation following. 

Agglomerative Hierarchical Clustering Algorithm  

 𝐴𝑔𝑔𝑙𝑜𝑚𝑒𝑟𝑎𝑡𝑖𝑣𝑒𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔(𝐷 =  {𝑥𝑖}𝑖=1
𝑛 , 𝑘): 

1 𝐶 = {𝐶𝑖 = {𝑥𝑖} | 𝑥𝑖 ∈ 𝐷} 

2 ∆ = {𝛿(𝑥𝑖 , 𝑥𝑗) ∶  𝑥𝑖 , 𝑥𝑗  ∈ 𝐷} 

3 𝒘𝒉𝒊𝒍𝒆 |𝐶| > 𝑘 𝒅𝒐 

4      𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑝𝑎𝑖𝑟 𝑜𝑓 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 𝐶𝑖 , 𝐶𝑗 ∈ 𝐶 

5      𝐶𝑖𝑗 =  𝐶𝑖  ∪  𝐶𝑗  

6      𝐶 = {𝐶 − 𝐶𝑖 − 𝐶𝑗 }  ∪ 𝐶𝑖𝑗  

7      𝑈𝑝𝑑𝑎𝑡𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 ∆ 𝑡𝑜 𝑟𝑒𝑓𝑙𝑒𝑐𝑡 𝑛𝑒𝑤 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 

8 𝐶 → 𝑑𝑒𝑛𝑑𝑟𝑜𝑔𝑟𝑎𝑚 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 

 

FIGURE 3.1.  Agglomerative Hierarchical Clustering Pseudocode 

To preface the algorithm, it should be noted that agglomerative clustering starts with all 

observations in the data being their own initial cluster.  We start with a dataset D, which consists 

of a set of n number of observations.  The second argument can also be an optional k, which is 

simply the threshold number of clusters to reach before the algorithm terminates.  Typically, an 

agglomerative clustering algorithm will keep on clustering until there is only a single cluster left, 

so k is usually set to 1.  The first step is to create a set of initial clusters C that corresponds to all 
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initial observations in our dataset.  The line of thinking is that every initial observation starts out as 

its own cluster.  We now need to create a distance matrix ∆.  This matrix is an n x n table 

representing the distance of all clusters against each other.  The distance measurement chosen 

depends on the data at hand, but typically a very simple approach would be to use Euclidean 

Distance.  It should also be noted that the entire n x n matrix does not need to be calculated as the 

values of the upper right triangle are going to mirror the values in the lower left triangle.  The 

diagonal will consist of zero-distance values and should be ignored as it represents clusters against 

themselves.  With the set of current clusters and the corresponding distance matrix, the main loop 

of the algorithm can begin.  While the size of C, or the total number of current clusters, is greater 

than the threshold limit assigned to k, we first find the minimum value in our distance matrix.  This 

value is the distance value of the two most-similar, current clusters.  We then form a new cluster 

𝐶𝑖𝑗  and set its two-cluster set of child nodes to point to our most similar clusters, 𝐶𝑖 and 𝐶𝑗 .  We 

then need to update our cluster set C by removing 𝐶𝑖 and 𝐶𝑗  from the set, and pushing in the new 

parent cluster, 𝐶𝑖𝑗 .  Lastly, since our cluster set C has changed, the distance matrix ∆ will need to 

be recalculated so all remaining clusters can get a distance value to the newly introduced cluster.  

This cycle is repeated until the size of the cluster set reaches the threshold limit and at that point, 

the algorithm will terminate.  Typically, the best way to represent a cluster is an object with a left 

and right child object of the same type.  What results for classical hierarchical clustering is a binary 

tree where all initial observations are represented by the leaf nodes, and every node above the leaves 

are the clustering operations performed in the while loop in FIGURE 3.1.  Also, the binary tree 

produced is special because the length of a cluster’s stem represents the distance it takes to represent 

all children belonging to that cluster.  This allows someone to get an accurate, visual interpretation 

of the relative similarity between all data set observations.  FIGURE 3.2 shows a basic example of 

a small dataset in its graphical form (right) as well as the resulting binary tree, or dendrogram (left) 

[24]. 
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FIGURE 3.2. Example Dendrogram and Data Set for Hierarchical Clustering 

For example, we can take a look at the two clusters ((9,10),11) and ((7,8),6).  Both images show 

how observation 11 is much closer to cluster (9,10) than observation 6 is to cluster (7,8).  A user 

could then infer that that cluster ((9,10),11) is a much more cohesive structure.  The hierarchical 

algorithm itself is relatively simple, but there are two major components that should be taken into 

a lot of consideration before blindly clustering data.  Those components are the distance 

measurement and the clustering linkage type, which we will discuss in the following two sections. 

3.3:  Distance Measurement 

The distance value between two clusters, which can also be thought of as a similarity value, 

can generally be thought of as a representation of their location or their properties.  A representation 

of location can be compared to data in a Euclidean space, which has a notion of an average between 

any two points.  However, as datasets increase their number of columns, or dimensions, a growing 

problem occurs called the Curse of Dimensionality [25].  As the volume increases in a dataset, the 

points within that set become sparse.  For statistical accuracy, this means that more and more data 

is needed to get accurate results.  For our dataset specifically, as the number of dimensions grow, 

the distance between any two points start to become the same, and because of this reason it might 

be necessary to find a distance measure that works on sets of properties rather than a location.  

Examples of such distances include Hamming Distance, Cosign Distance, and Jaccard’s Distance.  
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There is no single best measure for a dataset, but depending on the types of values present and the 

number of dimensions there are generally choices that are better than others.  Once a distance 

measurement has been chosen, any two single points can then be compared. 

When evaluating our Wine Wheel dataset, we noticed it had two prominent features. One 

was that any dataset we formed would most likely have hundreds of dimensions.  The other was 

that our datasets will be binary in nature.  That is, a wine either has an attribute, or it does not.  For 

both of these reasons we decided to stay away from location-derived distance measures.  After 

careful consideration, we chose to use the Jaccard’s Coefficient measure, which is a similarity 

formula for set comparisons [26].  When comparing two sets, the measure can be defined simply 

as the size of the intersection divided by the size of the union. 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝑠𝐶𝑜𝑒𝑓(𝑋, 𝑌) =  
| 𝑋 ∩ 𝑌 |

| 𝑋 ∪ 𝑌|
 

𝑖𝑓 | 𝑋 ∪ 𝑌 | = 0, 𝑡ℎ𝑒𝑛 𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝑠𝐶𝑜𝑒𝑓(𝑋, 𝑌) = 0 

𝑒𝑙𝑠𝑒 0 ≤ 𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝑠𝐶𝑜𝑒𝑓(𝑋, 𝑌)  ≤ 1 

EQUATION 3.1. Jaccard’s Coefficient Measurement (Similarity) 

 

The coefficient produces a number between 0 and 1, which can be thought of as a percentage of 

similarity between two sets.  Should two sets contain no points of intersection, the ratio will be zero 

over the size of the union.  Conversely, if two sets contain a complete union, then the ratio will be 

same for both the intersection and the union, resulting in one hundred percent similarity.  A 

complementary value is the Jaccard’s Distance, which can be defined by the following formula. 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝑠𝐷𝑖𝑠𝑡(𝑋, 𝑌) = 1 − 𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝑠𝐶𝑜𝑒𝑓(𝑋, 𝑌) =  
| 𝑋 ∪ 𝑌| − | 𝑋 ∩ 𝑌 |

| 𝑋 ∪ 𝑌|
 

EQUATION 3.2.  Jaccard’s Distance Measurement 

Simply put, if two sets result in a 0.8 Jaccard’s Coefficient similarity value, then the two sets can 

also be considered 0.2 dissimilar via the Jaccard’s Distance measurement.  Either measure can be 

used in clustering, but the user needs to remember to look for the maximum values for Jaccard’s 

Coefficient or the minimum values for Jaccard’s Distance. 
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3.4:  Weighted Distance Measurement for Wines 

In Chapter 2.3 we proposed turning possible values in our dataset from 0 and 1 to any value 

in the range 0 through 3.  We wanted to specify that certain attributes belonging to a wine were 

more important than others.  To do this we still use the same Jaccard’s formulas presented in the 

previous section.  However, we use an alternate, but equivalent definition that will allow us to 

eventually account for weights.  Both the original coefficient and the distance formulas can be 

redefined as the following [27]. 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑′𝑠 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =  
𝑃

𝑃 + 𝑄 + 𝑅
 𝐽𝑎𝑐𝑐𝑎𝑟𝑑′𝑠 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  

𝑄 + 𝑅

𝑃 + 𝑄 + 𝑅
 

𝑃 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛 𝑏𝑜𝑡ℎ 𝑠𝑒𝑡𝑠 

𝑄 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛 𝑄, 𝑏𝑢𝑡 𝑛𝑜𝑡 𝑅 

𝑅 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛 𝑅, 𝑏𝑢𝑡 𝑛𝑜𝑡 𝑄  
 

EQUATION 3.3.  Jaccard’s Non-Weighted with Distinct Measurements 
 

These formulas are equivalent to EQUATION 3.1 and 3.2, but programmatically we can now avoid 

using set notation and allow modification of the specified variables P, Q, and R.  Using just values 

of 1 or 0, we would originally increment these variables as we compared attributes between two 

wines.  Now that we have weighted values, when incrementing the variables, we can increase the 

value higher for strongly-weighted attributes.  This idea is simply faking the set comparison by 

inflating the values for the intersection and the union size.  We are proposing this idea as the overall 

wine data contains a disproportional amount of non-biological descriptive attributes, or subjective 

adjectives described during the tastings.  While these are nice, we consider actual biological or 

wine body descriptions as taking priority over the more subjective descriptions.  In the example 

below, we will show how the weights can possibly significantly change the similarity between two 

wine sets.  Suppose we have the following subset of data with four wines and the following four 

attributes:  BLUEBERRY, CHERRY, CHEWY TANNINS, and BEAUTY.  We can examine the 

first wine against the second and third, which alternate the sharing of the CHERRY and BEAUTY 

attributes. 
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 BLUEBERRY CHERRY CHEWY TANNINS BEAUTY 

Wine1 0 1 1 1 

Wine2 0 0 0 1 

Wine3 0 1 0 0 

Wine4 1 0 0 0 

 

TABLE 3.1.  Example Non-Weighted Dataset for Jaccard’s Similarity 

If we find the Jaccard’s Coefficient for Wine1 against Wine2, we get 1/3 since P=1, Q=2, and R=0.  

The Jaccard’s Coefficient for Wine1 against Wine3 is also 1/3 since P=1, Q=2, and R=0.  This 

makes since as the size of the intersection between both comparisons is one attribute, and the size 

of the union between both comparisons is three total attributes.  Wine1 is thusly a third similar to 

Wine2 and Wine3 as it shares only one out of three attributes between them.  However, for our 

research, these results are little misleading in that we feel the shared attribute of CHERRY between 

Wine 1 and Wine3 is a much stronger bond than the shared attribute of BEAUTY between Wine1 

and Wine3.  While BEAUTY describes a wine nicely, different reviewers could use a variety of 

nice words to describe the wines.  Also, since our research in this section is dealing with all Top 

100 wines, we would expect nothing less than many words with positive connotations.  Therefore, 

we like to try to compare wines against the characters which hopefully should not be as subjective.  

Now we can walk through the same example, but with their weighted values as shown in the table 

below. 

 BLUEBERRY CHERRY CHEWY TANNINS BEAUTY 

Wine1 0 3 2 1 

Wine2 0 0 0 1 

Wine3 0 3 0 0 

 

TABLE 3.2.  Example Weighted Dataset for Jaccard’s Similarity 

For the weighted attributes, we slightly change the definition of P, Q, and R.   

𝑃 = 𝑆𝑢𝑚 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛 𝑏𝑜𝑡ℎ 𝑠𝑒𝑡𝑠 

𝑄 = 𝑆𝑢𝑚 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛 𝑄, 𝑏𝑢𝑡 𝑛𝑜𝑡 𝑅 

𝑅 = 𝑆𝑢𝑚 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛 𝑅, 𝑏𝑢𝑡 𝑛𝑜𝑡 𝑄 

 

EQUATION 3.4.  Jaccard’s Weighted with Distinct Measurements 
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Using the new definition, we can make the same comparisons again to see how they might change.  

Calculating Wine1 against Wine2 gets us a new coefficient of 1/6 since P=1, Q=5, and R=0.  

Compared to the unweighted coefficient of 1/3, this makes a lot more sense as Wine1 contains two 

important attributes that Wine2 does not have.  Also, the only shared attribute is a least important 

attribute.  Calculating Wine1 against Wine3 gets us a new coefficient of 1/2 since P=3, Q=3, and 

R=0.  Compared to the unweighted coefficient of 1/3, this also makes sense as while Wine1 and 

Wine3 only share a single attribute, it is a highly weighted one.  The strongly-weight attribute is 

enough to lean the comparison from 33% to 50%.  We believe that by using the weighted Jaccard’s 

measurement, our clustering results will allow us to gain more accurate clusters. 

3.5:  Cluster Linkage 

Clustering quickly presents a problem though in that clusters quickly encapsulate more 

than a single point, which begs the question of how to compare objects where each represents 

multiple observations.  Multi-observation cluster comparison occurs via a pre-chosen linkage type.  

FIGURE 3.3 shows the three most common linkage types. 

 

 

 

 
Single Linkage 

 

 
 

 

 
 

Complete Linkage 

 

 
 

 

 
 

Average Linkage 

 

FIGURE 3.3.  Clustering Linkage Types 



30 
  

 

The first linkage type is called Single Linkage, which defines the distance between two clusters as 

the minimum distance between a point in Cluster X and a point in Cluster Y.  The name derives 

from the observation that if only the minimum distance was found between points in two clusters, 

then only a single link between the clusters would exist.  All other point combinations would fall 

outside the minimum distance.  Single Linkage can be represented by the following formula. 

𝛿(𝑋𝑖 , 𝑌𝑗) = min{𝛿(𝑥, 𝑦) | 𝑥 ∈ 𝑋𝑖  , 𝑦 ∈ 𝑌𝑗} 

EQUATION 3.5.  Single Link Clustering 

The second linkage type is called Complete Linkage, which can be thought of as the opposite of 

Single Linkage.  Complete Linkage defines the distance between two clusters as the maximum 

distance between a point in Cluster X and a point in Cluster Y.  Should a linkage be made using 

the maximum distance between two points, all other combinations of points would have distances 

that fall under that value.  That is, a complete linkage would be achieved by linking every point 

combination.  Complete Linkage can be represented by the following formula. 

𝛿(𝑋𝑖 , 𝑌𝑗) = max{𝛿(𝑥, 𝑦) | 𝑥 ∈ 𝑋𝑖  , 𝑦 ∈ 𝑌𝑗} 

EQUATION 3.6.  Complete Link Clustering 

The final linkage type presented here is the Average Linkage type.  It is represented by the average 

distance between all possible point combinations between two clusters.  Average Linkage can be 

represented by the following formula. 

𝛿(𝑋𝑖 , 𝑌𝑗) =  
∑ ∑ 𝛿(𝑥, 𝑦)𝑦∈𝑌𝑗𝑥∈𝑋𝑖

|𝑋𝑖|  ∙ |𝑌𝑗|
 

EQUATION 3.7.  Average Link Clustering 

Another option that is useful is to take a centroid approach to new clusters.  When a new cluster is 

formed, the average attribute values for all observations can be found which converts a multi-

observation cluster into a theoretical single point entity.  With only a single, averaged location, 

there is no need for a linkage type as all clusters one be a one-to-one point comparison.  However, 
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with this approach, the location of a cluster can shift as more and more points are clustered.  

Observations that might be considered noise can have more of a dramatic affect when clustered.  

Sometimes it might be important to test with all linkage types and examine the results 

independently. 

3.6:  Agglomerative Hierarchical Clustering Example 

To make sure the reader has an appropriate understanding of the previous sections, we will 

introduce an example dataset that we will perform agglomerative hierarchical clustering on.  This 

section will show step by step on how to start with many clusters and bring them down to one.  This 

example will also use non-weighted values.  An initial dataset is shown below with its starting, 

empty dendrogram 

 cherry blueberry Plum spice 

wine1 1 0 1 0 

wine2 0 0 1 1 

wine3 1 0 1 0 
wine4 0 0 1 1 

wine5 1 1 1 0 

 
 

 
FIGURE 3.4.1.  Example Hierarchical Clustering – Initial Dataset 

 

We have 5 example wines with 4 example attributes.  The values of 1 indicate that the wine contains 

the given attribute.  The first thing that needs to be done is to form the initial distance matrix, which 

is just the pairwise distance between all wines.  For this example, we used standard Jaccard’s 

Distance since the only possible values are 0 or 1.  The initial distance matrix is shown in FIGURE 

3.4.2. 
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  W1 W2 W3 W4 W5 

W1 0 0.67 0 0.67 0.33 

W2  0 0.67 0 0.75 

W3   0 0.67 0.33 

W4    0 0.75 

W5     0 

Current Clusters 

Wine2 

Wine4 
Wine5 

(wine1,wine3):0 

 
FIGURE 3.4.2.  Example Hierarchical Clustering – Step 1 

In this example, we see there are actually two different pairs of wines that have the smallest 

distance:  [wine1,wine3] and [wine2,wine4].  In this scenario, we can just pick one arbitrarily.  We 

will turn wine1 and wine3 into the cluster (wine1,wine3) and append its distance to the cluster.  

Next we will reform the distance matrix by removing the rows for wine1 and wine3, and then 

adding a new row to represent the total cluster.  For future runs, there will be an increasing chance 

that comparing clusters contain more than a single observation, so for those cases, this example 

will be using the single linkage clustering method.  Below are the remaining clustering steps. 

  W2 W4 W5 (W1,W3) 

W2 0 0 0.75 0.67 

W4  0 0.75 0.67 

W5   0 0.33 

(W1,W3)    0 

Current Clusters 

Wine5 

(wine1,wine3):0 
(wine2,wine4):0 

 
FIGURE 3.4.3.  Example Hierarchical Clustering – Step 2 

 

In the FIGURE 3.4.3, we find that wine2 and wine4 have the smallest distance so we form another 

cluster.  At this point we only have 3 total clusters remaining. 
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  W5 (W1,W3) (W2,W4) 

W5 0 0.33 0.75 

(W1,W3)  0 0.67 

(W2,W4)   0 

Current Clusters 
(wine2,wine4):0 

(wine5,(wine1,wine3):0):0.33 

 
FIGURE 3.4.4.  Example Hierarchical Clustering – Step 3 

In the FIGURE 3.4.4, we see that wine5 and the cluster (wine1,wine3) have the smallest distance.  

We cluster both together to form (wine,(wine1,wine3):0):0.33.   

  (W2,W4) (W5,(W1,W3)) 

(W2,W4) 0 0.67 

(W5,(W1,W3))  0 

Current Cluster 

((wine2,wine4):0,(wine5,(wine1,wine3):0):0.33):0.67 

 
 

FIGURE 3.4.5.  Example Hierarchical Clustering – Step 4 

 

In the FIGURE 3.4.5, we see that there are only two clusters left, so there is really not a need to 

find the distance, but for clarity we show the value.  The final newick string is presented here, 

which is just a textual representation of the dendrogram shown on the right.  We can see that by 

applying a horizontal cut point around the 0.34 distance mark, we can split the dendrogram into 

two major clusters:  (wine5,(wine1,wine3)) and (wine2,wine4). 

3.7:  Hierarchical Clustering on 100 Wines  

We took the dataset presented in Chapter 2.3, which consists of the Top 100 wines for 2011 

according to Wine Spectator.  The attributes pulled manually from these wines helped form the 

initial computational wine wheel, and we wanted to see if just these 100 wines were enough to 
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allow accurate clustering.  For the 100 wines in this experiment, we have 376 total unique attributes. 

We applied agglomerative hierarchical clustering on the dataset, using weighted Jaccard’s Distance 

as a measurement of dissimilarity as well as single linkage when needing to cluster multi-

observation clusters.  To initially observe our output, we chose to use the Hierarchical Clustering 

Explorer (HCE) tool [28].  This tool allowed us to insert our initial distance matrix since Jaccard’s 

Distance was not offered natively.  Once the data was processed we are given a movable, horizontal 

cut point in which to decide which clusters to view on screen.  FIGURE 3.5 and 3.6 below show 

the complete final dendrogram as well as a subset we might consider important [38]. 

 

 

 

 
 

FIGURE 3.5.  HCE Results (Full) of 100 Wines of 2011 
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FIGURE 3.6.  HCE Results (Subset) of 100 Wines of 2011 

 

The similarity measure in both figures are slightly misleading though and we want the readers to 

be aware that HCE shows similarity relative to the two closest points in the dataset.  Wine13 and 

Wine14 from the left (Bodegas Resalte and Castello di Monsanto) are the two closets initial wines 

to be clustered.  Since the cut bar only goes from 0% (top) to 100% (bottom) similarity, it might be 

inferred that two distance between those two wines is 0 and that there similarity is 100%.  In reality, 

their Jaccard’s distance is 0.447368.  That means if the tree is examined from the bottom to the top, 

then every cluster’s similarity is 100% to 0% relative to the initial minimum Jaccard’s distance of 

0.447368. 

FIGURE 3.6 allows us to see the clusters available when the cut point is moved to only 

showing wines with at least 60% similarity compared to the closest two wines.  Also, for this 

example we also do not consider any wine left alone to be considered a valid cluster.  This is merely 

to test out the waters with the initial wine dataset, so we chose this point merely because it visually 

offered a larger number of clusters containing at least two observations.  Our goal is to try to prove 

that the clusters are coherent, and to do that we can examine the shared attributes that make up each 

of the eleven presented clusters. 
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Cluster # # of Wines Common Attributes found in >50% of a cluster’s wines  

1 10 Plum(10), Mineral(7), Long Finish(7), Tennins_Medium(6) 

2 2 Floral(2), Blackberry(2), Berry(2), Mineral(2), Firm(2) 

3 6 Blackberry(6), Long_finish(5), Spice(4) 

4 3 Spice(3), Raspberry(3), Tannins_medium(2), Black Cherry(2), 

Mineral(2), Smooth(2). Harmony(2), Rich(), Long Finish(2) 

5 2 Tannins_Medium(2), Acidity_High(2), Violet(2), Black Currant(2) 

6 2 Ripe(2), Tannins_High(2), Mineral(2), Complex(2), Well-

Structured(2), Rasberry(2) 

7 2 Toasty Wood(2), Spice(2), Black Licorice(2), FullBodied(2), 

Pure(2), Finesse(2), Mineral(2) 

8 2 Pepper(2), Spice(2), Complex(2), Full-Bodied(2), Sage(2) 

9 2 Dense(2), Herbs(2), Mineral(2), Red(2), Smoke(2) 

10 2 Spice(2), Fig(2), Finesse(2), Rich(2), Delicacy(2), Melon(2), 

Layers(2) 

11 2 Peach(2), Mineral(2), Mango(2), Tangerine(2), Smooth(2) 

  

TABLE 3.3.  Cluster Attributes for Subset Cluster 

TABLE 3.3 shows all 11 clusters in this subsection, as well as the total number of wines and the 

most common attributes for each cluster.  There are various ways to actually use these results and 

to confirm they make sense.  One good thing for this kind of result is that it is good for consumers 

looking for specific features that they most enjoy.  For example, if “Plum”, “Mineral”, and “Long 

Finish” are the search criteria, then Cluster #1 could be offered as a selection.  Another curious 

observation is that although the wines in a given structure generally share similar attributes, they 

can actually have wide price ranges.  Cluster #1 actually ranges in price from $30 (Januik Cabernet 

Sauvignon Columbia Valley 2008 and Tablas Creek Cotes de Tablas Paso Robles 2009) to $125 

(Domaine Serene Pinot Noir Dundee Hills Grace Vineyard 2008).  If a consumer cannot afford a 

higher priced wine, then notable substitutions can be made that offer a similar palette. 

Other than the sensory attributes and price, we can also look into the geographical attributes 

of the clusters.  We might assume that wines with the same region or varietal to have similar 

properties, and we can actually see that in these results.  For all 11 clusters in this subsection, every 

cluster is either all red wines or all white wines.  Also, many of these clusters share similar country 

and region information as well.  For example, Cluster #2,6,7,8,10 are all from California.  Cluster 

#5 contains only Italian wines.  Also, Cluster #9 are specifically from Castilla y Leon, Spain.  
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Lastly, there are clusters that also seem to have captured the same varietal.  For instance, Cluster 

#10 are all Chardonnay wines and Cluster #11 are all Sauvignon Blanc wines [38]. 

We are confident in these results and decided to explore more on examining individual 

clusters by their wine type, varietal, and geographic origin on a larger array of wines.  We will 

discuss these results in the next section. 

3.8:  Hierarchical Clustering on 999 Wines 

In the previous section, we tested a wine dataset built only on 100 wines.  We used a third-

party application to view our clustering results to see if they made sense and we believe we were 

able to find meaningful clusters.  However, we did not believe that 100 wines was enough to 

conclusively build our computational wine wheel, so we decided to vastly increase our sample size 

from 1 year of Top 100 wines to 10 additional years of Top 100 wines.  It should be noted though 

that we were unable to retrieve one of the wine reviews, so we only ended up finding 999 additional 

wines rather than the full 1000.  For this section we built an agglomerative hierarchical clustering 

application ourselves as we wanted the ability for automated custom clustering analysis.  Using the 

non-savory dataset presented in Chapter 2.4, we want to introduce a model of automated analysis 

specifically designed for our wine dataset.  Below are 3 formulas we have designed to give a score 

to an individual cluster, give a score to an individual cut point, and to introduce the concept of a 

quality cluster. 

 

𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑆𝑐𝑜𝑟𝑒𝐶 = (∏ 𝑚𝑎𝑥𝑃𝑒𝑟𝑐𝑒𝑛𝑡(𝐴𝑖)

𝑀

𝑖 = 1

) 𝑊𝐶 

C = Cluster 
M = Number of Non-Savory Attributes 

A = Set of Non-Savory Attribute 

WC = Total number of wines in Cluster 

EQUATION 3.8.  Cluster Score for a Wine Cluster 

 

𝐶𝑢𝑡𝑃𝑜𝑖𝑛𝑡𝑆𝑐𝑜𝑟𝑒𝐶𝑃 =  ∑ 𝐶𝑖

𝑁

𝑖=1

 

CP = Cut Point 
N = Total Number of Clusters in Cut Point 

C = Set of Clusters’ Scores 

EQUATION 3.9.  Cut Point Score for a Wine Dendrogram 
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𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒𝐶 =
(∑ 𝑚𝑎𝑥𝑃𝑒𝑟𝑐𝑒𝑛𝑡(𝐴𝑖)𝑀

𝑖=1 )

𝑀
 

C = Cluster 

M = Number of Non-Savory Attributes 
A = Set of Non-Savory Attribute 

EQUATION 3.10.  Quality Score for a Wine Cluster 

 

The first component is the Cluster Score, which attempts to define a cluster primarily on the most 

common value in each non-savory attribute.  We find the product of the percent distribution for 

each of those most-common values.  We then multiply that result by the total number of wines in 

the cluster and the result will be the score corresponding to that cluster.  We can walk through an 

example given by the two tables below to show just how the score is derived. 

 
 

TABLE 3.4.  Non-Savory Cluster Example 1 

 

 
 

TABLE 3.5.  Non-Savory Cluster Example 2 

In both tables, the final row represents the percent distribution of the most common value in that 

column.  In TABLE 3.4, we can derive a cluster score by finding the product of those percentages 

as well as multiplying that result against the four wines present.  We would get a cluster score of 

(1.0 * 0.75 * 0.75 * 0.75) * 4 = 1.6875.  Using the same method on TABLE 3.5, we would get a 

cluster score of (1.0 * 0.5 * 1.0 * 1.0) * 2 = 1.  There are two different entities adding weight to 

this score:  the consistency of attribute values and the number of wines.  In our example, even 

though TABLE 3.5 is off by a single value in a single attribute, TABLE 3.4’s score is higher 

because it contains additional identical wines that pushes its weight higher.  However, if TABLE 
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3.5’s wines were identical, it would have produced a score of 2, which would have been better as 

TABLE 3.4’s fourth wine introduced enough diversity to keep it score lower. 

Now that we have introduced a scoring system for individual clusters we want to be able 

to score a cut point, which is the main way a user might analyze a dendrogram.  Since we define a 

cluster as having at least two wines, the Cut Point Score is simply the summation of all cluster 

scores at that cut point for clusters with at least two wines. 

Lastly we want to introduce a final analysis mechanism in the form of a Quality Cluster 

Score, which is a user-specified threshold designed to define what a good cluster is.  The quality 

score can be thought of as a percentage between 0% and 100%, and is derived by taking the sum 

of the max attribute percentages for a cluster and dividing that number by the total number of non-

savory attributes.  Looking back at TABLE 3.5, we get a quality score of (1.0 + 0.5 + 1.0 + 1.0) / 

4 = 0.875, or 87.5%.  This means that a user can set a threshold of 75% for good clusters, so the 

cluster in TABLE 3.5 would pass.  The quality score does not have to be used, but it gives 

alternative measuring capabilities. 

We then performed the hierarchical clustering on the 999 savory dataset discussed in 

Chapter 2.4.  Since showing and manually analyzing a dendrogram of 999 observations is difficult, 

we wanted our system to automatically try and apply the Cut Point Scores and Quality Scores 

described above.  FIGURE 3.7 and FIGURE 3.8 are graphical representations of the entire 

dendrogram across all used Jaccard’s Coefficient percentages.  It might be worth noting that the 

actual algorithm uses Jaccard’s Distance to cluster, but the results are showing the Coefficient, 

which represents the similarity rather than the dissimilarity. 
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FIGURE 3.7.  Scores across Entire Dendrogram of 999 Wines 
 

 

 

 
 

 

 
 

FIGURE 3.8.  Scores across Entire Dendrogram of 999 Wines (without Wine Amounts) 
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Both figures are the same dataset, but FIGURE 3.7 adds in the total number of wines at the cut 

point to show how much of the data is being clustered at any given time.  FIGURE 3.8 was created 

to exclude this number so better visual quality can be given to the more important scores. The x-

axis in both figures represents all possible ranges of similarity percentages between 100% and 0%.  

As the graph indicates, the closest two wines were about 56.52% similar, and as the similarity 

percentage decreases, we chart the number of clusters, the similarity cut-point score, and the 

number of quality clusters at that cutpoint.  For the quality score, it should be noted that we applied 

a quality threshold of 70% for these results.  While it may seem to be the case, it should be noted 

that the cut point with the highest number of clusters does not always reflect the cut point with the 

highest number of total clusters.  Generally, with our data set though, there does seem to be a major 

correlation between increased cut point score and increasing number of clusters.  This is not always 

the case though as we will examine the cut point with the highest cut point score, and it actually 

does not contain the most clusters, but just barely.  We hope that this occurrence highlights the 

possibility that quality clusters can sometimes outweigh quantity of clusters, which is what users 

should be after.  The cut point with the best score was valued at 112.063 and was cut at 35.92% of 

the dendrogram. This means that any of the 72 clusters here will be at least that amount or higher 

in similarity. This cut point contains just about 300 out of the 999 possible wines.  Since hierarchical 

clustering analysis can be highly subjective, we hope to show that the clusters present at this cut 

point not only show a high similarity in sensory attributes from the wine wheel, but high similarity 

in non-sensory attributes as well.  This can show high correlation between clustering on sensory 

evaluations how that alone has the capability of grouping wines are type, varietal (grape type), 

country of origin, and world type.  In FIGURE 3.9, we examine the output of a cluster at this cut 

point. 
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Cluster #66 (Similarity = 36.1702) 

1) BOOKER SYRAH PASO ROBLES FRACTURE 2010 

2) DIERBERG PINOT NOIR SANTA MARIA VALLEY 2005 
3) KOSTA BROWNE PINOT NOIR RUSSIAN RIVER VALLEY 2004 

4) LORING PINOT NOIR STA. RITA HILLS CLOS PEPE VINEYARD 2005 

 
TYPE RED => 100% Sensory Attributes #Wines 

  Earthy 4 

VARIETAL PINOT NOIR => 75% Rich 4 

 SYRAH => 25% Berry 4 
  Blackberry 3 

COUNTRY USA => 100% Raspberry 3 

  Loam 3 
WORLD NEW => 100%   

 

FIGURE 3.9.  Example Red Wine Cluster from Best Cut Point 

The cluster contains four wines, which are all new-world, red wines made in the United States.  The 

only subtle difference is one of the wines was made with Syrah grapes versus the majority Pinot 

Noir.  Out of a max cluster score of 4, we find that this cluster receives a score of (1.0 * .75 * 1.0 

* 1.0) * 4 = 3.0.  This might seem like a large deviation from the highest possible score, but that is 

only because the cluster contains a smaller number of total wines.  For such a small cluster though, 

the score is nice, but we like it mostly because of its quality score, which is much closer to the max.  

This cluster receives a quality score of (1.0 + 0.75 + 1.0 + 1.0) / 4 = 0.9375, or 93.75%.  While 

these scores are only representative of the non-savory attributes, we have outlined the majority 

savory attributes that the wines were actually clustered on to give an idea of what the cluster’s 

sensory attributes contain.  We see that these four wines are centered on rich earthy and berry 

flavors.  Reviewers seemed to have specifically pulled out blackberry and raspberry notes, as well 

as loam, which indicates overall pleasant earthy flavors.  This cluster is an excellent example of a 

quality cluster, but we can actually find better.  FIGURE 3.10 describes a perfect cluster, at least 

when referencing the non-savory scores. 
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Cluster #11 (Similarity = 36.3636) 

1) AUBERT CHARDONNAY SONOMA COAST RITCHIE VINEYARD 2008 

2) BYRON CHARDONNAY SANTA MARIA VALLEY 2005 
3) STAGLIN CHARDONNAY RUTHERFORD 2002 

4) LEWIS CHARDONAY RUSSIAN RIVER VALLEY 2007 

5) SBRAGIA FAMILY CHARDONNAY NAPA VALLEY GAMBLE RANCH 
VINEYARD 2004 

  Sensory Attributes #Wines 

  Citrus 5 

TYPE WHITE => 100% Pear 4 

  Smoke 4 

VARIETAL CHARDONNAY => 100% Toasty Wood 4 
  Rich 4 

COUNTRY USA => 100% Complex 3 

  Concentrated 3 

WORLD NEW => 100% Layer 3 
  Fig 3 

  Dimension 3 

 

FIGURE 3.10.  Example White Wine Cluster from Best Cut Point 
 

All five wines in this cluster are new-world Chardonnays from the United States.  Since the max 

percentage for all non-savory attributes is 100%, then the cluster receives a cluster score of 5 and 

a quality score of 100%.  While this cluster does not contain a differing varietal, this type of cluster 

allows us to further examine the savory attributes present between the wines.  From this example, 

we are able to make some assumptions that CITRUS, PEAR, SMOKE, TOASTY WOOD are 

probably more likely to only belong to white wines, and in this case specifically, the Chardonnay 

varietal.  RICH was also described in 80% of the wines in this cluster, but it is good to remember 

this is lower-weighted attribute.  However, even lower weighted savory attributes can have some 

good cluster descriptive capabilities.  In this cluster, we see that a majority of these wines were 

described as COMPLEX, with LAYER[S] and DIMENSION[S].  A wine consumer might be more 

interested in a wine from this cluster should he want a chardonnay that has multitudes of 

overlapping flavors and body style while tasting.   

We have shown that based on our computational wine wheel, hierarchical clustering of the 

dataset results in viable clusters that can have quality groupings in both savory and non-savory 

attributes.  It is good to remember that our dataset has a very large number of dimensions, so the 
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average number of attributes per wine is small.  This means that a majority of the clusters are going 

to be small, but most likely very similar, such as in FIGURE 3.9 and FIGURE 3.10.  Our abilities 

to find these clusters shows promise, and that the computational wine wheel and review parsing 

techniques should be refined and continued. 
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CHAPTER 4:  BICLUSTERING 

 

 The classical clustering algorithms, such as hierarchical clustering and k-means clustering, 

are usually very good places to start when attempting to explore data.  However, they are flawed in 

a sense as both algorithms are attempting to detect patterns in observations across all given 

attributes of a dataset.  Sometimes it might be more important to find patterns that consist of a 

subset of attributes, as is primarily the case with locating patterns within gene expression data.  For 

biological gene data, a subspace clustering mechanism was needed, and while the algorithm idea 

was created in the 1970s, it was not popularized until 2000 when Cheng and Church proposed a 

variance-based biclustering method and successfully applied it to the field [29].  Their paper is still 

considered one of the most influential aspects to field of gene expression clustering. 

The overall idea of biclustering is fairly straight forward.  Given an m x n matrix, a 

biclustering algorithm tries to find subsections of rows that have similar behavioral patterns over a 

subsection of columns.  A bicluster is equivalent to a biclique in a corresponding bipartite graph.  

This essentially means that all of a bicluster’s rows, or observations, are all connected to every 

column, or attribute, presented in the bicluster.  For this statement to be true, then a bicluster is 

generally thought of as having constant values throughout the cluster, constant values across either 

all rows or all columns, or coherent values of some kind [30].  Generally speaking, coherent values 

refer to a pattern where values in the bicluster could be anything from additive, multiplicative, or 

have some other kind of special mathematical relationship. 

For our computational wine wheel, the idea of a bicluster should be explored as it presents 

the opportunity to find subspaces in our data where subsections of columns define a cluster instead 

of all attributes contained from that cluster’s wines.  We introduced the idea of strongly and weakly 

influential attributes with our weight system.  However, perhaps biclustering can transcend the need 

for important attributes, and simply identify the true patterns between wines. This is because we 

do not take distance between wines into effect, so we have no need for the weighted attributes. The 

following sections in this chapter will introduce the BiMax algorithm, show a running example, 
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and finally will discuss the algorithm’s effect on wine data generated using our computational wine 

wheel as presented in Chapter 2.5. 

4.1:  BiMax BiClustering 

The BiMax BiClustering algorithm was a reference method developed by Prelic et al. for 

baseline comparison of biclustering algorithms in general [31]. The process is fairly simple in that 

it searches for biclusters that consist entirely of 1s in a binary matrix.  This is perfect for datasets 

generated with the computational wine wheel in mind because a wine fits the binary requisite; a 

wine either has an attribute or it does not.  With this in mind, our goal is to use the BiMax algorithm 

to find all inclusion-maximal biclusters of wines and attributes.  This means a bicluster cannot be 

fully contained within another bicluster. We hope to show that resulting clusters show accurate 

perceptions of grouped wines and attributes that make sense.  This section will introduce the 

methodology behind the BiMax algorithm. 

To introduce mathematically what a bicluster is, we can look at its definition.  In terms of 

our computational wine wheel, a bicluster (𝑊, 𝐴) corresponds to a subset of wines 𝑊 ⊆ {1, … , 𝑛} 

that jointly share a subset of attributes 𝐴 ⊆ {1, … , 𝑚}. The pair (𝑊, 𝐴)  ∈  2{1,…,𝑛} 𝑥 2{1,…,𝑚} is 

considered inclusion maximal if and only if: 

(1) ∀ 𝑖 ∈ 𝑊, 𝑗 ∈ 𝐴 ∶  𝑒𝑖𝑗 = 1 

(2) ∄ (𝑊′, 𝐴′) with (a) meets criteria (1) and (b) 𝑊 ⊆ 𝑊′ ∧ 𝐴 ⊆ 𝐴′ ∧ (𝑊′, 𝐴′) ≠ (𝑊, 𝐴)  
 

EQUATION 4.1.  BiMax BiCluster Definition 

Criteria (1) states that given a possible bicluster, every possible value must be a 1.  Criteria (2) is 

the inclusion-maximal stipulation that says a bicluster (W,A) is considered inclusion-maximal as 

long as there does not exist another bicluster (W’,A’) in which both the wines and attributes of 

(W,A) are true subsets of (W’,A’).  Also, there is no sense of duplication so (W,A) and (W’,A’) 

cannot be fully equal as well.  It is worth noting that the basis of being a subset is determined by 

testing the wines and attributes independently of each other, as if the wines in W are not considered 

a subset of the wines in W’, then there’s no need to compare the attributes between the clusters. 
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Since we have defined what a bicluster is, we can dive into the actual processing of an 

input data matrix.  The BiMax algorithm is a divide and conquer approach that recursively divides 

an input matrix into what can be considered three different matrices, one of which contains only 

values of 0 and can be thrown out.  The remaining two possibly-overlapping matrices are then each 

recursively processed until a bicluster is found.  The figure below shows how the initial data is 

reorganized to find the sub-matrices U and V, represented by the blue and gold rectangles, 

respectively. 

 
 

FIGURE 4.1.  BiMax BiClustering Generic Step Before and After 

 

In FIGURE 4.1, the left matrix represents a sample input matrix with eight rows and nine columns.  

The right matrix represents the end result of this initial conquer step.  Since we can tell right away 

that the entire matrix is not entirely filled with 1 values, our first step is to find a row that has both 

1s and 0s.  Row R1 works perfectly for this so this will be our chosen row.  The first step is to then 

shift the columns of the matrix around so that all 1-valued columns for row R1 are shifted all the 

way to the left.  For this example, only column A6 needs to be moved to right after column A3.  

Once this shift is finished, we can think of the matrix as now having two vertical sections called 

Cu and Cv as depicted in FIGURE 4.1.  Column section Cu represents all columns with values of 

1 as shared by our chosen row.  Column section Cv conversely represents all columns not attributed 

to our chosen row.  With the columns correctly arranged, we now want to rearrange the matrix so 

that the rows are separated into three succinct row sections: Ru, Rw, and Rv.  Row section Ru 

contains all rows where only columns in Cu contain a value of 1.  In our example, that subsection 
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of rows are R1, R6, and R7. Row section Rw contains all rows where there are columns in both Cu 

and Cv with a value of 1.  These rows include R4 and R5. Row section Rv is then all rows where 

only columns in Cv contain a value of 1.  These rows include R8, R2, and R3. Once we know row 

and column order to fulfill these tasks, we can form our newly arranged matrix and divide it into 

two sub-matrices.  The blue outline in FIGURE 4.1 corresponds to sub-matrix 𝑈 = (𝑅𝑢 ∪ 𝑅𝑤, 𝐶𝑢), 

and the gold outline corresponds to the sub-matrix 𝑉 = (𝑅𝑤 ∪ 𝑅𝑣, 𝐶𝑢 ∪ 𝐶𝑣).  Should an area exist 

constrained by (Ru,Cv), then it will be filled with only 0 values and will subsequently be ignored.  

Matrices U and V are then recursively called and the above process is repeated until matrices are 

found where all values are 1.  At that point, assuming the resulting matrix is inclusion-maximal, 

we consider it a maximal bicluster for the input data matrix. 

 There is one small caveat about making sure a bicluster is inclusion-maximal.  Should the 

sub-matrices U and V contain any shared rows (Rw), it is possible that when a bicluster is found it 

may actually not be maximal.  To make sure it is, each time the sub-matrix V is processed, we can 

pass along a “callstack” of columns that need to be checked at each level of the recursive calls.  For 

each recursive function of V, we add a row to the callstack containing all columns in Cv at that 

current level.  This callstack can keep growing depending on how many levels it takes to find a 

possible bicluster.  Once a bicluster is found, it can be considered inclusion maximal if at least one 

column in the bicluster exists on each level of the callstack for the current recursive chain. This 

will guarantee that any bicluster found somewhere in V does not already exist as a superset in U. 

The next section will detail the processing and the callstack in more detail. 

4.2:  BiMax BiClustering Example 

Before we dive into analyzing our wine data, we will run through a quick example using 

the same example data set used in Chapter 3.6 for Hierarchical Clustering.  For the BiClustering 

example, we will define some perquisites that a bicluster must have at least two rows and at least 

two columns or we will reject it.  The dataset in FIGURE 4.2.1 shows our initial matrix, which is 

composed of 5 rows (wine1, wine2, wine3, wine4, wine5) and 4 columns (cherry, blueberry, plum, 
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spice).  For our running example, we will abbreviate the rows to (W1,W2,W3,W4,W5) and the 

columns to (C,B,P,S). 

 cherry blueberry plum spice 

wine1 1 0 1 0 

wine2 0 0 1 1 

wine3 1 0 1 0 

wine4 0 0 1 1 

wine5 1 1 1 0 

 

FIGURE 4.2.1.  BiClustering Example – Initial Data 

For the first iteration of operations in this example we will show the resulting table for each step.  

Subsequent illustrations will only show the beginning data and the ending result for each step.  

FIGURE 4.2.2 shows the initial data and the column and row operations we perform on it. 

 

 C B P S 

W1 1 0 1 0 

W2 0 0 1 1 

W3 1 0 1 0 

W4 0 0 1 1 

W5 1 1 1 0 
 

INITIAL DATA SET 

 C P B S 

W1 1 1 0 0 

W2 0 1 0 1 

W3 1 1 0 0 

W4 0 1 0 1 

W5 1 1 1 0 
 

COLUMN OPERATIONS 

 C P B S 

W1 1 1 0 0 

W3 1 1 0 0 

W2 0 1 0 1 

W4 0 1 0 1 

W5 1 1 1 0 
 

ROW OPERATIONS 

 C P B S 

W1 1 1 0 0 

W3 1 1 0 0 

W2 0 1 0 1 

W4 0 1 0 1 

W5 1 1 1 0 
 

FINAL MATRIX 

 

FIGURE 4.2.2.  BiClustering Example – Step 1 
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The first operation to perform on the matrix is to determine whether it is a potential bicluster or 

not.  That is, we determine if every value in the matrix is 1.  This matrix contains mixed values, so 

we need to transform it into a matrix that can be divided via the BiMax method.  For this we need 

to first find a row that contains both values of 1 and 0.  In this example, we can choose the very 

first row (W1).  Once we have found our designated row, we need to perform the appropriate 

column moves so that Row W1 contains all of its columns with values of 1 on the left.  This matrix 

is fairly simple so the only column operation is to move Column P directly after Column C.  The 

result should look like the matrix shown in the COLUMN OPERATIONS section of FIGURE 

4.2.2.  The next operations are to rearrange the rows so that they form the Ru, Rw, and Rv row 

subsections.  Note that we define Cu as being the set of columns that only Row W1 has 1-values in 

and we define Cv as the set of columns that Row W1 does not have 1-values in.  With this in mind, 

we find Ru by shifting all rows to the top of the matrix that only have values of 1 in columns only 

found in Cu.  In our example, we move Row W3 directly after W1 as it is the only other row that 

has 1-values in Cu.  Next we need to find Rw by placing all rows that have 1-values in both Cu and 

Cv after the Ru rows.  We see that all the remaining rows (W2, W4, W5) all contain 1-values in 

both Cu and Cv so there is nothing left to move since their current spot is fine.  What should be left 

at this point are all rows that only have 1-values in Cv, but our example contain no such rows.  The 

result of the row operations can be seen in the ROW OPERATIONS section of FIGURE 4.2.2.  At 

this point, we have concluded the column and row operations and now only need to divide the 

matrix into two sub-matrices.  As shown in the FINAL MATRIX section of FIGURE 4.2.2, the 

first Sub-matrix U is shown by the yellow-highlighted rows and column.  In this example, it is 

composed of all five rows and the columns C and P.  The second Sub-matrix V is shown by the 

rows and columns with the blue background.  This sub-matrix is composed of three rows 

(W2,W4,W5) and all columns.  We need to recursively apply the same column, row, and divide 

operations on each of these sub-matrices until we are left with a matrix with all 1-values, which 

will correspond to a potential bicluster.  We will continue this example with the illustrations below.  
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In FIGURE 4.2.3 and FIGURE 4.2.4, the left column will represent the total recursive calling 

command for the current chain.  The middle column will show a before and after image of the 

current matrix data.  Lastly, the final column will show the callstack (Z) at that point. 

Top -> U (left) 

 C P 

W1 1 1 

W3 1 1 

W2 0 1 

W4 0 1 

W5 1 1 
 

 P C 

W2 1 0 

W4 1 0 

W1 1 1 

W3 1 1 

W5 1 1 
 

Z = [[C,P]] 

Top -> U (left) -> U 

(left) 

 P 

W2 1 

W4 1 

W1 1 

W3 1 

W5 1 
 

Potential BiCluster 

Found 

Wines = 5 

Attributes = 1 
Does not meet 

thresholds 

Z = [[C,P] 

[P]] 

Top -> U (left) -> V 
(right) 

 P C 

W1 1 1 

W3 1 1 

W5 1 1 
 

Potential BiCluster 
Found 

Wines = 3 

Attributes = 2 
Valid BiCluster 

Z = [[C,P] 
[C]] 

 

FIGURE 4.2.3.  BiClustering Example – Step 2 (initial,left) 

In FIGURE 4.2.3, we show the recursive results of processing the Sub-matrix U from the initial, 

top level.  We also introduce the first addition of columns to the callstack, which is designed to 

check and throw out biclusters that are not maximal.  For every recursive call on Sub-matrix U, we 

also add of U’s columns as a list to the callstack. This is actually not necessary for U, but we want 

to drive home the point of the callstack. For every recursive call on Sub-matrix V, we add only the 

columns in the current matrix’s Cv as a list to the callstack.  When a potential bicluster is found, it 

must have at least one column present in every level of the callstack, or it is not considered maximal.  

We will see an example of this later.  For the processing of the Top Level -> Sub-matrix U, we see 

that it gets divided into two possible biclusters.  Both biclusters pass the callstack check by having 

columns in all levels of their respective callstacks.  However, only the Top->U->V sub-matrix 

passes as the Top->U->U submatrix does not meet the minimum attribute threshold of 2.  With 
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that, the entire top level U sub-matrix has been explored, so we will now the recursive function 

returns up in order to now process the topmost V submatrix as shown below. 

Top -> V (right)  C P B S 

W2 0 1 0 1 

W4 0 1 0 1 

W5 1 1 1 0 
 

 P S C B 

W2 1 1 0 0 

W4 1 1 0 0 

W5 1 0 1 1 
 

Z = 

[[B,S]] 

    

Top -> V (right) -

> U (left) 
 P S 

W2 1 1 

W4 1 1 

W5 1 0 
 

 P S 

W5 1 0 

W2 1 1 

W4 1 1 
 

Z = 

[[B,S] 
[P,S]] 

    
Top -> V (right) -

> U (left) -> U 

(left) 

 P 

W5 1 

W2 1 

W4 1 
 

Potential BiCluster Found 

Wines = 3 

Attributes = 1 
Does not meet thresholds, nor 

callstack check 

Z = 

[[B,S] 

[P,S] 
[P]] 

    

Top -> V (right) -
> U (left) -> V 

(right) 

 P S 

W2 1 1 

W4 1 1 
 

Potential BiCluster Found 
Wines = 2 

Attributes = 2 

Valid BiCluster 

Z = 
[[B,S] 

[P,S] 

[S]] 
    

Top -> V (right) -

> V (right) 
 P S C B 

W5 1 0 1 1 
 

 P C B S 

W5 1 1 1 0 
 

Z = 

[[B,S] 

[C,B]] 
    

Top -> V (right) -

> V (right) -> U 
(left) 

 P C B 

W5 1 1 1 
 

Potential BiCluster Found 

Wines = 1 
Attributes = 3 

Does not meet thresholds 

Z = 

[[B,S] 
[C,B] 

[P,C,B]] 

 

FIGURE 4.2.4.  BiClustering Example – Step 3 (initial,right) 

In FIGURE 4.2.4, we show the processing of Sub-matrix V from the initial, top level.  This sub-

matrix eventually finds three potential biclusters, but only the Top->V->U->V bicluster passes both 

the callstack and the minimum thresholds.  The Top->V->V->U bicsluter fails the minimum 

threshold.  It is the Top->V->U->U bicluster that is worth noting, as even though it does not meet 

the minimum attribute threshold, it is special in that it also does not meet the callstack check.  It 

passes all levels of the callstack except for the very top level, which corresponds to the initial data 

matrix.  We can see in Top->V that the slice (W2,W4,W5)x(P) is actually a subset of the Top->U-
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>U bicluster.  Even though it would have failed threshold requirements anyway, it is important to 

understand that we are able to detect non-maximal biclusters the moment they come up thanks to 

the callstack. This example resulted in five possible biclusters being found, yet one failed the 

callstack check, and only two of them actually met our threshold requirements.  Taking a look at 

FIGURE 4.2.5, we can look back on the original data and try to visual identify where these two 

valid biclusters were. 

 P C 

W1 1 1 

W3 1 1 

W5 1 1 
 

 

 

 

 cherry blueberry plum spice 

wine1 1 0 1 0 

wine2 0 0 1 1 

wine3 1 0 1 0 

wine4 0 0 1 1 

wine5 1 1 1 0 
 

 P S 

W2 1 1 

W4 1 1 
 

 

FIGURE 4.2.5.  BiClustering Example - Results 

Although they did not meet the threshold requirements, the two biclusters that did not make it are 

colored with red text.  In case the colors are not available, those two rejected clusters are [(wine1, 

wine2, wine3, wine4, wine4) x (plum)] and [(wine5) x (cherry, blueberry, plum)]. 

4.3:  BiClustering 50 Wines 

This section will describe our biclustering and analysis process of 1 of the 5 sets of 50 

wines as described in Chapter 2.5.  We chose to only look into one vintage as Chapter 5 will focus 

on combining all five vintages together.  For the 50 wines in the 2010 vintage, we implemented 

and applied the BiMax biclustering algorithm exactly as presented in this chapter. The overall 

bicluster summarization is described in FIGURE 4.3. 
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FIGURE 4.3.  Summarization of Biclusters of 50 Wines (2010) 

This figure represents the total number of maximal biclusters found for the 2010 50-wine dataset.  

The table values represent the total number of biclusters that share a specific number of wines 

(vertical axis) versus a specific number of savory attributes (horizontal axis).  In the table, there are 

darkened, rectangular borders that are meant to be a visual reference to show all biclusters where 

the minimum number of rows equals the minimum number of columns.  For example, in this 

vintage there are no clusters that have at least five wines and at least five attributes.  For a dataset 

with 50 wines and 259 possible attributes, this may seem like a low combination, but it makes sense 

as the number of total possible attributes in any given wine is fairly small.  For this reason, we 

assume that any biclusters with many wines and attributes must have a stronger correlation to each 

other than biclusters where the total wines or total attributes are extremely lopsided, such as those 

biclusters with greater than 10 wines, but only 1 shared attribute.  To check the quality of our 
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biclusters, we have to manually inspect example biclusters as we currently have no automated 

quality functions as we had developed for hierarchical clustering chapter.   

We will first attempt to explore those biclusters that fall into the category of at least 4 wines 

and 4 attributes.  In total, there were 17 total biclusters that fell into this group, which represents 

some of the most robust biclusters from this vintage, region, and varietal.  We will examine a couple 

biclusters as well as some common themes below. 

BiCluster #5/17 (Min Wines = 4, Min Attributes = 4) 
Cabernett Sauvignon – Napa Valley (2010) 

Wine Producer – Designation (4) Shared Attributes (4) 

CHAPPELLET  SIGNATURE 

BERINGER PRIVATE RESERVE 
ARAUJO EISELE VINEYARD 

CAVUS STAGS LEAP DISTRICT 

BLACK LICORICE 

RICH 
DARK BERRY 

DENSE 

 

FIGURE 4.4.  BiCluster from 50 Wines – Example 1 (Strong) 
 

BiCluster #9/17 (Min Wines = 4, Min Attributes = 4) 

Cabernett Sauvignon – Napa Valley (2010) 

Wine Producer – Designation (5) Shared Attributes (4) 

BEAULIEU VINEYARD GEORGES DE LATOUR PRIVATE 
RESERVE 

DIAMOND CREEK VOLCANIC HILL 

DALLA VALLE MAYA  
BARNETT SPRING MOUNTAIN DISTRICT RATTLESNAKE 

HILL 

DAVID ARTHUR ELEVATION 1147 

GREAT 
TANNINS_LOW 

FINISH 

FLAVORS 

 

FIGURE 4.5.  BiCluster from 50 Wines – Example 2 (Weak) 

FIGURE 4.4 and FIGURE 4.5 show 2 of the 17 possible biclusters that we can examine from this 

group.  The bicluster in FIGURE 4.4 shows four wines along with the four attributes shared among 

them.  Bringing in the concept of weighted attributes from Chapter 2, we see important attributes, 

such as BLACK LICORICE and DARK BERRY.  These are distinctive flavors that a taster might 

be accustomed to when sampling a Cabernet Sauvignon.  This bicluster was also described as RICH 

and DENSE as well.  FIGURE 4.5 shows a slightly bigger bicluster as it contains five total wines 

and four attributes.  The biggest difference though is that this bicluster does not contain any 

important attributes that we might have considered in the Hierarchical Clustering section.  We built 
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in no concept of weight or distance into the biclustering, so all attributes are treated equally.  

Looking at this bicluster, it may be of decent size on both ends, but the actual attribute selection is 

fairly weak and generic, and probably would not help a consumer when searching for potential 

wines. However, there are still advantages as the biclusters allow us to categorize wines with true 

subsets of attributes.  Unlike hierarchical clustering, which would present groups of wines using 

all attributes among them, biclustering allows us to show many different, but smaller, groupings of 

the same wines across varying attribute patterns.  This would give potential for consumers to select 

small flavor profiles and expect higher quality results since the biclusters might have filtered out 

unneeded attributes. To reinforce this idea, we can explore common themes found among 

biclusters.  It makes sense that by biclustering only cabernet sauvignon wines from the Napa Valley 

region that there should be significant overlap among attributes between wines.  Additionally, 

because of the sheer number of total attributes and by comparison, the low amount of attributes per 

wine, it is reasonable to see a very large amount of resulting biclusters, many of which share a very 

small subset of attributes. Among the 17 biclusters found in this group, 10 biclusters contain 

EARTHY or LOAM attributes, and another 6 biclusters are focused around the DENSE attribute. 

Should a flavor palette be used to search for (EARTHY or LOAM), then we could present the user 

with a set of wine groups that might alter against the following specific attributes:  CEDAR, DARK 

BERRY, and BLACK LICORICE.  

When examining biclusters for our wine dataset, we do not have to try to find clusters that 

are maximal in terms of both number of wines and attributes.  We can also look for interesting wine 

and attribute combinations in those clusters that have either low number of wines and high number 

of attributes, or those with high number of wines and low number of attributes.  The former suggests 

a smaller subset of wines stayed consistent across a majority of attributes across vintages, while the 

later suggests a larger subset of wines that might share a small pool of distinctive attributes.  The 

figures below show examples from both types of biclusters found in group of biclusters that contain 

at least three wines and at least three attributes.  This group contained a total of 208 biclusters. 
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BiCluster #98/208 (Min Wines = 3, Min Attributes = 3) 

Cabernet Sauvignon – Napa Valley (2010) 

Wine Producer – Designation (3) Shared Attributes (6) 

EHLERS ESTATE ST. HELENA 1886 

BEAULIEU VINEYARD TAPESTRY RESERVE 

BERINGER PRIVATE RESERVE 
 

EARTHY 

FLAVORS 

LOAM 
FINISH 

DENSE 

TRACTION 

 
FIGURE 4.6.  BiCluster from 50 Wines – Example 3 (Low Wines, High Attributes) 

 

BiCluster #8/208 (Min Wines = 3, Min Attributes = 3) 

Cabernet Sauvignon – Napa Valley (2010) 

Wine Producer – Designation (7) Shared Attributes (3) 

BURLY 

CAKEBREAD 

BOND PLURIBUS 
ALPHA OMEGA 

DIAMOND CREEK RED ROCK TERRACE 

FORMAN 
COLGIN IX ESTATE 

CEDAR 

LOAM 

EARTHY 

 

FIGURE 4.7.  BiCluster from 50 Wines – Example 4 (High Wines, Low Attributes) 

 
FIGURE 4.6 shows a bicluster with three wines and six attributes.  While there are many attributes 

shared between the three wines, the only important attributes are EARTHY and LOAM.  However, 

if a consumer is only interested in these two savory flavors, then this and other similar biclusters 

allow the user to search via subjective descriptors.  In this case, we present a set of DENSE wines 

that keep TRACTION through a FLAVOR[ABLE] FINISH.  Alternatively, FIGURE 4.7 shows a 

bicluster with seven wines, but only three attributes.  In this example, we continue the theme of 

EARTHY and LOAM flavors, but explore adding in additional highly-weighted attributes, such as 

CEDAR.  If a consumer is only interested in these three savory attributes, then this bicluster offers 

a wide array of wines to try without getting into individual wine descriptors. 

The beauty of biclustering is that many of the biclusters share subsets of both wines and 

attributes, but all are still maximal when taking the entire contents of the bicluster into account.  

We have presented examples that show how limiting or expanding wine attributes can change the 

biclusters that might come up in a potential attribute profile search.  Depending on the search 
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criteria used, biclusters can either be generic with many wines, or specific with fewer wines.  

However, this is one issue with biclustering a single vintage of wines in that we only see patterns 

across a given year.  Since wines are produced yearly, it would be nice to try to find these patterns 

across many years, which should help identify consistent and dominant wine attributes in a region.  

We try to solve this problem using a triclustering method as presented in the next chapter.  
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CHAPTER 5:  TRICLUSTERING 

Just as with biclustering, triclustering is becoming a popular method to explore gene 

expression microarray data.  At its core, triclustering can actually be thought of as an extension to 

biclustering.  Instead of working with two dimensional matrices, triclustering focuses on finding 

behavioral patterns between row and columns along a time series.  For gene microarray analysis, 

the time series can be usually thought of as the same genes and sample attributes along different 

experiments, with the results being genes that share expression profiles under different scenarios. 

By adding the third dimension to the data, triclustering can be thought of as reinforcing the 

biclusters that could have been found on a single time slice.  Should biclusters exist beyond their 

single time scope, their inferences hold greater weight.  There has already been work done in the 

gene expression field for triclustering as detailed by Zhao et al. [32] and Bhar et al [33].  Their 

approaches assume that the data is a bit more complex than true binary choices like our wine data.  

Also, Zhao at al. propose a weighted, directed range multigraph to find biclusters within a given 

time slice.  Then those biclusters are searched among each other to find the maximal versions of 

each that share multiple time slices.  We want to post our exploration into a technique that borrows 

ideas from the BiMax algorithm in order to extend it into the three dimensional space.  This chapter 

will discuss our look into a novel TriMax TriClustering reference algorithm, which should act as 

an extension to the BiMax BiClustering algorithm discussed in Chapter 4.  To our knowledge, there 

is no preexisting work that attempts to find triclusters using our method, nor is there a reference 

algorithm for triclustering that emulates the role BiMax performs for biclustering. 

5.1:  TriMax TriClustering 

Just as with BiMax BiClustering, Trimax Triclustering should be considered a reference 

algorithm in that it attempts to cluster on the most basic level and makes no assumptions of differing 

values in the data.  That means it expects all values to either be zero or non-zero, so completely 

binary in nature.  For our specific dataset, we will assume all data values are either 1 or 0.  We will 

start with the definition, which should look very similar to the BiMax definition. We consider a 
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tricluster (𝑊, 𝐴, 𝑇) to correspond to a subset of wines 𝑊 ⊆ {1, … , 𝑛} that jointly share a subset of 

wine attributes 𝐴 ⊆ {1, … , 𝑚} across a subset of time slices 𝑇 ⊆ {1, … , 𝑜}.  The tuple (𝑊, 𝐴, 𝑇)  ∈

 2{1,…,𝑛} 𝑥 2{1,…,𝑚}𝑥 2{1,…,𝑜} is considered inclusion maximal if and only if it meets the following 

two criteria. 

(1) ∀ 𝑖 ∈ 𝑊, 𝑗 ∈ 𝐴, 𝑘 ∈ 𝑇 ∶  𝑒𝑖𝑗𝑘 = 1 

(2) ∄ (𝑊′, 𝐴′, 𝑇′) with (a) meets criteria (1) and (b) 𝑊 ⊆ 𝑊′ ∧ 𝐴 ⊆ 𝐴′ ∧ 𝑇 ⊆ 𝑇′ ∧
(𝑊′, 𝐴′ , 𝑇′) ≠ (𝑊, 𝐴, 𝑇)  

 

EQUATION 5.1  TriMax TriCluster Definition 

Criteria (1) states that given a possible tricluster, every possible value must be a 1 across all rows, 

columns, and time slices.  Criteria (2) is the inclusion-maximal stipulation that says a tricluster A 

is considered inclusion-maximal as long as there does not exist another tricluster B in which the 

grouping of wines, attributes, and time slices of A are a subset of B.  If a tricluster A is found, there 

also cannot be a tricluster B, such that A = B. Now that we have defined a tricluster, we can 

discussed the algorithm to find them.  However, there should be two points noted before we discuss 

the algorithm.  (1)  Our proposed algorithm uses the BiMax algorithm, so a good understanding of 

the algorithm, as we discussed in Chapter 4, is necessary to proceed.  (2) We believe our program 

is able to find all triclusters, but unlike BiMax which knows at runtime whichs biclusters to ignore 

thanks to its column callstack, TriMax has to filter out duplicate or subset triclusters after finding 

all possible triclusters.  We will examine an example dataset that shows how duplicates arise, but 

first we will run through the algorithm itself. The pseudocode is presented in FIGURE 5.1. 
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TriMax TriClustering Reference Algorithm 

 𝐼𝐷 = 𝐷 = {{𝑤𝑖}𝑖=1
𝑎 }𝑖=1

𝑡  

 𝑇𝑟𝑖𝐿𝑖𝑠𝑡 = {∅} 

 𝑻𝒓𝒊𝑴𝒂𝒙𝑻𝒓𝒊𝑪𝒍𝒖𝒔𝒕(𝐷, 𝑚𝑊𝐴𝑇, 𝑣𝑇): 
1      𝒇𝒐𝒓 𝒂𝒏𝒚 𝑡 ∊ 𝐷𝑇 𝒘𝒉𝒆𝒓𝒆 𝑡 ∊ 𝑣𝑇 𝒂𝒏𝒅 𝒂𝒍𝒍 𝐷𝑊,𝐴,𝑡 = 1 

2           𝒓𝒆𝒕𝒖𝒓𝒏 

3      𝒇𝒐𝒓 𝑡 ∊ 𝐷 𝒅𝒐: 

4           𝒊𝒇(𝑡 ∊ 𝑣𝑇 𝒐𝒓 (𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑖𝑛 𝑡 = 1 𝑜𝑟 0)): 

5                𝒊𝒇(𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑖𝑛 𝑡 = 0): 

6                     𝑎𝑝𝑝𝑒𝑛𝑑(𝑣𝑇, 𝑡) 

7                𝐜𝐨𝐧𝐭𝐢𝐧𝐮𝐞 to next time slice 

8           𝐵 = 𝑩𝒊𝑴𝒂𝒙𝑩𝒊𝑪𝒍𝒖𝒔𝒕(𝑡, 𝑚𝑊𝐴𝑇) 

9           𝒇𝒐𝒓 𝑏 ∊ 𝐵 𝒅𝒐: 

10                𝑛𝑒𝑤𝐷′ =  {𝑏}𝑡=1
𝐼𝐷𝑇  

11                𝑻𝒓𝒊𝑴𝒂𝒙𝑻𝒓𝒊𝑪𝒍𝒖𝒔𝒕(𝐷′, 𝑚𝑊𝐴𝑇, 𝑣𝑇) 

12           𝑎𝑝𝑝𝑒𝑛𝑑(𝑣𝑇, 𝑡) 

13 𝒊𝒇(𝑙𝑒𝑛(𝐷𝑊, 𝐷𝐴 , 𝐷𝑇) ≥ {𝑚𝑊𝐴𝑇}): 

14      𝑎𝑝𝑝𝑒𝑛𝑑(𝑇𝑟𝑖𝐿𝑖𝑠𝑡, 𝐷𝑊,𝐴,(𝐷𝑇−𝑣𝑇)): unless 𝐷𝑇 − 𝑣𝑇 =  {∅} 

15 𝒓𝒆𝒕𝒖𝒓𝒏 

16  

17 ∀ 𝑡 ∈ 𝑇𝑟𝑖𝐿𝑖𝑠𝑡: 𝑟𝑒𝑚𝑜𝑣𝑒 𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑠/𝑠𝑢𝑏𝑠𝑒𝑡𝑠 
 

 
FIGURE 5.1.  Proposed TriMax TriClustering Reference Algorithm Pseudocode 

 

The pseudocode for our proposed TriMax TriClustering algorithm is shown in FIGURE 5.1.  As a 

base concept, we want to take biclusters found in each time slice and see if they can extend across 

any and all other time slices. To accomplish this, we start with our dataset D and process each of 

D’s t time slices iteratively.  For a given bicluster b that is found in a given time slice t, we form a 

new dataset D’, which consists of the rows and columns of b, along every time slices of the input 

data.  That new dataset is then recursively processed using the same methodology until the resulting 

dataset D’ consists only of values of 1.   Naively, we can consider a completely 1-valued dataset as 

a tricluster if it passes the minimum row, column, and time slice amounts set in mWAT.  Since our 

process does not have any callstacks like the BiMax algorithm, TriMax will natively introduce 

duplicate triclusters or triclusters that are subsets, or non-maximal.  To combat part of this problem, 



62 
  

we introduce a visited array vT, which is populated with the index of a time slice once that time 

slice’s recursive processing has finished.  This allows any tricluster found to be ignored if it 

includes a time slice within vT at any recursive level.  If this occurs, ideally it means that the 

tricluster has already been found previously.  However, this only attempts to filter out triclusters 

between given time slices.  It does not work on duplicate or non-maximal subsets formed from 

partially overlapping biclusters originating from the same time slice.  FIGURE 5.2 shows an 

example of duplication issues caused by overlapping biclusters in a given time slice T1. 

 

FIGURE 5.2.  Tricluster Found from Multiple Intra-Timeslice Biclusters 

In FIGURE 5.2, we can say we would process time slice T1 first by expanding the three biclusters 

found within it:  {W1,W2,W3,W4}x{A1}, {W2,W3}x{A1,A2,A3}, and {W2,W3,W4}x{A1,A2}. 

As shown by the blue squares, all three biclusters share the following subset of rows and columns: 

{W2,W3}x{A1}.  By expanding all three, the same tricluster, as presented on the right of FIGURE 

5.2, will be found three times, and thusly will have to be filtered down to one instance afterwards.  

Even with the slight timing inefficiency here in the post processing, we believe this method will 

still find all maximal triclusters between all time slices given in a three dimensional data set.  The 

next section will detail the results when applying triclustering to our multi-vintage 50-wine dataset. 
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5.2:  TriClustering 50 Wines across 5 Years 

To test out the TriMax algorithm, we used the dataset presented in Chapter 2.5, except this 

time we used the full 5 years’ worth of vintages.  We applied the TriMax algorithm presented in 

the previous section, and in total we found 23,225 possible triclusters.  Since we knew a large 

percentage of these would actually be duplicates or non-maximal, we performed the pairwise subset 

comparison and pulled out a total of 7,296 superset triclusters.  Of all the triclusters found, 6,357 

of them only exist in a single time slice.  These can actually be thought of biclusters in a three 

dimensional space that only existed individually.  We found 735 triclusters that spanned 2 time 

slices.  We found 166 triclusters that spanned 3 time slices, and 31 triclusters that spanned 4 time 

slices. Lastly, we found 7 triclusters that spanned all 5 time slices. FIGURE 5.3.1 through 

FIGURES 5.3.5 summarize the findings just as we did in FIGURE 4.3 for biclusters. 

 

FIGURE 5.3.1.  TriMax Results on 50 Wines in 1 Time Slice 
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FIGURE 5.3.2.  TriMax Results on 50 Wines in 2 Time Slices 

 

 

FIGURE 5.3.3.  TriMax Results on 50 Wines in 3 Time Slices 
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FIGURE 5.3.4.  TriMax Results on 50 Wines in 4 Time Slices  

 

 

FIGURE 5.3.5.  TriMax Results on 50 Wines in 5 Time Slices 

 
We will now explore some of the triclusters that we found above.  To show a tricluster that managed 

to expand across all time slices, we can look at a tricluster in FIGURE 5.3.5 that has eight wines 

and one attribute. 

Tricluster #102 
Cabernet Sauvignon – Napa Valley 

Wine Producer – Designation (8) Shared Attributes (1) Vintages (5) 

BARNETT SPRING MOUNTAIN DISTRICT 

RATTLESNAKE HILL 

BERINGER PRIVATE RESERVE 
BOND MELBURY 

BOND QUELLA 

BOND ST. EDEN 
BOND VECINA 

DIAMOND CREEK GRAVELLY MEADOW 

DIAMOND CREEK VOLCANIC HILL 

GREAT 2010 

2009 

2008 
2007 

2006 

 
FIGURE 5.4.  TriCluster from 50 Wines – Example 1 

 

While FIGURE 5.4 only has a single, least-weighted attribute, the triclustering aspect lets us know 

that all eight of these wines are considered GREAT for five years in a row.  We can also see that 
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four of the wines share the same producer, so it is probable that any other wine produced by BOND 

would also probably be considered great.  Apart from groups of many wines, we can also look out 

how a single wine changes between vintages as seen in the figure below. 

Tricluster #3456,3457,3458 

Cabernet Sauvignon – Napa Valley 

Wine Producer – Designation (1) Shared Attributes (4) Vintages (3) 

CASA PIENA BLACKBERRY 

CONCENTRATED 

GREAT 
TIGHT 

FINISH (2007) 

MINERAL (2007) 
CURRANT (2006) 

FOCUSED (2006) 

TANNINS_HIGH (2006) 

2008 

2007 

2006 

 
FIGURE 5.5.  Three TriClusters from 50 Wines – Example 2 

FIGURE 5.5 shows us a single wine that has four attributes across three vintages.  The distinctive 

BLACKBERRY taste is found across all three years, as well as a TIGHT, CONCENTRATED, and 

GREAT tasting.  Using 2008 as a base year, we can add in 2007 and gain the FINISH and 

MINERAL attributes.  Alternatively, we can add in 2006 and gain FOCUSED and 

TANNINS_HIGH.  These three triclusters allow us to research a specific wine and see how the 

attributes change over time.  Anything can affect a given vintage from bad weather to slight changes 

in harvesting and fermentation processing.  Unless something major changes though, we can 

probably use the entire range of possible attributes to forecast what this specific wine might entail 

in the future.  Lastly, we will show an example with at least two items in every category. 

Tricluster #1155 
Cabernet Sauvignon – Napa Valley 

Wine Producer – Designation (2) Shared Attributes (2) Vintages (4) 

CASA PIENA 

DANCING HARES 

BLACKBERRY 

GREAT 

2009 

2008 
2007 

2006 

 

FIGURE 5.6. Tricluster across 4 Years – Example 3 
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FIGURE 5.6 shows a tricluster that has two wines containing two attributes across four consecutive 

vintages.  The main purpose of this figure is just to provide an example of triclusters with many 

vintages that are not limited to just one wine or wine attribute.  While both wines and attributes are 

still fairly small, this just further provides opportunity for specialized searching and classification. 

 Since the dataset used for this chapter contained only a specific varietal from a specific 

region, we were able to get highly defined cluster results.  We believe that triclustering data from 

a variety of types and sources should produce interesting results and it will be worth exploring 

those datasets in the future.  We would have tried for wines contained within our computational 

wine wheel, but we could not be guaranteed to find reviews on a large set of wines for a specific 

span of years, so we chose a narrow approach by choosing only one type of wine from a single 

region.  
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CONCLUSION 

This paper has introduced the data analysis area of Wine Informatics, which comprises of 

the gathering and analysis of specialized data sets consisting of key attributes extracted from 

professional wine tasting reviews.  Within the Wine Informatics field itself, we have also 

introduced the concept of a computational wine wheel, which corresponds to a specific set of wines 

and the key attributes belonging to those wines.  For our specific methods of analysis, we chose to 

focus on the following three clustering methods:  Single Linkage Agglomerative Hierarchical 

Clustering, BiMax Biclustering, and a proposed TriMax Triclustering.  Using all three of these 

methods, we have extracted clusters of varying structures in an attempt to show that the data inside 

the computational wine wheel can present highly correlated sets of wines and attributes that not 

only make sense, but can possibly be used by consumers, wine enthusiasts, wine suppliers, and 

specialized wine websites.  For hierarchical clustering specifically, we introduce a set of cluster 

quality metrics that can help automatically derive quality scores when using large sets of wines.  

Instead of deriving the quality on the attributes used in the clustering, we used set of non-savory 

attributes that do not affect the clustering process at all.  We show that we are able to successfully 

group types of wines by type, varietal, country, and world type based only on the review attributes 

of the tasting.  We also tackle a dataset of wines of the same varietal and region (Cabernet 

Sauvignon and Napa Valley) in order to see how subspace biclustering resulted.  We were able to 

pull out cohesive clusters that highlight subsets of wine and attribute combinations.  These clusters 

show promise in allowing palette searching for similar wines.  Lastly, we applied the same dataset 

used in biclustering, except across multiple years, in a proposed triclustering method.  We used this 

show that biclusters found in a given vintage might actually extend across time, meaning we found 

wines that stayed consistent across vintages.  This could strengthen the chances that a future vintage 

of a wine might share similar properties.  We showed that it is indeed possible to cluster similar 

wines using just the review tasting notes, and that it will be worth continuing to work with this data 

in order to make it more useful for many aspects of the wine industry.  
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FUTURE WORKS 

 This paper presents several major opportunities to expand on the work presented.  The first 

path involves expanding the computational wine wheel dictionary by looking into automated ways 

of extracting new wine attributes from wine reviews.  Also, further review of the dataset is 

welcomed as this represents the effort of only a few individuals.  Another avenue is taking our 

dataset and using clustering algorithms that this paper did not explore.  Given the nature of the 

dataset, we feel that hierarchical clustering, biclustering, and triclustering were great entry points, 

but a wider range of application would help to further reinforce the data.  Lastly, we introduced a 

new reference subspace clustering algorithm called TriMax TriClustering.  We believe the direction 

the algorithm takes in one that can result in a complete list of maximal triclusters, just as BiMax 

does for maximal biclusters.  However, the algorithm still results in some duplicated or non-

maximal triclusters that require post-processing to filter out.  While the tricluster results are still 

valid, the algorithm methodology will need further review in order to ensure efficient and accurate 

results after the first pass of the data.  We would like to see TriMax truly be the successor to BiMax 

in all aspects.  
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