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ABSTRACT 
 

Malignant melanoma is the deadliest form of skin cancer. Dermoscopy is a 

noninvasive high-resolution imaging technique that assists physicians for more accurate 

diagnoses of skin cancers. Melanoma is a fast-growing aggressive type of skin cancer. 

Due to this feature, malignant melanoma remains one of the fastest growing cancers 

worldwide. After it metastasizes from its origin into other tissues, the response rate to 

treatment declines as low as 5%, and its 10-year survival rate is only about 10%. After it 

metastasizes, there is no surgical removal option available for treatment. Thus, early 

detection of malignant melanoma is critically important. Among many types of skin 

cancers, melanoma has the highest false negative ratio. 

Therefore, this thesis proposes three methods for early detection of malignant 

melanoma. More specifically, this thesis, first, introduces a novel approach of texture-

based abrupt cutoff quantification method (abrupt cutoff is one of the critical features for 

detecting malignant melanoma in its early stages). In current clinical practice, abrupt 

cutoff evaluation is subjective and error-prone. In our method, we introduce a novel 

approach to objectively and quantitatively measure abrupt cutoff. To achieve this, we 

quantitatively analyzed the texture features of a region within the skin lesion boundary 

using level set propagation (LSP) method. Then, we built feature vectors of homogeneity, 

standard deviation of pixel values, and mean of the pixel values of the region of interest 

between the contracted border and the original border of a skin lesion. These vectors 

were then classified using neural networks (NN) and support vector machines (SVM) 

classifiers. Results obtained from these classifiers are also compared. 



 

 vii 

Second, to accurately and real-time segment skin lesions in dermoscopic images, we 

used superpixels approach. More specifically, simple linear iterative clustering (SLIC) 

superpixel algorithm is used. SLIC adapts k-means clustering to generate superpixels. 

After superpixels are created from dermoscopy images, in order to automatically merge 

meaningful superpixels that fall inside the skin lesion boundary, we first found the mean 

average value of each superpixel, and second, we calculated the median threshold values 

for all superpixels. After the merge of superpixels, we were able to accurately segment 

skin lesion borders. Our results showed that our method provides comparable 

segmentation results for skin lesions to the physician drawn lesion borders. 

Third, for accurate and fast classification of malignant melanoma on dermoscopy 

images, we used Inception v3 image classification transfer learning algorithm. We used 

pretrained version of Inception v3 on ImageNet dataset. We achieved the accuracy of 

95% f-1 score for classifying the malignancy on 4,572 dermoscopy images. 

 

Keywords: Deep Learning, Transfer Learning, Melanoma, Malignant Melanoma, 

Dermoscopy, SLIC, Skin Cancer Classification, Abrupt Cutoff Quantification, Skin 

Lesion Segmentation 
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CHAPTER 1. INTRODUCTION 

1.1. Motivation 

The occurrence of malignant melanoma, which is the deadliest form of skin cancers, 

has been elevated in the last decade. Between 2009 and 2010, the mortality rate due to 

melanoma increased by 3% in the USA [1]. Skin cancer occurrence has become more 

common not only in the USA but also in different countries with Caucasian people 

majority such as the UK and Canada with 10,000 diagnoses and annual mortality of 1,250 

people [2]. Early diagnosis of the melanoma has been spotlighted due to the persistent 

elevation of the number of incidents, the high medical cost, and increased death rate. The 

developments in computer-aided diagnostic methods can have a vital role on significantly 

reducing mortality. 

Dermoscopy, which is one of the noninvasive skin imaging techniques, has become a 

key method in the diagnosis of melanoma. Dermoscopy is the method that magnifies the 

region of interest (ROI) optically and takes digital pictures of the ROI. Misdiagnosis or 

underdiagnosis of melanoma is the main reason for skin cancer-related fatalities [3]. The 

cause of these errors is usually due to the complexity of the subsurface structures and the 

subjectivity of visual interpretations [4, 5]. Hence, there is a need for computerized image 

understanding tools to help physicians or primary care assistants to minimize the 

diagnostic errors. 

Expert clinicians look for the presence of exclusive visual features to diagnose skin 

lesions correctly in almost all of the clinical dermoscopy methods. These features are 

evaluated for irregularities and malignancy [6, 7, 8, 9]. However, in the case of an 

inexperienced dermatologist, diagnosis of melanoma can be very challenging.  The 
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accuracy of melanoma detection with dermoscopy still varies from 75-85% [10]. This 

indicates the necessity of computer aided diagnosis platforms.  

The problems addressed in this thesis are; i) how to eliminate the subjectivity on 

visual interpretation of dermoscopy images for border irregularity/abruptness; ii) how to 

improve the performance of feature extraction algorithms by providing more accurate 

skin lesion segmentations; and iii) how to reduce the number of false-negative diagnosis. 

Images used in this thesis are obtained from the International Skin Imaging 

Collaborations Archive [11]. 

1.2. Structure of the thesis 

The rest of the thesis is organized as follows: 

Chapter 2 provides some fundamental and necessary background on human skin and 

skin cancer types and our motivation to tackle this problem from a computer science 

perspective. 

Chapter 3 gives a brief introduction to deep learning, convolutional neural networks, 

and finally transfer learning for their applications in various medical image processing 

application areas, specifically for skin cancer field. 

Chapter 4 describes our approach to skin lesion abruptness quantification that we 

developed to objectively measure skin lesion borders’ abrupt cutoff.  

Chapter 5 describes our approach for accurately segmenting skin lesions from 

dermoscopy images and our solution to classify malignancy in dermoscopy images using 

the transfer learning algorithm, Inception v3 [12] . 

Chapter 6 concludes the thesis and summarizes our contributions. 
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CHAPTER 2. AN OVERVIEW OF SKIN CANCER, HUMAN SKIN AND 
DIAGNOSIS METHODS 

 
2.1. Skin Cancer 

Cancer is one of the leading causes of death of human beings. According to the World 

Health Organization statistics, it is predicted that cancer will be the biggest cause of death 

(13.1 million) by 2030 [13, 14]. Among all cancer types, skin cancer is the most common 

form of cancer in the USA [4]. Based on the predictions, 20% of Americans will develop 

skin cancer during their lifetime [7]. 

Skin cancer is not necessarily fatal. However, diagnosis in early stages plays a vital 

role on saving lives. In order to understand the early detection and diagnosis of skin 

cancer, it is important to examine human skin and different types of skin cancers.  

Hereunder, this chapter is divided into three parts; the first part describes the layers of 

human skin, the second part explains the different types of skin cancers, and the third part 

focuses on computer-aided diagnosing techniques in details. 

2.2. Layers of Human Skin 

Skin is the largest organ in the human body with an average surface area of 1.5-2.0 

square meters. It keeps the body safe from ultraviolet radiation (UV) and pathogens [15], 

regulates body temperature, controls evaporation [16], and synthesizes vitamin D. Skin is 

comprised of three main layers: the epidermis, the dermis, and the hypodermis. 

§ Epidermis: The epidermis is the top layer of human skin that is built of multi-

layered squamous cells along with basal lamina. Squamous cells are flat cells of 

the skin where basal cells are round cells below the squamous cells. 
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The epidermis does not contain any blood vessel, and oxygen reaches to the cells 

in the deepest layer through diffusion [17]. Skin color is determined by the 

melanin pigment which is found in the deepest layer of the epidermis.  

§ Dermis: This layer is the second layer underneath the epidermis. It consists of 

different cell types that build sweat glands and blood vessels. The dermis protects 

the body from stress and strain by working like a cushion. 

§ Hypodermis: Even though the hypodermis is listed as a part of the skin, it is not 

always considered as a layer of the skin. It is found below the dermis and 

connects the skin to the bone and muscles. The hypodermis contains connective 

and fat (adipose) tissue. Figure 1 shows the layers and building block of cells of 

these layers. 
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Figure 1: The epidermis and dermis layers in human skin with squamous cells, basal cells 
and melanocyte [18] (For the National Cancer Institute © (2008) Terese Winslow LLC, 

U.S. Govt. has certain rights). 
 
2.3. Skin Cancer 

The human body is made of living cells which grow, divide into new cells, and die. 

Cell division is a continuous process in the human body and is a replacement of dying 

cells. However, growing of abnormal cells and uncontrollable cell division are the causes 

of cancer [19].  

Skin cancer is one of the most common cancers in human beings, and it arises from 

the skin due to the abnormal growth of the cells that can easily invade and spread to the 

other parts of the human body [20] . There are three main categories of skin cancers: (1) 

Malignant melanoma, (2) Basal-cell carcinoma (BCC), (3) Squamous-cell carcinoma 

(SCC). The BCC and SCC are types of non-melanoma skin cancers (NMSC). 
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Dermoscopy, a minimal invasive skin imaging technique, is one of the viable 

methods for detecting melanoma and other pigmented skin proliferations. In the current 

clinical settings, the first step of dermoscopic evaluation is to decide whether the lesion is 

melanocytic or not. The second step is to find out whether the lesion is benign or 

malignant. There are commonly accepted protocols to detect malignancy in skin lesions, 

which are ABCD Rule, 7-point Checklist, Pattern Analysis, Menzies Method, Revised 

Pattern Analysis, 3-point Checklist, 4-point Checklist, and CASH Algorithm [21, 22]. 

Celebi et al. [23] extracted shape, color, and texture features and fed these feature 

vectors to a classifier such that they were ranked using feature selection algorithms to 

determine the optimal subset size. Their approach yielded a specificity of 92.34% and a 

sensitivity of 93.33% using 564 images. In their seminal work, Dreiseitl et al. [24] 

analyzed the robustness of artificial neural networks (ANN), logistic regression, k-nearest 

neighbors, decision trees, and support vector machines (SVMs) on classifying common 

nevi, dysplastic nevi, and melanoma. They addressed three classification problems: 

dichotomous problem of separating common nevi from melanoma and dysplastic nevi, 

and the trichotomous problem of genuinely separating all these classes. They reported 

that on both cases (dichotomous and trichotomous) logistic regression, ANNs and SVMs 

showed the same performance, whereas k-nearest neighbor and decision trees performed 

worse. 

Rubegni et al. [25] extracted texture features, besides color and shape features. Their 

ANN based approach reached the sensitivity of 96% and specificity 93% on a data set of 

558 images containing 217 melanoma cases. Iyatomi et al. [26] proposed an internet-

based system which employs a feature vector consisting of shape, texture, and color 
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features. They achieved specificity and sensitivity of 86% using 1200 dermoscopy 

images. Local methods have also been recently applied for skin lesion classification. Situ 

et al. [27] offered a patch-based algorithm which used a Bag-of-Features approach. They 

sampled the region of lesion into a 16 × 16 grid and extracted Wavelets and Gabor filters 

as collecting 23 features in total. They compared two different classifiers which were 

Naïve Bayes and SVM; the best performance they achieved was 82% specificity on a 

dataset consisting of 100 images with 30 melanoma cases. 

A considerable number of systems have been proposed for melanoma detection in the 

last decade. Some of them aim to mimic the procedure that dermatologists pursue for 

detecting and extracting dermoscopic features, such as granularities [28], irregular streaks 

[29], regression structure [29], blotches [30], and blue-white veils [31]. These structures 

are also used by dermatologists to score the lesion based on a seven point-checklist. Leo 

et al. [32] described a CAD system that mimics the 7-point-checklist procedure. 

However, approaches [23, 25, 33, 34] in the literature dominantly pursued pattern 

recognition in melanoma detection. The majority of these works are inspired by the the 

ABCD rule [35], and they extract the features according to the score table of ABCD 

protocol. Shape features (e.g., irregularity, aspect ratio and maximum diameter, 

compactness), which refer to both asymmetry and border, color features in several color 

channels, and texture features (e.g., gray level co-occurrence matrix) [23] are the most 

common features analyzed when the ABCD protocol is used [35]. There are other 

approaches [33, 36, 37] that used one type of feature for detection of melanoma. 

Seidenari et al. [33] aimed to distinguish atypical nevi and benign nevi using color 

statistics in the RGB channel, such as mean, variance, and maximum RGB distance. 
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Their approach reached 86% accuracy, additionally they concluded that there was a 

remarkable difference in distribution of pigments between the populations they studied. 

Color histograms have been utilized for discriminating melanomas and atypical or benign 

nevi [36, 37] with specificity little higher than 80%. 

2.3.1. Melanoma 

Melanoma is one of the deadliest and fastest growing cancer types in the world. In the 

USA annually 3.5 million skin cancers are diagnosed. Skin cancer is rarely fatal except 

melanoma which is the 6th common cancer type in the USA [38]. Women 25–29 years of 

age are the most commonly affected group from melanoma. Ultraviolet tanning devices 

are listed as known and probable human carcinogens along with plutonium and cigarettes 

by the World Health Organization [38]. In 2017, an estimated 87,110 adults were 

diagnosed with melanoma in the USA, and approximately 9,730 were fatal [39]. The 

primary cause of melanoma is DNA damage due to the UV light exposure (i.e., sun light 

and tanning beds). Genetics with history of malignant melanoma and having a fair skin 

type are the other risk factors [40, 41].  

Melanoma is a malignancy of melanocytes. Melanocytes are special cells in the skin 

located in its outer epidermis. Since melanoma develops in the epidermis, it can be seen 

by the human eye. Early diagnosis and treatment are critical to prevent harm. When 

caught early, melanoma can be cured through excision operation. However, the high rate 

of false-negative of malignant melanoma is the main challenge for early treatments [21]. 

Melanoma is commonly found on the lower limbs in female patients and on the back 

in male patients [42], but it can also be found on other organs containing cells such as the 

mouth and eye which is very rare [43].  
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2.3.2. Basal-Cell Carcinoma 

The basal-cell carcinoma (BCC) is the most common form of skin cancer with at least 

4 million cases in the U.S. annually. It arises from the deepest layer of the epidermis. 

BCCs usually look like red patches or open sores (see Figure 2). There are very rare 

cases of spreading of BCCs as they almost never spread [44], but people who have had 

BCCs are prone to develop it again in their lifetime.  

 

Figure 2: A red patch (a) and open sore (b) types of basal-cell carcinoma [44] (Figures 

are reprinted with permission of Skin Cancer Foundation). 

2.3.3. Squamous-Cell Carcinoma 

Squamous-cell carcinoma (SCC) usually begins as a small lump, expands over time, 

and turns into an ulcer. Compared to BCCs, SCCs have more irregular shapes with 

crusted surface (Figure 3), and they are more likely to spread to the other organs [45]. 

Immunosuppression is another important risk factor of SCC along with UV exposure.  
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Figure 3: An elevated growth (a) and irregular borders (b) of squamous-cell carcinoma 

[46] (Figures are reprinted with permission of Skin Cancer Foundation). 

2.4. Skin Cancer Imaging Techniques 

If it is diagnosed in early stages, skin cancer is 90% treatable compared to 50% in late 

stages [47]. With the development of noninvasive and high-resolution imaging 

techniques, the accuracy of in-situ diagnosis of skin cancers or skin lesions has increased 

[48]. Especially, the lower diagnostic accuracy for melanoma is the major reason for over 

treatment (caused by false positive diagnosis) or under treatment (caused by false 

negative diagnosis). False positive diagnosis is the major contributor of excessive 

treatment cost increases due to leading to excise an unnecessarily high number of benign 

lesions for biopsy and pathological examination. However, high-resolution imaging 

techniques have great potential to improve diagnostic specificity, and thus, these 

techniques introduce a possibility of inducing a reduction in unnecessary excisions and 

related costs. The most common imaging techniques currently used for diagnosis of skin 

cancers are reflectance confocal microscopy, optical coherence tomography, ultrasound, 

and dermoscopy.  
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§ Reflectance confocal microscopy (RCM) 

Confocal microscopy is a noninvasive imaging method that uses a laser focused on a 

specific point on the skin and visualizes the cellular details of the skin in-vivo. Because 

cellular structures (cells, melanin, hemoglobin, etc.) have different refraction indexes, 

RCM can easily differentiate reflected light from the skin. However, RCM is the costliest 

among other skin imaging techniques. 

§ Optical Coherence Tomography (OCT) 

OCT can be used to image microscopic structures (few µm) in-vivo and can 

distinguish healthy tissue from cancerous tissue. However, the OCT is not able to 

visualize the subcellular elements and the membrane: it cannot detect the tumor in early 

stages. Additionally, without histological confirmation, the OCT cannot fully determine 

the diagnosis of melanoma. Thus, the OCT is not an advantageous way of melanoma 

diagnosis process. 

§ Ultrasound 

Ultrasound is one of the most common noninvasive procedures as it is versatile, pain-

free, and has low risk. In this procedure, the skin morphology can be visualized by the 

ultrasound waves that return from the tissue. Even though ultrasound waves can reach to 

the deep skin layers and evaluate the tumor, the low resolution does not allow to 

distinguish skin lesions histomorphologically. Also, it does not catch tumors at early 

stages. 

§ Dermoscopy 

Dermoscopy, also known as epilumence microscopy (EM), is a noninvasive and in-

live method that is very practical for early detection of malignant melanoma and other 
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pigmented lesions. It allows users to capture the colors and subsurface structures of the 

skin to detect melanoma in early stages. According to the statistics of the literature, using 

dermoscopy can increase the accuracy of diagnosis between 5% and 30% depending on 

the type of skin lesion [49, 50]. 

2.5. Diagnosis Methods of Skin Cancer 

Visualizing skin lesions by any abovementioned imaging technique is not enough to 

distinguish malignant melanoma from benign melanoma. There is a need for reproducible 

diagnosis techniques that can be used by clinicians to understand the skin cancer types. 

There are four commonly accepted reproducible methods for the diagnosis of skin 

cancers especially melanoma. These are: i) ABCD-E rule, ii) the 3-point checklist, iii) the 

7-point checklist, iv) the Menzies’ method, and v) pattern analysis.  

§ ABCD-E Rule: This method was introduced in 1994 by Stolz et. al [35]. ABCD-

E stands for asymmetry, border, color, diameter, and evolving by time which are 

five dermoscopic criteria for semi-quantitative assessment of skin lesions. 

Melanomas are typically asymmetric with jagged edges and bigger than 6 mm. 

They usually have mixed colors along with changing size, color, shape, and 

bleeding. These criteria (except E) have their possible scores based on the look of 

the skin lesion (Table 1). These scores are multiplied by associated weight factors 

to yield a total dermoscopy score (TDS). 
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Table 1: ABCD-E rule criteria for calculation of total dermoscopy score (TDS) [35]. 

Criteria Possible Score Description Weight factor 

Asymmetry 0-2 Assess contour, color and 

structures 

 1.3 

Border 0-8 Abrupt ending of pigment 

pattern 

 0.1 

Color 1-6 Presence of max 6 colors 

(white, red, light brown, dark 

brown, blue-gray, black) 

0.5 

Dermoscopic 

Structures 

1-5 Presence of network, 

structureless areas, streaks, dots 

and globules 

0.5 

  

 TDS can be found using the equation below. 

Equation 1 

[(𝐴	𝑠𝑐𝑜𝑟𝑒	𝑥	1.3) + (𝐵	𝑠𝑐𝑜𝑟𝑒	𝑥	0.1) + (𝐶	𝑠𝑐𝑜𝑟𝑒	𝑥	0.5) + (𝐷	𝑠𝑐𝑜𝑟𝑒	𝑥	0.5)] 

The result of TDS can be interpreted according to Table 2. 
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Table 2: Total dermoscopy score and its interpretation [35]. 

Total Dermoscopy Score (TDS) Interpretation 

< 4.75 Benign lesion 

4.8-5.45 Suspicious lesion, close follow-up or 

excision recommended 

>5.45 High possibility of melanoma 

False-positive score (>5.45) sometimes 

observed in 

- Reed and Spitz nevus 

- Clark nevus with globular pattern 

- Congenital melanocytic nevus 

 

§ The 3-Point Checklist: This method searches for three criteria: (1) asymmetry, 

(2) atypical pigment network, and (3) blue-white structures [51]. The presence of 

any of these criteria indicates the possibility of melanoma. 

§ The 7-Point Checklist: This method uses the scoring technique as in ABCD-E 

rule. There are three major and four minor evaluation criteria. Major criteria are 

the existence of atypical pigment network(s), gray-blue area(s), and atypical 

vascular pattern(s) with the score of “2.” For instance, if all these criteria exist in 

a lesion it is scored as 6. There are also minor criteria. These are the existence of 

radial streaming, irregular diffuse pigmentation, irregular dots and globules, and 

regression pattern in a skin lesion with the score of “1” for each. In order to make 

a diagnosis of melanoma, the minimum total score of three is required [52]. 

§ The Menzies’ Method: This method is based on a checklist of eleven features. In 

this method, a total of eleven features’ absence or presence is investigated. It 
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distinguishes benign lesions from melanoma by two negative and nine positive 

feature sets. The negative set includes only two features that are symmetry and 

single color while the positive set includes nine features: existence of blue-white 

veil, multiple brown dots, pseudopods, radial streaming, scar-like depigmentation, 

peripheral black dots, multiple colors, multiple blue/gray dots, and broad pigment 

network [53]. The existence of at least one feature from the positive features list 

and absence of both features from the negative features list are necessary to 

diagnose a lesion as malignant melanoma. 

§ Pattern Analysis: Pattern analysis is another method that is used to 

diagnose melanocytic lesions and to differentiate benign melanocytic lesions 

from malignant melanoma. Pattern analysis method is used to identify specific 

patterns of skin lesions that can be either global or local. Some of the global 

patterns are reticular, globular, cobblestone, homogeneous, starburst, parallel, 

multicomponent, and nonspecific, which refer to benign melanocytic lesions. The 

local patterns are pigment network, dots/globules/moles, streaks, blue-whitish 

veil, regression structures, hypopigmentation, blotches, and vascular structures, 

which are also refer to benign melanocytic lesions [54]. 
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CHAPTER 3. RELATED WORKS AND CURRENT TECHNOLOGY 

For computer-assisted diagnosis of melanoma detection and malignancy 

classification, we use various machine learning technologies. This chapter gives a brief 

introduction to these technologies. 

3.1. Overview of Machine Learning 

Machine learning (ML) is an area that aims to construct new algorithms to make 

predictions based on given data. ML generates general models using training data so that 

these models can detect the presence or the absence of a pattern in test (new) data. In the 

case of images like in this thesis, training data can be in the form of images, regions, or 

pixels which are labeled or not. Patterns can be a low-level or a high-level. For instance, 

a low-level pattern can be a label for pixels in segmentation while high-level pattern can 

be the presence or the absence of a disease in a medical image. In this case, the image 

classification becomes the addressed problem with a training set containing image-label 

pairs. 

3.1.1. Categories of Machine Learning Algorithms 

 Machine learning algorithms can be classified into three key categories based on 

the different types of learning problems addressed. A list of these categories is: 

§ Supervised Learning: In supervised learning, the training dataset needs to be in a 

specific format. Each instance (data point) has an assigned label. Datasets are 

labeled as (𝑥, 𝑦) ∈ 𝑋	 × 	𝑌, where 𝑥 and y denote a data point and the 

corresponding true prediction for 𝑥. If the output y is part of a discrete domain, 

the problem is a classification task. If the output belongs to a continuous domain, 

then it is a regression task. 
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§ Unsupervised Learning: Unlike supervised learning, the datasets are not labeled 

in unsupervised learning. In order to develop a structure from unlabeled data, the 

ML algorithm should examine the similarities between object pairs.  

§ Semi-supervised Learning: This learning task is a class of supervised learning 

and uses a large amount of unlabeled data for training along with the small 

amount of labeled data. 

3.2. Neural Networks 

Biological neural network is an important part of the human brain. It is a highly 

complex system and has an ability to process different tasks simultaneously. Neural 

network (NN) is a classifier that simulates the human brain and neurons. Instead of 

neurons, “perceptron” is used as a basic unit of NN (see Figure 4a). NN architecture 

consists of the different layers as shown in Figure 4b: (1) the input layer containing input 

feature vector(s), (2) the output layer that comprises of the neural network response, and 

(3) the layer containing neurons (perceptrons) between the input and output layers.  

 

Figure 4: (a) is the perceptron layer and (b) is the image of Multi-layer Neural Network. 

According to the McCulloch-Pitts model [55], the neuron k receives m input 

parameter xj .The neuron also has m weight parameter wkj .The sum of inputs and weights 
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is combined and fed into an activation function j which produces the output yk  of the 

neuron as seen in Figure 4a. The Equation 2 below gives the mathematical understanding 

of neural networks. 

Equation 2 

 𝑦< = 𝜑∑ 𝑤<A𝑥AB
ACD  

A neural network can learn the estimated target outputs after training by selecting the 

weights of all neurons. However, it is challenging to analytically solve neuron weights of 

a multi-layer network. In order to solve the weights iteratively in a simple and effective 

way, the back-propagation algorithm is used. This algorithm calculates a gradient that is 

needed in the calculation of the weights.  

The back-propagation algorithm can be divided into two phases: propagation and 

weight update. In the first phase of this algorithm, an input vector is propagated forward 

through the neural network, and the output value is generated. After that, the cost (error 

term) is calculated. Then, the error values are propagated back to the network to calculate 

the cost of the hidden layer neurons. In the second phase of the algorithm, the neuron 

weights are updated by calculating the gradient of weights and subtracting the ratio of 

gradient of weights from the current weights. This ratio is called the learning rate [55]. 

After the update of weights, the algorithm continues with different inputs until the 

weights are converged. 

3.2.1. Convolutional Neural Networks 

In the context of computer vision, the most commonly applied artificial neural 

network is a convolutional neural network (CNN). There are two main reasons why 

CNNs are used in computer vision problems. Firstly, with traditional NNs, solving the 
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computer vision problem for even relatively small sized images is challenging. For 

example, a monochrome 750x563 image contains 422,250 pixels. If this image is 

polychrome, the number of pixels is typically multiplied by three which is the typical 

amount of color channels, and in this case, the image would have 1,266,750 pixels and 

the same number of weights. Consequently, the overall number of free parameters in NN 

quickly becomes extremely large which causes overfitting and reduces the performance. 

Additionally, CNNs require comparatively little image pre-processing compared to other 

image classification algorithms, which means CNNs can learn the filters by itself.  

The CNN consists of input and output layers as well as the multiple hidden layers. 

The hidden layers are usually made of convolutional layers, pooling layers, and fully 

connected layers [56] (Figure 5). 

§ Convolutional Layers: These layers pass the results of the input to the next layer. 

It simulates the response of a neuron to visual stimuli. 

§ Pooling Layers: These layers combine the outputs of neuron clusters at one layer 

into a single neuron in the next layer. The purpose of this layer is to reduce the 

parameters and computation in network. 

§ Fully-connected Layers: These layers connect each and every neuron in one 

layer to every neuron in another layer. 

 

Figure 5: An example of a convolutional neural network [57]. 
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3.3. Deep Learning and Transfer Learning 

Deep learning, also known as Deep Structured Learning, is a subdivision of ML 

supported by mass of algorithms. Most modern deep learning models are based on a NN, 

so there is a cascade of multiple layers in deep learning similar to NNs. 

Deep learning can extract useful features directly from images, text and sound in 

supervised and/or unsupervised manners which makes it different than standard machine 

learning techniques. In fact, feature extraction with this approach is considered as a part 

of the learning process. With these characteristics of deep learning, there is less need for 

hand-tuned ML solutions.  

Nowadays, most applications of deep learning rely on transfer learning, especially the 

domain of computer vision. Transfer learning is a ML technique where a model that is 

trained on one task is repurposed on another related task. In most problems in medical 

field of computer vision such as skin cancer detection, the size of the data is not big 

enough (e.g., there are only thousands of images; however, CNN require much more than 

that), and a lot of time is required to train a CNN from the scratch. Therefore, it is 

common to use a network that is pretrained on a very large dataset (i.e., ImageNet in 1.2 

million images) and then use this knowledge as an initialization for the task of interest. 

There are two most common ways to apply transfer learning as follows: 

§ Fixed Feature Extractor: We can use the pre-trained model as a feature 

extraction mechanism. The way it works is by removing the output layer or the 

last fully-connected layer and using the rest of the network as a fixed feature 

extractor for the dataset of our interest. 
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§ Fine-tuning: Fine-tuning is making some fine adjustments to increase 

performance further. For example, if we have one dataset, we can randomly 

separate it to the training and testing (validation) dataset with the ratio of our 

choice. Afterwards, we can train the model file with the training dataset and then 

train the same model with the testing dataset.  
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CHAPTER 4. TEXTURE BASED SKIN LESION ABRUPTNESS 

QUANTIFICATION TO DETECT MALIGNANCY 

In this chapter, we introduce a novel approach to measure abrupt cutoff of pigmented 

skin lesions. Abruptness of pigment patterns at the periphery of a skin lesion is one of the 

most important dermoscopic features for detection of malignancy. In the current clinical 

setting, abrupt cutoff of a skin lesion is determined by an examination performed by a 

dermatologist. This process is subjective, nonquantitative, and error-prone. Here in this 

chapter of thesis, we present an improved computational model to quantitatively measure 

abruptness of a skin lesion over our previous method [58] . To achieve this, we 

quantitatively analyzed the texture features of a region within the skin lesion boundary. 

This region was bounded by an interior border line of the lesion boundary which is 

determined using level set propagation (LSP) method. This method provides a fast border 

contraction without a need for extensive boolean operations. Then, we built feature 

vectors of homogeneity, standard deviation of pixel values, and mean of the pixel values 

of the region between the contracted border and the original border. These vectors were 

then classified using NN and SVM classifiers. 

4.1. Abrupt Cutoff Measurement from Dermoscopic Images 

The dataset for this part of the thesis was obtained from ISIC 2016: Skin Lesion 

Analysis Toward Melanoma Detection [59], which has 900 dermoscopic images with 727 

benign and 173 malignant lesions, and Edra Interactive Atlas of Dermoscopy [60], which 

has 73 benign and 27 malignant lesions. The processing steps for this part of the thesis is 

given in Figure 6. In this part of the thesis, we focused on border abruptness feature of 

skin lesions.  
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Figure 6: Global workflow is shown. 

The abrupt cutoff is a commonly accepted clinical indicator of malignancy of a 

lesion. Assessment of abrupt cutoff in current clinical practice was performed by dividing 

the lesion into eight virtual pieces (see Figure 7). Dermatologists searched abrupt cutoff 

and assigned a score for each of the pie pieces. Since this process was carried out 

manually, it led to subjective outcomes depending on the experience of the dermatologist 

examining the lesion. To objectively measure and evaluate abruptness, we first 

segmented the skin lesion using Boundary Driven Density Based Spatial Clustering 

Application with Noise (BD-DBSCAN) algorithm [61]. 



 

 24 

 

Figure 7: (a) represent a malignant case with abrupt cutoff where the lesion is divided 

into eight pieces and asterisks indicate abrupt cut off (b) represents a benign case with 

gradual change at lesion border. In both cases, homogeneity feature is a strong indicator 

for evaluating the abruptness. 

Then, we considered the offset of a continuous function of whole lesion border via 

constant velocity level sets and contracted the lesion border using these level sets. Next, 

we computed texture homogeneity in the designated circular region which resides 

between actual and contracted lesion border. Kaya et al. [58] was the first whose work 

addresses the quantification of abruptness toward melanoma detection. In the current 

study, we enhanced the prior work [38] in two aspects: i) offering a formal curve 

offsetting method based on the level set propagation (LSP) which generates better and 

non-overlapping contracted (inner) border [62], and ii) using NN as a classifier on an 

extended data set. While the first contribution yielded us to collect more relevant data 

during feature extraction, second contribution led to improved accuracy on the extended 

dataset, which indicated generalizability of the developed method on a bigger dataset 

over the Kaya et al. [58] method. 
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4.1.1. Boundary detection and boundary contour extraction 
 

To access the region where abrupt cutoff possibly exists, first we need to segment the 

lesion and extract the lesion border. A novel density-based clustering algorithm [61] is 

used for lesion segmentation. The segmented image is recorded as black and white pixels 

where black pixels are background and white pixels are foreground (refers to the lesion). 

To obtain the 2D contour information of the lesion border, we use the chain-code 

algorithm of Freeman [63]. The chain-code encoded a boundary in a binary 

representation. These encodings referred to 8 possible directions of a neighboring pixel of 

a starting pixel. These directions ranged from 0 to 7 in the rectangular-grid. Each number 

refers to a transition on the direction in between two consecutive points. As can be seen 

in the rectangular grid given in Figure 8 the direction numbers increase in the counter-

clockwise. 

 

Figure 8: Chain code initialization is shown. 

In chain-code, first, among all the pixels belong to foreground, the spatially 

minimum pixel is selected to start the computation. The starting pixel is shown in Figure 
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9a with its minimum (X, Y) coordinates. After applying the chain code, the boundary of 

the lesion is captured as depicted in Figure 9b (in green). 

 

Figure 9: The starting point is shown in (a), and the lesion boundary is represented in 

green in (b). 

4.1.2. LSP for lesion border contraction 
 

In our previous study [58], we developed a geometric model for border contraction 

called dynamic scaling (DS). The nterested reader is referred to [58] for details and 

mathematical foundation for the DS. In this study, however, we used level set method 

[62] for border contraction. The previous method of contraction failed to provide equal 

distance contraction for all the cases especially with very irregular lesion contours and 

yielded unequal data collection during feature extraction. Whereas, level set based 

contraction method resulted in constant proximity between original and contracted 

border. These are illustrated in Figure 10a, b, c and d. 
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Figure 10: In (a) and (b), red curves represent the contracted border. (a) The curve set 

shows that the LSP can obtain quantitatively accurate results. (b) The curve set shows the 

DS still suffers from high curvatures and cannot offer constant distance from the original 

curve. (c) shows that the DS yields a deficient data collection along the layer where the 

abruptness is searched. Yellow brushes indicate that not equal amount of territory 

considered for feature extraction in spanning windows. Note that, these regions are 

masked using polygon intersection operations prior to feature extraction. (d) shows that 

the constant velocity LSP imbues equalization of data amount during feature extraction. 

Shape contraction algorithms play an important role in computer graphics, computer-

aided design, manufacturing, etc. We adopted the method studied in a seminal paper of 

Kimmel et al. [24]. The following set of formulations give the details of this approach. 
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In order to formulate shape offsetting/contraction problem, let us parameterize a 

curve as in the following form. 

Equation 3 

𝑋D(𝑠) = [𝑥(𝑠), 𝑦(𝑠)]E 

where s is a curve parameterization factor for curve X0. Let us find an offset curve in a 

closed form, which is expressed as, 

Equation 4 

𝑋F(𝑠) = 	𝑋D(𝑠) − 𝑁(𝑠, 0)𝐿 

Equation 4 formulates a curve leaning “parallel” to X0(s), where L is the displacement of 

the offset curve, and N (s, 0) represents the unit normal at a x0(s) point and can be written 

as, 

Equation 5 

𝑁(𝑠, 0) =
1

J𝑥KL(𝑠) + 𝑦KL(𝑠)
[𝑦K(𝑠), 𝑥K(𝑠)]E 

where N (s, 0) is the normal of the parametric point [ys (s), xs (s)] on the curve at time 0 

(e.g. N(s,0)). For instance, when L is equal to 1, displacement of each iteration will be a 

single pixel. Let us consider that X (s, t) changes continuously by time (e.g., number of 

iterations), hence for all t, X (s, t) = X0(s) − tN(s, 0). The term of tN (s, 0) is negative 

because we do contraction; it will become positive if expansion is needed. Differential 

description of this curve evolution becomes as in the following form. 

Equation 6 

M
𝜕𝑋(𝑠, 𝑡)
𝜕𝑡 = 	−𝑁(𝑠, 0)

𝑋(𝑠, 0) 	= 		𝑋D(𝑠)					
P 



 

 29 

For the first iteration t is equal to 0; thus, the curve will remain the same, which is 

represented as X (s, 0) = X0 (s). Equation 6 suggests that the motion of each point on the 

border (e.g., pixel) will be in inward direction (due to the contraction) of the normal as 

given in Equation 7. 

Equation 7 

𝑁(𝑠, 𝑡) = 	 [𝑦K(𝑠), 𝑥K(𝑠)]E
1

J𝑥KL(𝑠) + 𝑦KL(𝑠)
 

Here the constant 1 in the numerator of the fraction refers to the velocity during the curve 

propagation at time t. For faster contraction, the velocity or time step may be increased. 

Equation 7 yields time t dependent shape offsets for t > 0. Figure 11b illustrates 

deficiency of selecting bigger time step or higher velocity values where displacement 

factor L becomes larger than the curvature. Thus, it results in loss of silhouette of actual 

curvature. To overcome these possible problems (also called singularities or shocks), we 

employed a more stable technique based on the flame-propagation model given in [62]. 
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Figure 11: (a) Without entropy condition stability can be preserved if contraction distance 

is less than the curvature of an arbitrary 2d curve; (b) Cusps emerge when contraction 

distance is greater than the curvature. Shocks and cusps can be avoided adopting entropy 

condition. 

Shocks occur when normal of original curve collide or cross itself, in other words 

when the curvature of X0 becomes singular. To address this constraint, Huygens applies 

“entropy condition” on the evolving curve. Osher and Sethian [64] offered an efficient 

and numerically stable wave front propagation for the curves in the plane to overcome the 

self-collision problem. Osher et al. [64] applied Huygens principle, which is also known 

for adhering entropy condition, proposing a solution for Equation 7 such that X(s, t) at 

time t is the approximation of the whole class of disks of time t centered along the 

original curve X 0(s). We adopted Osher’s method [63] with entropy condition to contract 

the curve to obtain more accurate results as given in Equation 8 while eliminating the 

self-collision problem. Due to the front dependency of the parameters s and t, a 

Langrangian numerical-propagation scheme may be used to approximate the curve 

propagation as in the following form. 
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Equation 8 

⎩
⎪
⎨

⎪
⎧𝜕𝑥(𝑠, 𝑡)

𝜕𝑡 = 	 𝑦K(𝑠, 𝑡)
J𝑥KL(𝑠, 𝑡) + 𝑦KL(𝑠, 𝑡)

𝜕𝑦(𝑠, 𝑡)
𝜕𝑡 = 	 𝑥K(𝑠, 𝑡)

J𝑥KL(𝑠, 𝑡) + 𝑦KL(𝑠, 𝑡)⎭
⎪
⎬

⎪
⎫

 

The numerical-propagation scheme takes central derivatives of x and y in location s 

and forward-derivative in time t. However, the Langrangian based numerical propagation 

of a curve given in Equation 8 is unstable and suffers from the aforementioned 

topological problems, i.e. shocks, self-intersections (a.k.a. self-collision). To maintain 

stability and address topological problems, instead of the Langrangian numerical 

propogation, we used the ‘Eulerian formulation.’ 

4.1.3.  Eulerian Formulation 
Eulerian approach implements the entropy condition inherently by a recursive 

procedure. Let us define a function ϕ(x, y, t) and initialize it as ϕ(x, y, t) = 0 that results in 

a closed curve X(s, 0). ϕ is strictly negative inside and outside of the level 

set ϕ(x, y, 0) = 0. The rationale behind this approach is to search for the surface evolution 

of ϕ(x, y, t), hence level sets ϕ(x, y, t) = 0 yield the propagated curves X(s, t) preserving the 

entropy condition. Let us consider ϕ(x, y, t) = 0 along X(s, t), therefore the chain rule 

yields to: 

Equation 9 

𝜕𝑥(𝑠, 𝑡)
𝜕𝑡 +

𝜕𝜑(𝑥(𝑠, 𝑡), 𝑦(𝑠, 𝑡), 𝑡)𝑥X
𝜕𝑥 +

𝜕𝜑(𝑥(𝑠, 𝑡), 𝑦(𝑠, 𝑡), 𝑡)𝑦X
𝜕𝑦 = 0 

or 

𝜑X + ∇𝑋X(𝑠, 𝑡) = 0 

where  
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Equation 10 

∇𝜙 = [
𝜕𝜙
𝜕𝑥 ,

𝜕𝜙
𝜕𝑦\ 

represents the gradient of ∅(x, y, t) for point (x, y) at time t. The following equation is to 

derive a connection with the scalar velocity of each point on the curve and its normal 

direction: 

Equation 11 

𝜐 = 𝑵(𝑠, 𝑡). 𝑿𝒕(𝑠, 𝑡) 

Here, we constrain v = 1 to have 1-pixel displacement for a single time step. Since the 

gradient is always normal to the curve, it will be equal to zero as ∅(x, y, t) = 0 ; therefore, 

Equation 12 

𝑁(𝑠, 𝑡) = 	−
∇𝜙
‖∇𝜙‖ 

where negativity indicates that the direction of propagation is inward (contraction); thus, 

Equation 13 

𝜐 = 𝑵. 𝑿𝒕 = 	−
∇𝜙
‖∇𝜙‖𝑿𝒕 = 1 

Embedding Equation 13 into Equation 9 results in the surface evolution as in the 

following form. 

Equation 14 

𝜙X − ‖∇𝜙‖ = 0 

The solution for the partial differential equation given in Equation 15 can be carried out 

considering Hamilton-Jacobi Equations and gradient descent. 
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Equation 15 

𝐶∆d∆e(𝑖, 𝑗) = 	h h i
1,					𝑖𝑓	𝐼(𝑟, 𝑡)𝑎𝑛𝑑	𝐼(𝑝 + ∆𝑥, 𝑞 + ∆𝑦) = 𝑢
0,																		𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																																			s

B

tCu

v

wCu
 

 Algorithm 1 summarizes steps for the LSP to generate contracted border. Figure 

10 illustrates results of contracted borders generated from the DS method and the LSP. 

As seen from Figure 10, the LSP eliminated problems such as shocks and self-

intersections whereas these problems exist with DS. Interested readers are referred to [62] 

for detailed mathematical derivations of the LSP. After contracted border is found with 

LSP method, we calculated texture homogeneity between lesion border and contracted 

border with various radii sizes. 

Algorithm 1 

• Determine a function 𝜙 (x, y, 0) such that 
- 𝜙(x, y, 0) = 0. yields the initial curve X(s, 0) 
- 𝜙(x, y, 0) < 0 represents the inside of the curve 
- 𝜙(x, y, 0) > 0 represents the outside of the curve 
- 𝜙(x, y, 0) = 0 is Lipschitz-continuous 

• Propagate f on 2D grid according to 𝜙 t -||D	𝜙|| = 0 
• Stop the iteration after i = L/Dt time steps and select the 0-level set 𝜙(x, y, 0) = 0 

which is Xt(s). 
 

4.1.4.  Feature Extraction 
 

We obtained three different statistical measures which are mean, standard deviation, 

and a texture descriptor Gray Level Co-occurrence Matrix (GLCM) as a homogeneity 

indicator [65]. GLCM is a statistical method that is to analyze texture characteristics of 

an image which relies on the spatial dependency of pixels. The mathematical 

representation of GCLM is given below, where I is an image with nxm size, C is the co-

occurrence of intensity value u, (∆x, ∆y) is an offset parameter, and lastly r and t are the 
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spatial coordinates in the image I(r,t). Note that, offset parameters make the co-

occurrence matrix variant to rotation. 

Various statistical features (texture related) could be obtained by deploying the 

GCLM matrix, such as contrast, correlation, energy, and homogeneity. Here, we focused 

on homogeneity which measures the similarity of grey level distribution on the image. 

Hence, the homogeneity could be expressed as in the form given in Equation 16 where m 

and n respectively represent the number of image pixels in the vertical and horizontal 

directions. Figure 12 illustrates a sample region where homogeneity feature is extracted. 

 

Figure 12: Homogeneity extraction from the highlighted region along the lesion 

boundary. 

Equation 16 

h h
𝐺𝐿𝐶𝑀(𝑖, 𝑗)
1 + |𝑖 − 𝑗|

v

ACu

B

{Cu
 

After border contraction using the LSP and extracting homogeneity features in GLCM, 

the next step is to analyze generated data. 

4.2. Data Analysis and Results 

After the feature extraction step, we categorized the dataset according to the thickness 

of layer they are collected from. We selected 5, 7, 10, and 15 as the radius of circles 
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between the border and contracted border, and the layer is generated by enveloping these 

circles. In each of the overlapping circles (patches), we computed the “mean 

homogeneity,” “minimum homogeneity,” “mean color value average,” “minimum color 

value average,” “mean color value standard deviation,” and “minimum color standard 

deviation.” We performed the experiments on two different color spaces which are RGB 

and HSV and fed them as input to the NN architectures and SVM. 

The dataset provided dermoscopy images, which were labeled either as malignant or 

benign. We were measuring abruptness of lesion along the periphery of the lesion border 

using homogeneity features to conduct binary classification. Here, we argued that Multi-

layer Perceptron-based Neural Networks (MPNN) have the ability to compete with SVM 

when it is combined with Softmax regression. 

The hidden layer system can include multi-layers within separate instances better and 

converge the values efficiently. A careful design of a NN is required for obtaining higher 

accuracy rates in classification. There are some parameters that the user needs to tune 

[66] for the best accuracy, such as input layer selection, weights, the number of hidden 

layers, the number of nodes on each hidden layer, activation function, learning rate, the 

number of iterations, and cost minimization function. We trained our NN with a pair of 

input feature values and output malignancy values. In our study, in order to solve the 

malignancy problem of the dataset, we chose two NN architectures: multi-layer 

perceptron and the fully-connected multi-hidden layer NN. The first architecture we used 

was NN model, multi-layer perceptron binary classification [67]. In this architecture, we 

used a standard single layer NN which consists of an input layer, a single hidden layer, 

and an output layer. 
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Figure 13 schemes the architecture. In the input layer of this NN, we used three 

different inputs which are RGB channels, HSV channels, and RGB-HSV combined 

channels. The number of features for RGB, HSV, and RGB-HSV channels were 18, 18, 

and 36, respectively. In the hidden layer, we used the same size as they are in the input 

layer. In the output layer, two classes’ values that are “benign” and “malignant” are 

converted to “0” and “1,” respectively. In the running process of this NN, each epoch had 

one feed forward and one back propagation. After empirical trials, execution continued at 

most 1000 iterations or execution stopped when the learning rate between each epoch is 

less than or equal to 0.001. The rectified linear unit (ReLU) is chosen as the activation 

function for this NN. 
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Figure 13: Multi-layer Perception with a single hidden layer NN architecture. 

The architecture of the second NN was fully-connected multi-hidden NN network. 

Figure 14 illustrates the architecture of its design such that in this NN, the input layer 

was the same with the previous NN. The hidden layer was designed with the Softmax 

regression [68]. In the output layer, benign and malignant values were converted to one-

hot encodings which are [1 0] or [0 1], respectively. The implementation of this design 

was done using TensorFlow NN library [69]. 

Input Layer Hidden Layer Output Layer 
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Figure 14: Fully-connected multi-hidden layer NN architecture. 

We obtained results of two different abrupt cutoff feature extraction methods: Kaya et 

al. [58] and our LSP based method using the two NN architectures introduced above with 

the same parameters. Optimum results were obtained from the features collected when 

radius is 10 and on RGB channel. Because NNs were highly sensitive to hyper-parameter 

changes, we applied tunings to get optimum results. We empirically determined the 

iteration numbers as 600, 750, and 1000 without constraining a stoppage criterion. Then, 

we added the learning rate of 0.0001 to exit the iteration between two consecutive 

epochs. We applied 10-fold cross-validation to split the data into training and test sets. 

Since NNs generate random weights between the layers at each time, we ran the 

algorithms 10 times. Consequently, all evaluation metrics are the average of the all 

results generated in these experiments. Notably, to maintain consistency we used the 

same dataset to test our NN designs. 

We ran both NN methods and SVM on the same set of image data however different 

feature vectors based on the different feature extraction methods used (the LSM and the 

DS). Table 3 shows the results obtained from the multi-layer perceptron NN, fully 
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connected multi- hidden layer NN, and SVM classifiers which are fed by features 

extracted using both the LSP and the DS methods. Table 4 shows the parameters of the 

all classifiers used in the experiments. The highest f1-score, 87% with 78% specificity, is 

obtained using fully connected multi-hidden layer NN in the RGB combination with the 

radius 10. 

Table 3: LSP vs. DS based texture homogeneity feature extraction and classification of 

lesions with various classifiers: multi-layer perceptron, fully connected multi-hidden 

layer NN, and SVM. 10-fold cross-validation is used. Results listed here are means of 10 

random executions. 

Feature Extraction-Classification Precision Recall Sensitivity F1-Score 

LSP-Multilayer Perceptron NN 0.82 0.81 0.75 0.8 

DS-Multilayer Perceptron NN 0.77 0.76 0.56 0.74 

LSP-SVM 0.69 0.64 0.66 0.66 

DS-SVM 0.62 0.61 0.61 0.61 

LSP-Fully-connected multilayer NN 0.86 0.87 0.78 0.87 

DS-Fully-connected multi-hidden layer NN 0.76 0.75 0.61 0.75 
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Table 4: The parameters of the NN (the multi-layer perceptron and the fully-connected 

multi-hidden layer NN) classifiers and SVM. 

Parameters NN Parameters SVM 

Learning rate 0.001 Kernel function Polynomial 

Number of iterations 1000 Polynomial order 3 

Number of runs 20 Kernel scale Auto 

Number of hidden layers 1 Box constraint Inf 

Number of hidden layer node 4 Standardize True 

Number of hidden layers (If multilayer NN is 

used) 

4 Outlier fraction 0.05 

 

As lower homogeneity indicates sharp cutoffs, suggesting melanoma, we carried out 

our experiments on two dermoscopy image datasets, which consisted of 800 benign and 

200 malignant melanoma cases. The LSP method helped produce better results than Kaya 

et. al. 2016 study [58] . By using texture homogeneity at the periphery of a lesion border 

determined by LSP, as a classification results, we obtained 87% f1-score and 78% 

specificity; that we obtained better results than in the previous study [58]. We also 

compared the performances of two different NN classifiers and support vector machine 

classifier. The best results were obtained using the combination of RGB color spaces with 

the fully-connected multi-hidden layer NN. 

Computational results also showed that skin lesion abrupt cutoff is a reliable indicator 

of malignancy. Results showed that computational model of texture homogeneity along 
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the periphery of skin lesion borders based on LSP is an effective way of quantitatively 

measuring abrupt cutoff of a lesion. 
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CHAPTER 5. SKIN CANCER MALIGNANCY CLASSIFICATION WITH 

TRANSFER LEARNING 

5.1. Introduction 

Even though dermoscopy enhances the visual perception of a skin lesion, 

automatic recognition of melanoma from dermoscopy images is still a difficult task, as 

it has several challenges. First, the low contrast between skin lesions and normal skin 

region makes it difficult to segment accurate lesion areas. Second, the melanoma and 

non-melanoma lesions may have a high degree of visual similarity, resulting in the 

difficulty of distinguishing melanoma lesion from non-melanoma. Third, the variation 

of skin conditions, e.g., skin color, natural hairs or veins, among patients produce 

different appearance of melanoma, in terms of color and texture, etc. 

The misdiagnosis of a malignant skin lesion as benign (false-negative) is more 

harmful than misdiagnosing a benign skin lesion as malignant (false-positive) since the 

former case can become fatal due to undertreatment while the later case will just cause 

over treatment (unnecessarily costly). Early detection is important for increasing the life 

expectancy up to 98% compared to 17% of diagnosis in later stages [70]. Thus, there is a 

need for a favorable treatment process that does an early and fast detection of skin cancer 

that is vital for the patient’s life. 

With this background information in mind, the purpose of our study in this chapter is 

classifying and identifying skin cancer using transfer learning. Transfer learning in deep 

learning is a machine learning method where a computational model developed for a task 

is reused as the starting point for a model on a second task.  
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With the recent developments in image processing and classification algorithms, 

researchers started using computer-aided-diagnostic systems (CAD) [71] to detect 

melanoma. Also, they applied ensemble learning techniques to find the best algorithm 

within the system. With the new developments on the computer vision and deep learning 

algorithms, now we are able to directly import images into these algorithms and let them 

automatically extract features from images by themselves. This is known as the main 

difference between deep learning and machine learning. In machine learning, algorithms 

learn each of the predetermined (most of the time by human) features that correlates with 

the outcomes. However, machine learning cannot influence the way that the features are 

defined. Whereas in deep learning, a good set of features are algorithmically captured (it 

learns features itself). 

 Transfer learning is one of the most popular techniques on computer vision and deep 

learning field to transfer knowledge from one domain to another. Transfer learning 

allows users to utilize pretrained weights from another domain in case of limited 

computational power.  

 In this study, we used Inception v3 image classification transfer learning algorithm 

[12]  with pretrained ImageNet dataset weights to solve the complexity of skin lesions 

and to classify skin lesions in dermoscopy images according to their malignancy. The 

dataset for this study was obtained from the International Skin Imaging Collaboration 

(ISIC) [11]. In order to eliminate a possible bias problem, we randomly selected dataset 

images for training and testing and used them for various experiments. 
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5.2. Dermoscopy Image Preprocessing 

The optical lenses of digital cameras reduce the quality of the digital images of skin 

lesions. This causes some difficulties in the diagnosis of malignancy by visual assessment 

due to the complexity of digital images. Therefore, there is a need for efficient image 

processing techniques to help physicians diagnose skin lesions accurately. Image pre-

processing makes images suitable for this application by improving the quality of an 

image and for manipulating datasets by removing the noise and irregularities present in 

an image [72, 73]. In this study, the training set contained more than 13,000 skin lesion 

images of different resolutions [11]. Because the resolution of all lesion images is greater 

than 299 x 299, it was necessary to extract the region of interest (skin lesion) and get rid 

of unnecessary/redundant regions from each image. Thus, we automatically cropped and 

processed these images before using in the image classification algorithm. This 

preprocessing step is necessary for; first, reducing the computation time by 

removing/reducing number of pixels to be processed; second, increasing performance of 

the classifier. Image pre-processing steps used in this study are segmentation, auto-

cropping, and image resampling. 

5.2.1. Image Segmentation 

Image segmentation is a process of dividing an image into multiple segments that are 

considerably/perceptually homogeneous in terms of preferred characteristics such as 

color, texture, etc. Image segmentation is typically used to identify objects, estimate the 

boundaries of an image, remove unwanted regions on the image, compress and edit 

images or manipulate and visualize the data [74, 75] with a goal of providing a 
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description or classification of the image. This process is widely used especially in 

medical image processing. 

We start segmentation process by first finding the superpixels. Superpixels are one of 

the most popular images over-segmentation algorithms. Among many superpixel 

algorithms, the choice of superpixel algorithm in this thesis is Simple Linear Iterative 

Clustering (SLIC) [76]. SLIC is categorized as a gradient ascent method and it is often 

used as a baseline [77, 78]. SLIC implements a local K-means clustering to generate a 

superpixel segmentation with K-superpixels. More specifically, it groups similar pixel 

values and improves superpixel centers [79] using K-means clustering algorithm. In our 

case, we use SLIC to automatically detect the region of interest (skin lesion) and use that 

to automatically crop the image without losing a part of a skin lesion. The original skin 

lesion images (i.e., Figure 15a) were divided to 400 superpixel areas (dynamically 

determining each super pixel size of 16 x 16) (Figure 15b), which are separated by blue 

lines. We empirically found that starting with 400 superpixel centers is optimal. 

 

Figure 15: Example of superpixels. The original image (a) was subdivided to 400 

superpixel areas (b) separated by blue lines. 
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The next step is roughly extracting the entire the skin lesion. To do that, we needed to 

find a way to merge superpixels that include some part of the lesion. For merging 

superpixels, we considered using some segmentation techniques including thresholding 

technique, edge detection technique, region extraction technique, and fuzzy-based image 

segmentation [80, 81]. To merge superpixels that fall partially or entirely in skin lesion 

region, we used thresholding technique and merging superpixels.  

The next step is automatically cropping the image. 

5.2.2. Cropping and Image Resampling 

Image resampling is a technique used to manipulate the size of an image. Increasing 

the size of the image is called upsampling while decreasing the size is called 

downsampling. These two techniques are essential for applications like image display, 

compression, and progressive transmission [82]. During downsampling or upsampling 

processes, a two-dimensional (2D) representation is kept the same while the spatial 

resolution is reduced or increased, respectively. On the other hand, cropping is a 

technique used to find the region of interest in an image by framing around and clipping 

the area. Figure 16 illustrates all the preprocessing steps in order. 
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Figure 16: Images after each preprocessing steps: (a) is the original image obtained from 

ISIC 2018 Challenge, (b) is the segmentation mask of the image, (c) is the overlap of (a) 

and (b), (d) is framing the Region of Interest, and (e) is the cropped and resized to n x n 

image. 

5.2.3. Image Resizing with Adding Zero-Padding 
 

The data obtained from the ISIC archive [11] is not always available to directly feed 

the algorithm which requires structures, clean and meaningful data. In order to overcome 

this problem, we resized all images from the archive to 299x299 without losing any 

feature.  Pseudo-code for this process is as follows: 

1- Identify which side of the image is short. 

2- Find the difference between two sides. 

3- Take half of the difference. 

4- Do padding by putting number of zeros to short sides by adding half of the 

difference. 

5- Resize the image to 299x299.  
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After the skin lesion is roughly extracted from the dermoscopy images, the next step 

is classifying these lesions. 

5.3. Classification 

Classification can be defined as making groups of things based on shared features, 

characteristics or other predefined properties. During the training phase, feature values of 

images are extracted from dermoscopy images of skin lesions for estimating the classes 

of images in test sets. There is one label for each image. 

There are several most popular algorithms to solve classification problems such as 

decision trees, neural networks (NN), and support vector machines (SVM). However, 

these algorithms require manual feature extraction and preprocessing, and they can only 

calculate numeric values. In order to pass these cumbersome steps and make the 

algorithm do the feature extraction itself, we used transfer learning algorithm Inception 

V3 that is a specialized version of convolutional neural network. By transferring 

previously gained knowledge, we drastically reduced overall computation time without 

sacrificing efficiency. The architecture of the algorithm is shown in Figure 17. 

 

Figure 17: Google Inception v3 transfer learning algorithm layers [83]. 
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There are other several convolutional neural network architectures such as AlexNet 

[84], VGGNet [85], and ResNet [86]. Because training these architectures requires big 

data and is a computationally intensive process, excessive computation power (GPU 

power) is needed. Also, since we use a supervised technique, training data sets need to 

have verified labels. In order to label these large datasets, crowd sourcing or community 

driven labelling methods should be used. Finding these datasets is also one of the 

difficulties of classification process. 

In the skin cancer field, the most popular crowd sourced data is the International Skin 

Imaging Collaboration (ISIC). The ISIC has expert-labelled datasets, and the number of 

images constantly increases. Most skin cancer researchers use the ISIC dataset to test the 

performance of their algorithms.  

5.4. Experiments and Performance Analysis 

The ISIC dataset has reached over 23,900 skin lesion images which were labeled by 

expert physicians according to their types of malignancy by the date of July 8, 2018. 

There were 19,373 benign and 2,286 malignant images. These images had descriptions 

about patients’ anonymized data. 

We used 12,600 benign and 1,084 malignant images on our first experiment (The 

number of images in the ISIC dataset was around 13,700 at the time). In this case, images 

were not preprocessed before feeding the algorithm. The purpose was examining the 

performance of Inception v3 algorithm based on the existence of the noise and other 

artifacts to see how much it tolerates the noise. Images were randomly split into training 

and testing subsets. The training set had 12,500 benign and 984 malignant images. On the 

testing set, there were 100 benign and 100 malignant images, and we did this testing with 
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ten different 100 benign and 100 malignant pairs. These sets were randomly selected in 

order to eliminate bias. The classification report for the first experiment is displayed 

below (Table 5). Notice that we obtained 0.89 f1 score (89%) for malignancy accuracy. 

Table 5: Results of experiment 1 with 13684 images. 

Class Number Precision Recall F1-Score Support 

(Benign)-0 0.96 0.79 0.87 100 

(Malignant)-1 0.82 0.97 0.89 100 

Average / Total 0.89 0.88 0.88 200 

 

The classification report displays precision, recall, f1-score, and number of images 

per class which were listed as support values. Class numbers were represented with “0” 

for benign and “1” for malignant. On the third line of the report, average precision, recall, 

and f1-score values with total images on testing set are displayed. 

F1-score is a good indicator for performance measuring of classification algorithms. 

According to our classification result, malignant class f1-score was higher than benign 

class. This was a good indication of how well the algorithm handled the malignant cases; 

however, there was overfitting and an imbalanced data problem in the experiment. 

One of the common problems on machine learning algorithms is the imbalanced data 

problem. The imbalanced data problem is caused by the ununiform class distribution. 

This problem was predominant in scenarios where anomaly detection was crucial as in 



 

 51 

our case. In our study, the imbalanced data problem corresponds to the percentage of the 

malignant images over benign images, which is 8.6%. There are many approaches to 

solving imbalanced data problems, such as decreasing the number of benign images to 

the malignant image number, collecting more malignant data, or data augmentation, etc.  

Collecting more malignant images was not an option for our case because we were 

dependent on the ISIC archive. When we were studying on this problem, the number of 

images for malignant cases in the ISIC archive was only 1,084. In order to solve the 

imbalanced data problem, we decreased the number of benign images around to the 

number of malignant images. The next experiment set up and results are explained in the 

following paragraphs.  

In the second experiment, we used 984 malignant and 1,000 benign images for 

training, and 100 malignant and 100 benign images for testing. We randomly split images 

into their training and testing subsets as fine-tuning process. 

Table 6: Results of experiment 2 with 1,984 images using transfer learning. 

Class Number Precision Recall F1-Score Support 

(Benign)-0 0.91 0.79 0.84 100 

(Malignant)-1 0.81 0.92 0.86 100 

Average / Total 0.86 0.85 0.85 200 
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As it is seen from the classification report (Table 6), the values for all columns and 

average values were lower than the previous experiment (experiment 1). However, 

malignant class (class ID 1) had a higher recall and an f1-score values on this experiment 

which is close to the first experiment. The result of this experiment showed that lowering 

the number of benign images was not a good idea for solving the imbalanced data 

problem. 

Thus, in the third experiment, we considered including previously mentioned 

(keeping the hyper-parameters and the experiment setup the same). With this motivation, 

we identified false predicted images on the first experiment and manually cropped them 

to eliminate noise, hair, water, and the other artifacts around the region of interest. After 

this, we trained the classification algorithm again by adding cropped versions of false 

predicted images. After many trials for fine tuning and the optimum outcome, we 

obtained the results given in Table 7, which were the best results so far. 

Table 7: Results of experiment 3 with 13,684 images using transfer learning. 

Class Number Precision Recall F1-Score Support 

(Benign)-0 0.93 0.84 0.88 100 

(Malignant)-1 0.85 0.94 0.90 100 

Average / Total 0.89 0.89 0.89 200 
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 Compared to the first experiment, Table 7 showed higher recall and f1-score 

average values. This indicated that the image preprocessing step had a profound impact 

on the classification algorithm by making the region of interest more clean, 

distinguishable, obvious, and easy to capture so that the algorithm could extract better 

features about the image and learned better.  

With this motivation, we decided to conduct an experiment on the image 

segmentation algorithm to segment skin lesions before importing them to the training 

phase of the image classification algorithm. We used the SLIC superpixel algorithm that 

is described in the previous section. In order to find the region of interest, we tried the 

thresholding technique, which is determining the threshold value and applying it to all 

superpixels. If the superpixel value was higher than or equal to the threshold value, we 

considered it as a part of the region of interest. We first found the mean average values of 

all super pixels. Then, we selected their standard deviation value and applied it as a 

threshold value to all super pixels. The result was not optimal to extract only the region 

of interest. Then, we considered the median value of all super pixels as the threshold 

value. With the median value as a threshold, we were able to get a better result than what 

physicians draw. The result of the median threshold method is displayed on Figure 18c.  
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Figure 18: (a) is the original image, (b) is the segmentation mask drawn by a physician, 
(c) the segmentation mask that is the result of our segmentation algorithm. 

Skin lesion images were observed mostly with some noise or other unwanted artifacts 

around. This situation made us develop another way of pre-processing the images. In the 

first experiment, we fed the classifier algorithm with raw images, which means that we 

did not crop or resize them, but the algorithm handled this for us. The algorithm 

randomly selected a pixel, adding a 299x299 window on it and finally cropping. This 

showed that the algorithm could learn only with a random piece of an image. What if we 

gave the algorithm an actual image resized to 299x299 before feeding into the algorithm? 

With this way, we could keep all the features of an image and help the algorithm to do an 

enhanced feature extraction not only using skin lesion information but also the entire skin 

in the image. 
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 The Inception v3 image classification algorithm is a noise-tolerable algorithm that 

we saw on the first three experiments. On the next experiment, we fed the algorithm with 

the pre-processed images before the training step. 

In the fourth experiment, we used a larger malignant dataset with the size of 2,286 

malignant images and the same number of benign images as the number of images on the 

ISIC archive has been increased. The reason was that the Inception v3 classification 

algorithm could not handle the imbalanced data problem by itself. We manually arranged 

the number of images before training it.  

In this stage of the study, we resized all of the images to 299x299 by adding zero-

pixel values to the short side. With this way, we kept features of the skin lesions and also 

let the algorithm learn the skin lesion malignancy with its skin color.  

 

Figure 19: Square malignant image after resizing process. 

Figure 19 shows the square image we had after adding zero-pixel values to the short 

side of the image, which is the top and bottom portions of the image in this example. 

After the resizing step, we randomly split images into training and testing subsets. 2,086 

malignant and 2,086 benign images were in training set, and 200 malignant and 200 

benign images were on testing sets. Notice that now the data is balanced. We fed the 
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algorithm with these image sets and fine-tuned it to get optimum results. The results of 

this experiment are shown in Table 8. 

Table 8: Results of the experiment 4. 

Class Number Precision Recall F1-Score Support 

(Benign)-0 0.97 0.92 0.94 200 

(Malignant)-1 0.92 0.97 0.95 200 

Average / Total 0.95 0.94 0.94 400 

 

 The classification results of experiment four were the best overall in all 

categories. Similar to the first two experiments, malignant class’ f1-score was again 

higher than the benign class. Training and validation iteration results are illustrated in 

Figure 20. This plot indicates that results are reproducible, and the algorithm is robust 

and reliable with high confidence for accurately classifying lesions as benign or 

malignant. 
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Figure 20: Accuracies of training and validation for each iteration. 

These results also indicate that there is no overfitting or underfitting on the transfer 

learning model. Also, we examined the cross-entropy loss (log loss) which measures the 

performance of a classification model whose output is a probability value between 0 and 

1. As predicted, probability diverges from the actual label, cross-entropy loss increases. A 

perfect model would have a log loss of 0. 

In this experiment, results were very similar to each other. Cross entropy loss plot is 

displayed in Figure 21. Cross entropy loss values were in the border of 0.1 which is very 

close to a perfect model.  With this fine-tuning and configuration, the Inception v3 image 

classification algorithm gave very accurate results on classification of the skin lesions 

from dermoscopy images.  

 

Figure 21: Cross-entropies of training and validation. 
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5.5. Discussion 

Irregular shapes of skin lesions, different types of colors on each skin, and 

determining the region of interest on each dermoscopy image are just a few challenges in 

skin cancer detection. Detecting minute changes on the skin requires expertise in this 

field. However, the human eye may not always catch these tiny changes. Helping doctors 

with the computer vision and deep learning techniques can save many lives. With this 

motivation, we studied skin cancer malignancy detection to classify skin lesions and 

identify malignant cases. Pre-training settings and post-training measurements of all 

experiments showed that the skin cancer malignancy detection is a difficult task and 

generalizing a model for all cases requires some image preprocessing techniques to apply 

before feeding into any deep learning algorithm. We did many experiments and tried 

various techniques to solve the complexity of skin lesions classes. Finally, we were able 

to classify skin lesions with 94% average f1-score. Also, the malignant class skin 

classification f1-score (95%) was higher than benign class f1-score. This result is a good 

indicator for the potential of such a technology to reduce false-negative and false-positive 

predictions and eventually help physicians increase their diagnostic prediction power.  
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CHAPTER 6. CONCLUSIONS 

Skin cancer is increasing and affects many people every day. This cancer can be 

treated successfully if it is detected in early stages. Early diagnosis and treatment will 

lead to an increased survival chance and reduced mortality rates. However, current 

clinical techniques used for the diagnosis of malignant melanoma are prone to human 

error due to the subjectivity and novice physicians. Therefore, there is a need for more 

reliable and accurate systems that can be beneficial to both expert and novice physicians.  

This thesis proposed creative and effective methods to eliminate the subjectivity in 

visual interpretation of dermoscopy images and decrease the number of false-

negative/false-positive diagnoses by introducing a new method for measuring abrupt 

cutoff and increasing the performance of feature extraction algorithms. There are two 

main studies done in this thesis: (1) skin lesion abruptness quantification, and (2) skin 

lesion malignancy classification using transfer learning. 

6.1. Skin Lesion Abruptness Quantification 

Abruptness of pigments on the skin is one of the most important dermoscopic features 

for detection of malignancy. In the current clinical setting, abruptness is determined by an 

examination performed by a dermatologist. This process is subjective, non-quantitative, 

and error-prone. We presented an improved computational model to quantitatively 

measure abruptness of a skin lesion by quantitatively analyzing the texture features of a 

region within the lesion boundary. This region was bounded by an interior border line of 

the lesion boundary which is determined using the level set propagation (LSP) method. 

This method provided a fast border contraction without a need for extensive boolean 

operations. Then, we built feature vectors of homogeneity, standard deviation of pixel 
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values and mean of the pixel values of the region between the contracted border and the 

original border. These vectors were then classified using neural networks (NN) and SVM 

classifiers. By using texture homogeneity at the periphery of a lesion border determined 

by LSP, as a classification results, we obtained 87% f1-score and 78% specificity.  

6.2. Skin Lesion Classification using Transfer Learning 

Misdiagnosis of malignant melanoma is the real reason of fatality due to skin cancer. 

Even though there are imaging and diagnosis techniques used commonly for melanoma 

like dermoscopy, automatic recognition is still challenging due to the difficulty of 

segmenting accurate lesion areas, similarity between melanoma and non-melanoma 

lesions and the variation of skin conditions. Besides these problems, medical images are 

not easy to find while protecting the anonymity of the patients. Since there were not 

enough images of melanoma cases to properly train datasets, we used Inception v3 image 

classification transfer learning algorithm with pretrained ImageNet dataset weights. 

Before applying image preprocessing steps prior to feeding the algorithm, we obtained 

89% f1-score for malignant cases. However, after feeding the algorithm with the resized 

and preprocessed images, we were able to acquire 95% of f1-score for malignant cases. 

To sum up, the objectives of this thesis were to eliminate the subjectivity on visual 

interpretations of dermoscopy images for abrupt cutoff and to reduce the number of false-

negative/false-positive diagnosis of malignancy classification.  
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