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ABSTRACT 

 

 Structural genomics is a field of study that strives to derive and analyze the structural 

characteristics of proteins through means of experimentation and prediction using software and 

other automatic processes. Alongside implications for more effective drug design, the main 

motivation for structural genomics concerns the elucidation of each protein’s function, given that 

the structure of a protein almost completely governs its function. Historically, the approach to 

derive the structure of a protein has been through exceedingly expensive, complex, and time 

consuming methods such as x-ray crystallography and nuclear magnetic resonance (NMR) 

spectroscopy.  

 In response to the inadequacies of these methods, three families of approaches developed 

in a relatively new branch of computer science known as bioinformatics. The aforementioned 

families include threading, homology-modeling, and the de novo approach. However, even these 

methods fail either due to impracticalities, the inability to produce novel folds, rampant 

complexity, inherent limitations, etc. In their stead, this work proposes the Fuzzy Greedy K-

means Decision Forest model, which utilizes sequence motifs that transcend protein family 

boundaries to predict local tertiary structure, such that the method is cheap, effective, and can 

produce semi-novel folds due to its local (rather than global) prediction mechanism. This work 

further extends the FGK-DF model with a new algorithm, the Hierarchically Clustered-Hidden 

Markov Models (HC-HMM) method to extract protein primary sequence motifs in a more 

accurate and adequate manner than currently exhibited by the FGK-DF model, allowing for more 

accurate and powerful local tertiary structure predictions. Both algorithms are critically 
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examined, their methodology thoroughly explained and tested against a consistent data set, the 

results thereof discussed at length.   
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I. Introduction 

 Structural genomics is a field of study that strives to derive and analyze the structural 

characteristics of proteins through means of experimentation and prediction using software and 

other automatic processes [20]. Alongside implications for more effective drug design [38], the 

main motivation for structural genomics concerns the elucidation of each protein‘s function, 

given that the structure of a protein almost completely governs its function [15]. Currently, 

structural genomics is supported through a synergetic gambit of processes and applications on 

both the experimentation and prediction side, including (respectively) ―wet lab‖ procedures such 

as x-ray crystallography [3] and nuclear magnetic resonance (NMR) spectroscopy [21], and 

bioinformatics algorithms [4] which include homology-modeling, threading, and de novo 

modeling [4]. Wet lab procedures drive the process of structural genomics such that ―target‖ 

proteins are selected and their structures explicitly determined through accurate albeit extremely 

expensive and time consuming processes. The target proteins are selected in such a manner that 

allows the predictive algorithms to determine the structure of proteins that are either sequentially 

or structurally homologous to the target proteins, allowing for accurate structural analysis of 

most proteins by only explicitly determining the structure of a few.  

 Granted this, there are significant drawbacks to this current approach of wet lab driven 

structural genomics, the most prominent of which being that current predictive algorithms are 

heavily dependent on the continual explicit determination of protein structures through the 

resource intensive wet lab procedures.  This work would propose and discuss a new predictive 
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algorithm that analyzes protein structure not through strict homologues, but rather seeks to 

discover sequential patterns, or motifs, that transcend families of homologous proteins. Unknown 

proteins analyzed by this approach. This approach allows for the prediction of new protein 

structures by strictly analyzing the current record of known protein structures for shared motifs 

that are not aligned alongside protein families, determining the structure generated from each 

extracted motif, and aligning the motif (and its structure) with the sequence of the new protein. 

To that effect, this work presents two algorithms: the Fuzzy Greedy K-means Decisions Forest 

model (FGK-DF model), and the Hierarchically Clustered Hidden Markov Models (HC-HMM). 

The FGK-DF uses a combination of clustering to determine both the non-homologous sequential 

motifs and then decision tree classifiers to determine if unknown proteins share a given 

sequential motif and thus structural motif. The HC-HMM is an attempt at resolving several 

limitations presented by the FGK-DF, most notably an assumed sequential motif size. Given this, 

it is imperative for fully understanding the implications of the methods proposed and the 

problems presented by the current methodologies to have sufficient background information 

concerning the subject, specifically concerning protein structure anatomy, a closer examination 

of the aforementioned wet lab experiments and existing predictive approaches, and finally a brief 

overview of the FGK-DF model and HC-HMM.  

1.1 Protein Structure Anatomy 

 In the preceding section, protein structure referred specifically to the three dimensional 

structure of the protein, its ―shape,‖ so to speak. In fact, protein structure can be broken down 
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into four primary categories, three of which this research deals with directly: primary sequence, 

secondary structure, and tertiary structure, all shown in Figure 1 below. The first of these 

categories is the primary sequence of the protein, described as an ordered sequence of chained 

amino acids. Amino acids are molecules hailing from a family of twenty possible amino acids 

that form, essentially, the alphabet of protein composition. That is to say that amino acids are the 

building blocks of proteins, determining, more than anything else, the characteristics that the 

protein assumes (most notably the ―shape‖).  The arrangement of these amino acids can cause 

highly regular substructures to appear as the amino acids are chained together. These 

substructures form the secondary structure of the protein, the second category of protein 

structure, and often come in the form of three overarching motifs: alpha-helix, beta-sheet, or 

coils. These motifs arise from complex intermolecular reactions between components of the 

primary structure as they form bonds, creating folds and other such structures that appear as the 

secondary structure.  

 Once the secondary structure is stabilized, the tertiary structure, the third category of 

protein structure, begins to take shape in a process known as folding. A protein folds due to 

intermolecular forces as well as environmental conditions, such as the presence of water or 

temperature, and eventually reaches a stable form known as the ―native state.‖ This native state 

describes the correct tertiary structure of the protein, or, rather the three dimensional shape of the 

protein. This is the most pivotal category of structure as it is, as has been mentioned, the sole 

determinant of the function of the protein. It has also been the most elusive, historically, as the 

next section will explore.  
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Fig. 1: Protein Structure Anatomy [28] 

1.2 Wet-Lab Procedures: X-Ray Crystallography and NMR Spectroscopy 

 Historically, the method by which one would discern the tertiary structure of a protein is 

with a physical experiment using one of two major processes, x-ray crystallography and nuclear 

magnetic resonance spectroscopy. The former, introduced in the early 20
th

 century, relies on 

firing x-rays through crystallized macromolecules, such as proteins, and recording the resulting 
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diffraction pattern which can then be analyzed, mathematically, to produce the structure of the 

macromolecule. This requires that the molecule can be crystallized (which can exclude vast 

portions of proteins, such as those associated with membrane functions), not to mention the 

extensive amount of time, effort, training, and money that must be poured into the process to 

determine the structure of only one macromolecule. Furthermore, imperfections in the process 

can lead to unusable resolutions of the structures, making the already complex process 

frustratingly impractical in many cases [3]. Despite this, according to the Protein Data Banks, 

there have been over 94,715 structures (including all biological macromolecules, not just 

proteins) determined by this method alone [17]. 

 The other major competing method of structure determination is the aforementioned 

NMR spectroscopy, which utilizes the properties of magnetic fields produced by the spin of 

charges in atomic structures to produce information on their chemical and physical properties. 

This can be extended to determine the structure of molecules [21]. Unfortunately, this method 

can generally only be applied to much smaller molecules and proteins, though it is often times 

the only method by which one can experimentally determine unstructured proteins. Perhaps more 

so than x-ray crystallography, this method is extremely expensive, requiring massive machinery 

and considerable expertise to analyze or even produce the results. Both methods (x-ray 

crystallography and NMR spectroscopy) are also extremely slow, relatively speaking, and can be 

prohibitively impractical in certain cases. This is why structural genomics, while driven by 

experimentation, is largely supported by predictive algorithms [BAKER-GENOME] as the next 

section will explore.  



6 
 

1.3 Bioinformatics: Predicting Protein Structures using Computer Science 

 In the late 21
st
 century, after computing and the science thereof had been considerably 

established, a growing field concerned with extensive data analysis and mining had begun to 

crop up amongst those interested in such things. This coincided, to no one‘s surprise, with an 

overwhelmingly large need to analyze the massive amounts of data being produced by the now 

vastly popular tools the internet had provided. This gave birth to a wide range of fields all 

contained, if remotely, under a field known as data mining. Soon, the so-called ―informatics‖ 

spread to other disciplines, including biology, which of course resulted in the aforementioned 

bioinformatics [4]. It was not long before the new study concerned itself with the mission of 

structural genomics, forming three distinct approaches to the problem: homology-modeling, 

threading, and the de novo approach [4]. Each of these approaches is explained briefly in the 

following paragraphs, along with a brief discussion of the inherent weaknesses of each approach 

in the context of protein structure prediction. 

1.3.1 Homology Modeling 

 Homology-modeling, in a sentence, attempts to exploit the mechanism by which protein 

evolution operates, such that proteins that share an evolutionary ancestor are said to have similar 

tertiary structures. This is in part due to the fact that there are only three primary ways a protein 

sequence (and, subsequently, its structure) can change over time: insertions, deletions, and swaps 

in the amino acids in its primary sequence. The former, as one would expect, is the situation 

when one or more amino acids are inserted into a random location on the protein. Deletions are 
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the opposite, such that random sequence of one or more amino acids on the primary sequence is 

removed. Swaps are effectively changes in place, where the deleted portion of the primary 

sequence is replaced with an inserted portion. The following figure demonstrates the three types 

of mutations:  

 

Fig. 2: Protein Sequence Mutations 

 These three types of mutations lead to the various branches within a given protein family, 

such that all the branches, presumably, lead to a ―root‖ protein, the shared evolutionary ancestor. 

Each protein that is descendant of that ―root‖ protein is just a set number of swaps, insertions, 

and deletions away from the root. This suggests that to relate one homologue to another (that is, 

two proteins that share the same ―root‖ protein), one can simply work their way to the root and 

then back down again to the target homologue through a unique series of mutations. Primary 

sequence largely determines structure, such that if one can relate a given sequence to another 

sequence, they can also relate a given structure to another structure. This is compounded with the 

fact that function is largely conserved throughout protein evolution (as non-functioning proteins 

would die out), and as function and structure are also intertwined (though not to the same extent 
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as sequence to structure), common evolutionary ancestors imply common structures through 

common functions [18].  

 Given this, homology-modeling attempts to build the roadmap, so to speak, from the 

potential template sequences to the root protein back to the target sequence. This is done, 

generally, with a process known as dynamic programing [34], specifically sequence alignment. 

In its most naïve form, sequence alignment attempts to find the optimal alignment between two 

primary sequences by inserting, deleting, or swapping characters in the template sequence, such 

that it optimally matches the target sequence. Once can clearly see that this approach emulates 

the evolutionary mechanisms of the proteins. Using substitution matrices [29] and scoring from 

the alignment, one can detect homologues and the strength of the evolutionary link. This 

produces a score known as ―sequence identity,‖ such that those homologues which are close, 

evolutionarily, have a higher sequence identity between each other. Homology-modeling 

attempts to best align those homologues with the highest sequence identity to the target 

sequence, such that the structures (which are assumed to be conserved) of the templates are said 

to be the structures of the target sequence. Those segments that can‘t be aligned must be filled in 

using ―loop modeling,‖ as those are, generally, the regions that are highly flexible in the physical 

protein structure (i.e. the ―hinges‖) [35]. 

1.3.2 Threading 

 Threading, conversely, determines a template protein according to similarities in the 

folding of the tertiary structure between the target (the protein whose structure is being 
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predicted) and potential template proteins from enormous databases. In more explicit terms, the 

approach attempts to model the target protein by aligning, or ―threading,‖ an unknown protein‘s 

sequence ―to a known structural motif‖ [32]. This requires one to have a database of ―spatial 

folding templates,‖ (i.e. the known structures to which one can align a primary sequence to), to 

perform the prediction process. In its purest and most naïve form, the unknown protein‘s 

sequence is aligned one amino acid at a time against these templates until a best fit is found. This 

best fit, being one of the aforementioned templates, has the corresponding ―structural motif‖ (i.e. 

the fold) that is said to be the tertiary structure of the unknown protein. In other words, the 

threading approach ―recognizes the protein sequences likely to fold into similar structures‖ [32]. 

 Both threading and homology-modeling are part of a larger subset of prediction 

approaches known as template-based modeling, in which a target protein is modeled against 

templates selected based either on homologies or folding. Despite this, both approaches have 

significantly different drawbacks to their methodology. Homology modeling has a clear 

limitation: prediction is limited to only those proteins with existing and identified homologues. 

This is best exhibited by the clear correlation between low sequence identities and lower 

prediction accuracy, especially when sequence identity falls below 20% [7]. Furthermore, those 

regions that must be modeled using loop modeling can be incredibly inaccurate [35]. Threading, 

while it can have the loop modeling problem (as it runs into the same issue of modeling the 

―hinges‖) is not limited to protein family boundaries, but the presence of conserved folds and 

structural motifs, which are conserved across protein families much more so than evolutionary 

homologies. In fact, it was found, according to the 2010 CATH release notes, that there are 1,282 
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folds conserved across protein family boundaries, as opposed to the highly specialized 2,549 

―homologous superfamilies.‖ This causes homology-modeling to have a much larger search 

space and inherent data complexity than threading. Despite this, both approaches fail to generate 

novel structures through prediction. In other words, since both approaches rely on structural 

templates based on known structures, any predictions made will be based off of those known 

structures, and thus no unique structure predictions can be made. This is an incredibly important 

drawback as it forces continued reliance on the aforementioned wet lab procedures to produce 

new protein structures through explicit experimentation to allow for further predictions.  

1.3.3 De Novo Modeling 

 The other method, de novo modeling [8], takes a radically different approach to 

predicting protein structures, in that the mechanisms by which protein folding occurs is 

simulated and modeled rather than the structures themselves being formed based on matching 

templates. The simulation environment can be given an input of only the primary sequence of a 

protein and, without referring to a database of known protein structures, it can produce a 

simulation of the folded protein and thus its end tertiary structure. The simulation environment 

itself can be generated through sampling a ―conformation space,‖ (i.e. the possible and expected 

structure of the proteins given constant conditions), from which possible structures are generated, 

scored, and refined. This, in turn, is supported by a plethora of mathematical models and 

equations that model physical laws, free energy minimization, water and amino acid 

hydrophobicity, and so on. The sheer complexity and range of approaches contained under the de 



11 
 

novo approach prohibits further discussion in this work on the matter, but it should be noted that 

the same complexity prohibits the de novo approach from being applicable to all but the smallest 

proteins. Furthermore, template-based modeling, such as threading and homology-modeling, 

have consistently outperformed de novo approaches in the past [31], and thus, despite the fact 

that it is the only branch of structure prediction that can produce novel folds, the de novo 

approach will not be considered further in this work. 

1.4 The Fuzzy Greedy K-means Decision Forest Model and Hierarchically Clustered 

Hidden Markov Model 

 In short, the base FGK-DF algorithm is a hybrid template-based approach that, instead of 

folds or homologies, uses subtle, conserved primary sequence motifs (that is, sequential motifs) 

that, much like folds, transcend protein family boundaries. It does this on a local tertiary 

structure level rather than the conventional global (or total) tertiary structure level, which not 

only affords the algorithm a much higher resolution at the prediction level, but also allows the 

algorithm, amongst its other mechanisms, to provide semi-novel folds, a great improvement over 

the shortcoming described for the conventional template-based approaches. In more explicit 

terms, the FGK-DF model trains itself on a large, non-homologous training dataset (over a half 

million protein segments), granulizing and clustering the information in the training set based on 

the shared presence of these so-called sequential motifs extracted using a sliding window 

technique with a fixed size. From there, decision trees are trained on each cluster, utilizing both 

primary and secondary information such that each tree can discern if a target protein segment 
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contains the sequential motif within its primary sequence. Once the entire forest of decision trees 

are trained, they can be searched according to primary sequence ―distance‖ to find the best fit (in 

the a similar manner as that described by homology-modeling), and then using the decision tree 

to decide if the target protein contains the motif that characterizes the cluster the tree is trained 

on. If it does, the tertiary structure is predicted to be the average (and thus novel) structure of 

either the cluster or a given branch on the tree, depending on the particular setup of the model. 

This is repeated for each target protein, such that the end product is a cheap, accurate, and 

quickly determined tertiary structure for a vast number of protein segments (and thus proteins 

themselves) that does not rely on continual support from wet lab procedures to produce new, 

explicit structures. Rather, the FGK-DF model allows for finer grain analysis and data extraction 

on the already considerable wealth of data existing in the Protein Databanks and other relevant 

databases.  

 Granted that, the FGK-DF model has its own inherent weaknesses, the most prominent of 

which is an assumed motif size. As the FGK-DF model relies on a slide windowing technique 

with a set window size to extract segments from proteins in order to determine potential 

sequential motifs, there is an implicit assumption on the maximum size a motif can be. This can 

cause motifs that are much larger than the assumed size to be needlessly segmented, and protein 

motifs that are smaller than the assumed size to be hidden by the ―noise‖ of non-conserved local 

amino acids. The HC-HMM algorithm was developed to resolve this issue and be reactive to the 

size of potential sequential motifs, rather than force users of the algorithm to make assumptions 

on the expected or average size of all sequential motifs in a given dataset. To do this, each 
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protein sequence used to build the database of known, transcending sequential motifs is 

converted into a Hidden Markov Model [24]. HHMs are based on a system of states and 

transitional probabilities that exist between those states. This allows one to model a protein 

sequence as a series of states reflecting both the composition and aforementioned evolutionary 

behaviors of proteins (insertion, deletion, etc.). Using simple distance calculations on each 

‗node‘ of the generated HMMs, it becomes a simple process of aligning and clustering each 

HMM with another HMM exhibiting minimum distance. This process of aligning and clustering 

is repeated until there is only one HMM cluster left, from which sequential motifs can be 

extracted based on a minimum number of overlapping, aligned HMM nodes. Since the motifs are 

based on alignment overlap in a given cluster, no size is assumed on the motif, presumably 

extracting more accurate and complete sequential motifs than the FKG-DF model.  

 Granted all of this, the model of the base FGK-DF model and HC-HMM will be 

extensively explained and defended. The development history, methodology, and short 

exploration of the results of the FGK-DF model will be explored. Discussion will then turn to the 

extensions and utility provided by the HC-HMM, how exactly the data is modeled, further 

discussion and explanation of the proposed algorithm, and analysis of the algorithm‘s 

effectiveness at extracting motifs. Of course, before any further discussion can begin, it is pivotal 

to understand, exactly, what constitutes the basis of this entire work, the FGK-DF model. What 

are the underlying algorithms? And, of course, what is the data being used? Each question, in 

turn, is answered in the subsequent chapters. 
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II. Fuzzy Greedy K-Means (FGK) Algorithm 

 At the core of the FGK-DF model is the FGK (Fuzzy Greedy K-Means) algorithm, which 

clusters protein information based on sequential motifs found in the primary sequence, 

supplemented by secondary structure information. As the following sections will explore, the 

FGK algorithm accomplishes this by first roughly granulizing the data using Fuzzy C-Means 

clustering [19], and then finely clustering the data using Greedy K-Means [43]. The following 

sections will provide an extensive and detailed walkthrough of not only just what the various 

steps required in the FGK algorithm, but also the data and parameters that are required at each 

step, as well as the final output and usage of the algorithm.  

2.1 FGK Algorithm Data Set 

 The information required by the FGK algorithm includes the primary sequence 

(represented as a frequency profile), secondary structure, and tertiary structure for each protein 

segment described in the data. Thus, this can leave one with the simple question: where does this 

protein information come from? The answer, almost in every current model and algorithm, can 

be linked to a massive database known simply as the Protein Data Bank (PDB) [17]. The 

database began as a ―grassroots effort in 1971,‖ to replace the inefficient process of exchanging 

structure data at the time (each atom of the entire protein was represented by a single punch 

card). The database did more than streamline the process of structure information exchange: by 

producing a centralized store, the PDB started an era of structure research based on the free and 

open exchange of protein information to anyone with an internet connection. Although the PDB 



15 
 

started out modestly (in 1976, less than thirty protein structures had been archived in the 

database), by 2006 the number of structures archived was over 40,000, such that many of the 

new structures were much more complex and detailed than the older structures.  

 Unfortunately, as the PDB has an extensive history of radical changes in the structure of 

its datasets, and is primarily for tertiary structure information, other databases and programs are 

often needed to either make sense of or add to the data to that found in the PDB [33]. The FGK 

model makes use of three such intermediate databases, those being the Protein Sequence Culling 

Server (PISCES), Homology derived Secondary Structure of Proteins (HSSP) and Definition of 

Secondary Structure of Proteins (DSSP). PISCES is a ―public server for culling sets of protein 

sequences from the PDB by sequence identity and structural quality criteria‖ [16]. In other 

words, PISCES allows one to generate a subset of the sequences and structure information found 

in the PDB based on certain constraints on the data. The most important criteria, in the context of 

the FGK-DF model, is the sequence identity. As will be explained in later sections, the FGK 

algorithm requires a dataset composed of proteins with a very low sequence identity (i.e. a set of 

protein primary sequences that are measurably dissimilar from one another). The PISCES server 

makes the process of ―culling‖ proteins that fit that criteria very straight forward. The FGK 

algorithm uses PISCES to retrieve primary and tertiary structure information for building the 

dataset. To fill the secondary structure void, the DSSP is used. Put simply, the DSSP is a 

database describing the secondary structure of each protein in the PDB [41], making it simple 

and straight forward to request and append the required information to the primary sequence and 

tertiary structure information generated by PISCES. However, the data is still not in the form that 
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the FGK algorithm requires it, as the primary sequence for each protein segment is still in its 

native form, not in the required frequency profile form [27]. To produce a frequency profile, one 

first must produce a multiple sequence alignment. Once this task is complete, to generate a 

frequency profile, one simply notes the ―frequency of occurrence of each of the amino acids‖ at 

each position in the primary sequence. Assuming one is looking at only one position, this results 

in a table with twenty columns (one for each amino acid) with a value that ranges from zero to 

one-hundred describing the percentage that particular amino acid represents in the entire 

sequence. However, using only one position is not entirely useful, so the concept of ―window 

size‖ was introduced. In that, one examines not just one position in the alignment, but multiple 

contiguous positions up to the window size. This would result in a table with 20*n columns, 

where n represents the window size. However, this is not, in itself, adequate as amino acid 

sequences are far larger than the typical window size (which has been, in this research, nine). 

Thus, one can introduce a ―sliding window‖ technique [12]. In this process, each frequency 

profile of size n (the window size) of a protein sequence is captured by the sliding window, 

which is also of size n. When it starts at position 0 in the multiple sequence alignment, it captures 

positions 0 to n and adds it to the frequency profile table as a row. The window then ―slides‖ 

over to position 1 and captures positions 1 to n + 1 and adds it as a second row to the profile 

table. This repeats until there are no more positions in the protein. The end result is a frequency 

profile table with 20*n columns and p-n rows, where p is the size of the protein‘s primary 

sequence.  
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To generate this frequency profile, HSSP is put to use, a database that uses multiple sequence 

alignment to produce the frequency profile for proteins found in the PDB [11]. Using PISCES, 

DSSP, and HSSP to generate tertiary structures, secondary structures, and frequency profiles, 

respectively, one can generate the data set required for the FGK algorithm.  

 Granted this general idea of the dataset and the sources thereof, it is important to 

understand the explicit form this data takes when in use by the FGK algorithm. It has been noted 

that the FGK algorithm functions at a local level, meaning that each data member in the set 

consists of a protein segment, not the entire protein. This is where the idea of the aforementioned 

―sliding window‖ comes into play. The FGK algorithm adopts a window size of nine, such that 

each snapshot of the primary sequence generated by PISCES exhibits nine successive positions 

of that protein‘s primary sequence. This is done for each position in the protein, generating a new 

sequence segment at each position. The HSSP is used to, essentially, convert these segments into 

the useable frequency profile, generating a twenty (for each amino acid) by nine (for the window 

size) row for each segment generated by the sliding window. The secondary structure 

descriptors, written as ‗H,‘ ‗E,‘ and ‗C,‘ for each of the nine positions are generated by DSSP 

appended to the end of each generated row, such that the secondary structure information 

corresponds to the nine positions described by the frequency profile. Finally, the tertiary 

structure information, generated by PISCES, is added for each row, describing the three-

dimensional shape of each local sequence generated by the sliding window in terms of 36 

distances from the center of the protein, defined in terms of mutual distances between each 

component amino acid. Further information is also added to identify the sequence segments, 
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such as the protein name and the sequence number generated from that protein. One can see an 

example of what the data might look like in the following figure:  

 

Fig. 3: FGK Algorithm Data Structure 

 In this work, the dataset generated is based on 2,710 proteins obtained from PISCES, 

with the constraint that no proteins in the data share more than a 25% sequence identity. This is 

both for testing purposes, explained in the following sections, as well as for fulfilling the driving 

concept of the FGK algorithm, which relies on finding motifs that transcend protein family 

boundaries. If the sequence identity is too high amongst the data members, this implies that they 

all hail from the same protein family. If this is the case, that implies the motifs extracted will be 

representative of that particular family only (which is an approach used by purely homology-

modeling algorithms). However, by enforcing this constraint, the FGK algorithm ensures the 

motifs it extracts transcend protein family boundaries, which expands coverage and accuracy of 

predictions.  Granted this, each of the 2,710 proteins is run through the sliding window process, 

again with a window size of nine, generating more than 560,000 segments, where each segment 
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is described in terms shown in Figure 3. This constitutes the training set, which is used to learn, 

or ―train,‖ the FGK algorithm as well as the full FGK-DF model. A similarly defined set, 

composed of the 2419 protein files excluded by the PISCES culling process, is used to test the 

FGK-DF model, such that its accuracy and coverage can be measured and defined based on the 

predictions made by the FGK-DF model. In the following sections, these two data sets are 

referred as the training and testing data sets, respectively.  

2.2 Granulating and Clustering the Data: Fuzzy Greedy K-means 

 As previously mentioned, the FGK algorithm involves two major components: breaking 

the data into rough information granules and building finer clusters from those granules. This 

section discusses how the FGK algorithm makes use of the Fuzzy C-Means (FCM) and Fuzzy 

Greedy K-Means (FGK) to accomplish each of these respective tasks in the context of protein 

sequential motif extraction.  

 Granule computing, in a sentence, proposes one break a larger set of data into subsets, 

noted as ―information granules,‖ to allow for parallel execution [39]. This is required in the case 

of the FGK algorithm because of the rather large dataset (over 560,000 segments) described in 

the previous section. To generate these information granules, the FCM algorithm [19] is used. 

FCM works much like the popular clustering algorithm K-Means, only membership to each 

cluster is determined in a fuzzy manner rather than a static manner. FCM uses two primary 

equations: an equation (equation 1 below) for determining a degree of belonging to the cluster, 
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and an averaging mechanism (equation 2) for determining the centroid of the cluster. These two 

equations, respectively, take the following forms:  

 

Eq. 1 and 2: Fuzzy Degree of Belonging and Centroid Calculation 

 In these equations, Uij is the degree of belonging of the data member xi in the cluster j. cj 

describes the centroid of the cluster j. C describes the number of clusters, N describes the number 

of data members, and m is the ―fuzzification factor‖ [23], which determines the weight of the 

fuzzy logic as it takes place in the calculations. The ―||…||‖ simply describes the distance formula 

that is used to determine the similarity/dissimilarity of a data member to a given centroid. The 

first formula, as mentioned, produces the degree of belonging for each data member for each 

cluster. The ―degree of belonging‖ ranges from zero to one, with zero describing no belonging 

and one describing full belonging. In the same manner, the first equation generates a value 

ranging from zero to one, describing the degree of belonging for each data member in each 

cluster. This is used, in turn, for the second equation, which (as stated) determines the centroids 

for each cluster. As each data member has a variable belonging to the cluster, one can‘t simply 

add up all distances of data members in the cluster and then average it. Instead, one must account 
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for the degree of belonging, and weight each distance appropriately. That is, for a data member 

with a high degree of belonging, more distance is contributed when determining the centroid. 

Those data members with a low degree of belonging contribute less distance. Just like with K-

Means clustering, FCM begins with randomly selected points, determines membership to each of 

those points, calculates centroids, determines membership, recalculated centroids, and so on until 

the centroids no longer move or the change falls below a given threshold.  

 Thus, the FGK-DF uses FCM to produce distinct information granules, setting the 

fuzzification factor to 1.05 (m can range from 1.00 to infinity) and the number of information 

granules to ten, based on the results generated in previous work [5]. The distance formula 

(equation 3) utilized is based on that used by Han and Baker [12], described as the ―city block 

metric.‖ This formula is shown below:  

 

Eq. 3: City Block Metric 

 This formula, when applied to the FGK data, basically states that distance is equal to the 

summation of the difference between the frequency value in data member Fk and Fc for each of 

the twenty amino acids (N) in each of the nine positions described by the window size (L). This 

distance formula is used in place of the ―||…||‖ in the FCM formulas described above, as well as 
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the distance formula for the FGK process described in the following passages. This formula 

generates the ―distance,‖ or difference that is exhibited between two frequency profiles for two 

given segments in the training data set. Using this formula, the distance threshold (i.e. the 

allowed difference between two protein sequence segments) is set to 13%, which roughly 

translates to the omission of 15% of the outlying data that could not be clustered to any of the 

centroids. This described setup results in ten information granules, whose main purpose is to 

reduce the running time (by producing granules that can be clustered in parallel) as well as to 

improve the quality of the data (by removing 15% of the data as outliers). Despite this, the 

information granules are still far too course for motif extraction, requiring a finer grained 

clustering algorithm to generate usable protein motifs.  

 In related work, Zhong et al. proposed an ―improved‖ K-Means algorithm to resolve the 

initialization problem of traditional K-Means for protein sequence motif extraction [43]. The 

algorithm had two main steps for generating initial centroids: generate centroids by running 

traditional K-Means for a fixed number of iterations, then determine if those centroids can be 

added as viable initial centroids based on secondary structural similarity and then their distance 

to other initial centroids. This was run until the number of viable initial centroids was equal to 

the number of required clusters, k, which then traditional K-Means was run with those initial 

centroids. The distance measure was based on the ―city block metric‖ formula described in the 

preceding passage, while the secondary structure similarity was based on the following equation:  
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Eq. 4: Secondary Structure Similarity Measure 

 Equation 4 uses the secondary structure of all items in a given cluster to determine the 

secondary structure similarity shared between all protein segments in that cluster. In the formula, 

PiH describes the frequency of helices in the protein segments in the cluster at position i for each 

of the nine positions (ws). PiE and PiC describe the frequency of sheets and coils, respectively, in 

the same manner. Max() returns the maximum frequency of the three measures, as one would 

expect. Finally, this is all divided by the window size, ws, which is nine in this case. If one 

considers the simple example of three protein segments with a window size of three, the 

secondary structure similarity of three such proteins with ‗HHH,‘ HEH,‘ ‗HHH‘ as their 

secondary structures would result in roughly an 88% secondary structural similarity, using that 

formula.  

 Zhong et al.‘s Greedy K-Means algorithm served as the basis for the FGK algorithm. In 

fact, the FGK is simply a ―greedier‖ version (ignoring the addition of the FCM preprocessing 

step) of the Greedy K-Means algorithm [5]. More explicitly, the Greedy K-means aspect of the 

FGK follows the algorithm proposed by Zhong et al., except a dynamic threshold for required 

secondary structure similarity is implemented. The number of iterations was also fixed to five 

runs of traditional K-Means, where each respective run had a secondary structure similarity 
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cutoff of greater than 80%, 75%, 70%, 65%, and finally 60%. These values were based on the 

idea that a cluster of protein segments with a secondary structure similarity of greater than 70% 

can be considered ―structurally identical‖ [10], but also that those between 70% and 60% can be 

considered ―weakly structurally homologous‖ [43]. This approach was indeed greedier, resulting, 

depending on the centroid distance threshold, on either too many centroids or not enough 

centroids. For instance, if the required distance threshold was set to 250 units, the algorithm 

―could always obtain more centroids‖ [5] than k. If there was a dearth of centroids, traditional K-

means was run with a distance threshold of 800 to choose the rest of the initial centroids. Finally, 

after the five runs generated the initial centroid list, just as in Zhong et al.‘s Greedy K-Means, a 

run of traditional K-Means was performed using the generated initial centroid list to produce the 

protein clusters.  

 This new ―greedier‖ K-Means algorithm, combined with the aforementioned FCM setup, 

would result in the complete FGK algorithm [5]. In order to determine the number of clusters, k, 

for each information granule, the following equation (equation 5) was used:  

 

Eq. 5: Granule Size 

 In this formula, Ck refers to the amount of clusters assigned to a given information 

granule ‗k,‘ where nk is the number of data members contained within said granule. M, in the 
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bottom summation, refers to the number of clusters defined for the FCM run (which would be 

equal to the number of granules, ten). P refers to the total number of clusters, which is set, in this 

work, to 799, based on the research and results performed by Zhong et al. [43]. In effect, this 

formula balances the number of clusters for each granule based on the number of each granule‘s 

members. That is to say that if a given granule has fewer members, then the number of clusters it 

produces will also be lower. For instance, in this work, Granule 7 only has 4,583 members, thus 

the number of clusters it generates is only five. Conversely, Granule 0 has 136,112 members, 

such that its number of clusters is 151.  

 Taken altogether, this step in the FGK-DF model begins the isolation process for the 

protein sequence motifs, as each cluster generated represents a shared pattern amongst its 

member sequences. That is, each of the 799 generated clusters represents a unique motif that is 

contained within each of the protein segments that composed the cluster. The FGK-DF uses 

these motifs, in the prediction process, to match primary sequences of unknown proteins to a 

possible tertiary structure, but the clusters are generally too course and unrefined to jump straight 

to this step. Instead, the data requires one more refinement process to build the model such that it 

can generate predictions, that process being the development of the decision forest as the next 

chapter will explore.   
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III. Fuzzy Greedy K-Means Decision Forest (FGK-DF) Algorithm 

3.1 Decision Tree Induction Processes 

 Consider a simple example in which a given person is deciding whether or not to take a 

walk. Clearly, the person would first run through the situation at hand, subconsciously asking 

questions surrounding, perhaps, the weather, what their schedule looks like, whether they need 

the exercise, etc. These could be arranged into a hierarchy, where the more important factors in 

determining if the person is take the walk would be asked first, and less important questions 

asked later. For instance, one of the first questions that one could ask is whether or not it is 

raining. This could also lead to branching of questions. For instance, one could ask if the 

temperature outside is ―hot.‖ If it is, then they could ask if they have a water bottle. If the 

temperature is hot and they have a water bottle, then they might either ask further questions, or 

conclude, after determining they have a water bottle, that they should go for a walk. The 

following figure demonstrates a possible structure for making this type of decision:  

 

Fig. 4: Decision Structure for the Walk Scenario 
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 Starting from the top of the figure, one can see the questions being raised, with each 

branch being a possible answer to that question. Each answer either leads to a conclusion (―Not 

Going for a Walk!‖) or to another question. Many of the questions above are binary, but the 

branching can include answers that fall within a range or set, such as the ―What is the 

Temperature?‖ question, which can either be ―cold,‖ ―moderate,‖ or ―hot.‖ The ordering of the 

questions implies a relationship between the parent question (the one that precedes the current 

question) and the child question. For instance, ―Do I have a Water Bottle?‖ clearly has a relation 

with a ―hot‖ temperature. This relationship can be extended further up the graph, such as the ―Do 

I have an Umbrella?‖ question, which most directly relates to the ―Is it Raining?‖ question.  

 Of course, deciding on whether or not walking is a good idea on a given day has little to 

do with protein structure prediction. However, the underlying concept of this ―decision tree‖ is 

very applicable, as the FGK-DF model employs decision trees to refine and make sense of the 

―rough‖ sequence motifs captured by the clustering step described in the previous chapter. 

Effectively, instead of telling one ―yes, you should go for a walk,‖ the FGK-DF model‘s decision 

trees will state whether or not a test protein from the testing set ―belongs‖ to that cluster. If it 

does, the FGK-DF model can attempt to perform the prediction process on that protein. Each 

cluster developed by the FGK algorithm of the model will have one decision tree ―trained‖ on it, 

resulting in a ―decision forest‖ of 799 decision trees for each of the 799 clusters. Recalling that 

each cluster effectively implies an underlying, shared sequence motif among its members, each 

decision tree isn‘t so much deciding if a test protein belongs to the cluster as much as it is 

deciding if that test protein shares that sequence motif. This methodology is explained in full in 
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the next section, but before one can truly delve into the prediction process, it is important to 

understand how one ―trains,‖ or, rather, inducts a decision tree, and how that process is used in 

the context of the FGK-DF model‘s training data. To understand this, one must understand the 

Itemized Dichotomizer 3 (ID3) decision tree algorithm. 

 The ID3 algorithm, presented in 1975 by J.R. Quinlan [22], builds decision trees based on 

the minimization of entropy (i.e. the randomness of the dataset) at each branch in the tree. Within 

the context of the algorithm, there are three main concepts: labels, attributes, and values. 

Ultimately, what the ID3 algorithm produces is a label, which acts as the ―decision‖ made by the 

decision tree. The attributes are effectively the ―questions‖ asked at each level. In practice, these 

generally do not take the form of questions, but rather represent a discrete entity with any 

number of possible values. Values, themselves, are the ―answers‖ to the attributes, or, in more 

explicit terms, simply the value that the attribute takes at that level. In the aforementioned Walk 

Decision Scenario, the two possible labels are ―Yes‖ and ―No‖ to the question ―Am I going for a 

walk?‖ The attributes are ―Need Exercise,‖ ―Temperature,‖ ―Have Umbrella,‖ and ―Have Water 

Bottle‖ (notice these changed from questions to discrete statements). The values for each, 

respectively, are {Yes, No}, {Cold, Moderate, Hot}, {Yes, No} and {Yes, No}. To determine 

the hierarchy of these attributes (and thus the structure of the tree), the ID3 uses a concept known 

as ―information gain,‖ which denotes the effectiveness of a given attribute in reducing the 

entropy of a dataset at a given branch. This requires both an equation for determining gain and 

entropy, as well as the presence of a training set to build the tree. To determine entropy, the 

following equations is used:  



29 
 

 

Eq. 6: Entropy 

 For the entropy equation, S denotes a sub-collection of data of size Sc, where SY denotes 

the count of all items that belong to a class (i.e. have a ―Yes‖ label), and SN denotes the count of 

all items that do not belong to a class (i.e. have a ―No‖ label). Log2 simply refers to performing 

the logarithmic function with a base of two. Consider the following example: S is a collection of 

data with 14 members, such that 9 of the members have a ―Yes‖ label, and the other 5 have a 

―No‖ label. The entropy would be equal to the following: 

Entropy(S) = - (9/14)log2(9/14) – (5/14)log2(5/14) 

Entropy(S) = 0.940 

In this case, the data collection is very entropic, as an entropy of zero implies a perfectly 

classified set, an entropy of one implies one that is perfectly random. One can see if the counts 

for the ―No‖ label members and the ―Yes‖ label members were changed to 7 and 7 each, the 

entropy would be equal to one. Given that the goal of the ID3 algorithm is to reduce the entropy 

(and thus increase the information gain) at each branch, another equation is needed to determine 

―gain.‖ This simple equation is shown below: 
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Eq. 7: Information Gain 

 S denotes the total collection of size Sc, A denotes an attribute in that data, SV is the subset 

of S for which attribute A has a value v, and |SV| is simply the count of the items in subset SV. As 

one can see, the gain equation simply takes the overall entropy of the collection, and determines 

how much a given attribute reduces that entropy by calculating the weighted entropy of that 

attribute. Using these two equations, and a training data set (which defines S), the ID3 algorithm 

can determine which attribute offers the greatest gain, and place it at the top of the decision tree 

hierarchy. In the ―Walk Decision Scenario,‖ the question with the highest gain (and thus the 

question that most reduces the entropy of the data set) is the one that asks ―Is it Raining?‖ That 

means that if there were a training data set (in this case, the experience of the person asking the 

subconscious question), most data members that had ―yes‖ for the raining question would 

consistently correspond to ―No‖ label for the walking decision. Conversely, most data members 

that had a ―no‖ for the raining question would consistently correspond to the ―Yes‖ label. Once 

the ID3 algorithm decides on the ―root‖ of the tree, it begins recursively calling itself on the 

subsets of the data that fall to each branch. For example, once the ―Is it Raining‖ question is set 

as the root of the decision tree, all data in the training set that has the ―yes‖ value for the 

―raining‖ attribute go to one branch, and all data in the training set that has a ―no‖ value goes to 
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another branch. At this point, a new tree is to be built on these subsets that relies on another 

attribute (can‘t use the same attribute twice in a given branch) to reduce entropy. This continues 

until either one runs out of attributes, or until the subset of data is perfectly classified. For 

example, in Figure 4, all data members in the training data that have ―yes‖ for ―raining‖ and ―no‖ 

for ―need exercise‖ have a ―no‖ label, and thus produce a ―no‖ decision. If the data isn‘t 

perfectly classified, the decision is made on majority vote (i.e. if there are more ―yes‖ labels than 

―no‖ labels, the decision is ―yes‖).   

 Taken altogether, the ID3 algorithm is a simple but intuitive algorithm for producing 

decision trees, but now the question is how does it operate in context of the FGK-DF model? Just 

as in the above explanation, the decision trees in the FGK-DF require labels, attributes, and 

values, as well as training data to build the models. The training data is built from the clusters 

built on the training set described in the previous section. As was pointed out, each decision tree 

is trained upon the data in each cluster, such that each decision tree corresponds to exactly one 

cluster. The labels ultimately state whether or not a given protein, which can be run through the 

decision tree, belongs to the cluster that the decision tree is trained upon. To decide whether or 

not a data member in the training set produces a ―yes‖ label or a ―no‖ label, the secondary 

structure of that data member is compared to the average secondary structure of the cluster to 

produce an individual secondary structure similarity for that data member.  If it is greater than a 

certain threshold, noted as a ―label pivot‖ in this work, it is denoted with a ―yes‖ label. If it is 

less than the label pivot, it is given a ―no‖ label. The attributes used for the tree are based on the 

180 possible positions in the frequency profile, such that the values are ranges of the possible 
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values each position in the frequency profile. An example decision tree produced by the FGK-

DF model might look like the following: 

 

Fig. 5: Example FGK-DF Model Decision Tree 

 In the above figure, one can see bubbles with either a number or a decision in them. Each 

bubble with a number in it has a branch with a range of numbers at the very end. As was 
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described in the previous passage, the bubbles with numbers in them refer to the positions (1-

180) in the frequency profile of the given protein segment. The branches, and the ranges of 

numbers on each, represent the possible values each of those positions can take. One might note 

that these values range from 0 to 100, as one would expect. The ―yes‖ and ―no‖ bubbles denote 

the decision the tree makes for each possible branch. Thus, if an unknown protein segment was 

run through this tree, it would first start at the root, just like in the ―Walk Decision Scenario.‖ 

Thus, one would first look in the unknown protein segment, into its frequency profile, and look 

at the value in position 69.  Assume that the value at that position is 9, such that the decision tree 

would then look at position 27 in the unknown protein‘s frequency profile. If the value was 6, the 

decision tree would look at position 2. Finally, if the value at position 2 was 16, the decision tree 

would decide that, ―yes,‖ the unknown protein belongs to the cluster this decision tree was 

trained on, and that ―yes,‖ this unknown protein shares the sequence motif that is present in the 

members of that cluster.  

 Granted all of this, the FGK-DF uses the protein segments in each cluster to train a 

decision tree using the ID3 decision tree algorithm, where the labels are determined by 

secondary structure similarity, and the branches and attributes determined by the values and 

positions in the frequency profile of those segments. The end label describes whether or not a 

protein segment run through the decision tree ―belongs‖ to that tree, but more implicitly, whether 

or not that protein segment shares the sequence motif isolated in the cluster the decision tree is 

trained on. This produces a decision forest and, ultimately, the final form of the FGK-DF model. 

But, of course, this is not where the model ends. After all, the decision trees do not end in a 
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possible tertiary structure, but just a simple statement of whether or not the inputted protein 

shares the sequence motif. The question then becomes how does one use the FGK-DF model to 

perform predictions? Put a different way, how does the FGK-DF model explore the decision 

forest to find the best prediction?  The next section will not only explain this prediction process, 

but will also explain how this process represents and reflects the underlying concepts that 

support the FGK-DF model. 

3.2 Producing Local Tertiary Structure Predictions using the FGK-DF Model 

 Granted the previous sections, it should be clear that the FGK-DF relies on two major 

concepts in its logic: there are sequential motifs that transcend protein family boundaries [12], 

and primary sequence determines the tertiary structure of a protein [15]. Combining the two 

concepts, one can see that if the conserved primary sequence motifs can be extracted, then those 

can be related to tertiary structures to effectively build up a database of ―tertiary structure 

motifs.‖ Since these ―motifs‖ are conserved across protein family boundaries, this means that if 

an unknown protein was compared against this database, one could extract the sequence motifs 

that this unknown protein shared with those in the database, and determine is tertiary structure 

based on the corresponding structures to each motif. In other words, since primary structure and 

tertiary structure are linked, one can determine the tertiary structure of a protein by determining 

the presence of known sequential motifs. The FGK-DF model does just this, logically, when 

producing the predictions for the local tertiary structure of an unknown protein. This logic is 

assured by the setup described in the previous sections, as the clusters extract the motifs, and the 
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decision trees refine it to a basic decision of whether or not an input protein also shares the motif. 

In the data section, it was pointed out that the data sets also contain tertiary data. For the training 

data set, this allows the FGK-DF model to relate the primary sequence to the tertiary structure 

(and, of course, for the testing data set, it is for prediction validation). Explicitly, the step taken 

to produce a local tertiary structure prediction for a protein segment from the testing data set is 

slightly more convoluted, falling through the twists and turns of exploring the vast decision 

forest for, effectively, the ―best tree.‖ 

 The process of performing a prediction first requires an input protein segment‘s 

frequency profile. Previously, this has been referred to as an ―unknown protein,‖ or a member of 

the ―testing data set.‖ This implies that, in the context of testing the FGK-DF model, this 

protein‘s secondary and tertiary structure is assumed to be unknown until after the prediction is 

made. Once the unknown/test protein is input, its frequency profile is scanned against the 

representative frequency profile of each decision tree. The representative frequency profile of 

each decision tree is determined by averaging the frequency profiles of all of the protein 

segments that compose the tree (rather than, for instance, all the protein segments that compose a 

branch in the tree). The distance formula is, of course, the city block metric formula used in the 

clustering step. All 799 decision trees‘ representative frequency profiles are compared against 

the unknown protein segment‘s frequency profile, where the ―best tree‖ is determined to be the 

one with the lowest distance. Once this tree is decided upon, the unknown protein‘s frequency 

profile is run through the decision tree in a process similar to what is described in figure 5. If the 

protein segment is found to share the sequence motif represented by the decision tree (i.e. if the 
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decision tree results in a ―yes‖ decision for the unknown protein), then the tertiary structure of 

that protein segment is said to be equal to the representative tertiary structure of the branch the 

protein segment followed. Notice that the representative tertiary structure is not determined by 

averaging the tertiary structures of the entire protein segment set that composes the decision tree, 

but rather by averaging the tertiary structure of the subset of the protein segments that are 

represented by one branch of the decision tree. If the protein segment is not found to share the 

sequence motif, the next best tree is found, and so on until either the distance is greater than a 

given threshold, or a match is made. The accuracy of the prediction can be generated by 

comparing the predicted tertiary structure, and the ―ground truth‖ tertiary structure extracted 

from the PDB. 

 Thus, taken altogether, to form predictions, the FGK-DF model explores the decision 

forest for the decision tree that is most similar, in terms of representative frequency profile, to the 

unknown protein. If, once run through the decision tree, the unknown protein is said to be a part 

of the tree, its tertiary structure is said to be equal to the representative tertiary structure of the 

branch of the decision tree the unknown protein corresponds to. To form the decision forest, the 

FGK-DF trains decision trees on each of the 799 clusters, such that the labels determine if a 

protein shares a certain sequence motif, the attributes refer to positions in the frequency profile, 

and values refer to the values the frequency profile positions can take. To build the clusters the 

decision trees are trained on, the FGK-DF uses the Fuzzy Greedy K-means algorithm, which is 

based on using the Fuzzy C-Means algorithm to break the data set into information granules, and 

using the ―greedier‖ Greedy K-Means algorithm to form clusters on those granules based on the 



37 
 

distances of frequency profiles, and the secondary structure similarity of the clusters. Finally, the 

data to form those clusters is extracted from DSSP, HSSP, and PISCES, which is based on the 

data that is found, centrally, in the PDB. This entire process is reiterated in Figure 6 below.  

 

Fig. 6: The Fuzzy Greedy K-Means Decision Forest Model 

Granted the outlined process, the following section will present the setup, execution, and results 

of an experiment to justify the use of the FGK-DF model, both in terms of producing protein 

tertiary structure predictions and in the context of improving the base work provided by the FGK 

algorithm described in the previous chapter.  
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3.3 Experimental Setup for Tertiary Structure Prediction using the FGK-DF 

 In order for proper execution of the FGK-DF model on a data set, several parameters 

have to be carefully set based on analysis of the data and expert opinion. These parameters 

include the fuzzification factor for Fuzzy C-Means (set to 1.05 [5]); the window size for the 

frequency profile (set to 9 [43]); the secondary structure similarity thresholds for Greedy K-

means (set to 100-80%, 79-75%, 74-70%, 69-65%, and 64-60%); and the number of information 

granules and clusters (set to 10 and 799, respectively). While this list is not exhaustive, it does 

outline the primary parameters for the Fuzzy Greedy K-means portion of the FGK-DF model. As 

these parameters have already been outlined and determined in previous research, they are not 

analyzed or justified any further in this work [5]. Rather, the parameters of interest in this section 

are those needed by the decision forest aspect of the FGK-DF model, those parameters being, 

primarily, entropy threshold, label pivot, and the attribute range list. The significance of each of 

these parameters and how they affect the model and results are outline in the following 

paragraphs.  

 As stated in the previous sections, entropy described the randomness of a particular 

dataset. The examples laid out suggested that the ID3 algorithm made decisions once the entropy 

of a subset of the data had been reduced to 0 (i.e. when the data had been perfectly classified). 

One can also force the ID3 algorithm to make decisions once the entropy had been reduced 

below a certain threshold, the so-called entropy threshold. This decision would be made based on 

majority voting according to the labels of the training data subset. For example, if the ID3 
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algorithm were making a decision on a particular branch in a given decision tree with a entropy 

threshold of 0.30, then if the entropy of the data set characterizing that branch were below 0.30, a 

decision would be made according to whether or not there were more instances with ―yes‖ labels 

or ―no‖ labels. If the entropy of the branch was above 0.30, the branch would continue to be 

grown with more branches to reduce the entropy until it fell below the threshold. This parameter 

essentially controls the ―depth,‖ so to speak, of the tree. A strict entropy threshold will cause a 

tree to be exceedingly deep, as it would force branches to be perfectly classified before a 

decision could be made. This may increase accuracy, as the tree would be highly specialized. 

However, as one might expect, this would vastly reduce coverage due to this specialization. This 

is a problem noted as ―over learning,‖ in which a model built by a classifier, such as the ID3 

algorithm, has become specialized for making decisions on data that heavily reflects the training 

data that built the model. Granted that, it is easy to see that a higher entropy threshold removes 

the issue of over learning, granting much greater coverage at the loss of accuracy. In this work, 

the entropy threshold is set to 0.75, as previous research has shown it to offer the greatest 

tradeoff between potentially high quality results with reduced data complexity and reduced 

overlearning [6]. 

 The other half of the decision making process lay with the label pivot. The label pivot, 

introduced and briefly explained in the previous sections, determines what is considered a ―yes‖ 

or ―no‖ label to the question of whether or not a protein segment is a member of a given cluster. 

The answer to this question is based on the secondary structure similarity of a protein segment 

with other segments in its cluster. In effect, each protein segment‘s secondary structure is 
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compared against the average, or representative, secondary structure of the cluster. A score is 

generated based on the number of positions in which the protein segment has the same secondary 

structure (H, E, or C) as the representative structure. Thus, in context of the FGK-DF‘s setup, a 

maximum score would be nine (as the window size is nine), meaning that the protein segment in 

question has the exact structure as the representative secondary structure of the cluster. A score 

of zero suggests that the protein segment shares no structure similarity with the representative 

secondary structure of the cluster. At this point, these raw scores could be used as ―decisions‖ for 

the decision trees, as it is completely possible to generate trees with non-binary decisions. 

However, to reduce overall complexity, both logically and computationally, the label pivot is 

introduced to reduce the ten (counting the score of zero) possible scores to two.  Effectively, the 

label pivot is one number, in the range of zero to nine, such that all protein segments with a score 

of less than that pivot are given a ―no‖ label. Those equal to or greater than the pivot are given a 

―yes‖ label. The adjustment of this parameter fundamentally changes the structure of the tree, as 

it determines what each instance is labeled as, and thus it can have extreme effects on the depth, 

width, coverage, and accuracy of any given tree. For instances, a label pivot of one would force 

almost all instances to be classified as ―yes‖ proteins. This would allow the trees to quickly make 

decisions as the data would be nearly perfectly classified from the start. Of course, the tradeoff 

would be highly inaccurate trees. A label pivot of eight would, conversely, lead to highly 

accurate trees, but just like a low entropy threshold, the coverage would suffer greatly. In this 

work, the label pivot is said to be seven, based on prior experimental results [6].  
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 The last parameter, the attribute range set is perhaps the most subtle in terms of its overall 

effects on the tree. In short, this parameter directly affects the width of the tree (whereas entropy 

affects the depth of the tree). In Figure 5, five ranges are used (0-4, 5-7, 8-14, 15-29, 30-100), 

but another possibility could be anywhere from one range (0-100) to one hundred ranges (0-0, 1-

1, 2-2, etc.). The former extreme would result in a highly simple tree, but one that was extremely 

inaccurate. The latter extreme would result in a much more accurate tree, but one that would be 

impossibly complex and possibly over learned. In this work the range set used is a static range 

set including 0-4, 5-7, 8-14, 15-29, 30-100, determined by expert opinion [6]. 

 Thus, given the above three parameters, an experiment is proposed and carried out that 

examines the justification of using the FGK-DF model to predict local tertiary protein structure 

by comparing results from predictions made with clusters generated by the Fuzzy Greedy K-

means algorithm alone against results from the full FGK-DF model. In this experiment, the 

training and testing data includes a set of roughly 2,700 proteins from which nearly half a million 

protein segments are generated using the data preprocessing steps introduced in the previous 

chapter. Each data set was carefully constructed such that no protein shared more than 25% 

sequence identity with other any other protein in the dataset (to ensure that the FGK-DF model 

did not train for particular protein families). The aforementioned experiment, as the following 

sections will explore, generates results in terms of coverage (i.e. how many proteins segment 

structures were predicted using the model) and prediction accuracy (i.e. how well did the protein 

segment‘s real tertiary structure line up with the predicted tertiary structure).  
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3.4 Justification for Using the FGK-DF for Local Tertiary Structure Prediction 

 It should be noted, first and foremost, that one of the unfortunate aspects of the FGK-

DF‘s novel approach to protein structure prediction is that there is no foreign or competing 

algorithm can be compared against it, directly. This is due to the fact that the FGK-DF model 

produces local tertiary structure predictions. That is why, throughout this work, the data in the 

data sets have not been regarded as proteins, but rather as protein segments. While this gives the 

FGK-DF model distinct advantages that have been outlined in other chapters, it does justify the 

use of the algorithm through direct comparisons with other leading algorithms all but impossible, 

as almost all other protein structure prediction algorithms perform global tertiary structure 

prediction (that is, the entire protein‘s structure, not just the segments‘ structures, are predicted). 

Fortunately, however, justifying the use of the FGK-DF model can still be accomplished in two 

different ways, the first of which is to use a prediction accuracy metric that lies on a 0-100% 

scale, such that it is clear, even lacking a direct comparison, when a model is effective. A score 

known as root-mean-square deviation, otherwise known as RMSD [40], is utilized to generate 

such a metric. The equation for RMSD is shown below:  

 

Eq. 8: Root-mean-square Deviation 
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 For the protein structure prediction, n would be 36, for each of the tertiary structure 

mutual distance calculations (as explained in the previous chapter). X1i would refer to the ith 

position in the tertiary structure for protein x1. Just the same, x2i would refer to the ith position in 

the tertiary structure for protein x2. These two ―proteins,‖ respectively, would refer to the 

predicted structure and the ground truth (i.e. the known structure extracted from the PDB). This 

equation would square the differences between each of the 36 positions for the predicted 

structure and the ground truth, heavily penalizing predictions that are highly incorrect. These 

differences are summed together and divided by n (or 36), and the overall result is scaled down 

by performing a square root, resulting in the final, weighted distance measured in angstroms 

which is a unit of length equal to one ten billionth of a meter (denoted by Å). Conventionally, 

acceptable predictions are those that are equal to or are below 1.5 Å, with good predictions are 

1.0 Å [42]. This work introduces another tier at 0.5 Å, denoting exceptional prediction accuracy. 

This means that all 36 distances, once weighted and summed by RMSD, results in a distance less 

than or equal to 1.5 Å, 1.0 Å, or 0.5 Å (exclusively). 

 Granted this metric, one can then compare the results of running the full FGK-DF model 

against a model that uses only Fuzzy Greedy K-means to build its model. In other words, this 

experiment constitutes comparing the FGK-DF model, which builds decision trees on clusters in 

order to make tertiary structure predictions, against the FGK model, which uses only the clusters 

to generate tertiary structure predictions. This, again, is due to the extremely limited number of 

algorithms the FGK-DF model can be compared directly against. Despite this, the results of this 
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comparison, using the static branching attribute range set and other parameters examined in the 

prior section, can be seen below in the following tables:  

 

Table 1: FGK Model Results (Cluster Only) 

 

Table 2: FGK-DF Model Results (Cluster and Decision Trees) 
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Table 3: Change From FGK Model to FGK-DF Model 

 In Tables 1-3, the column listed as ―Distance‖ refers to the city-block metric distance 

(Equation 3) between the frequency profile of the unknown or target protein being input to a 

given model, and the representative frequency profile of a given cluster. These distances act as 

thresholds, such that for a prediction to be made on a given protein, the distance between its 

frequency profile and a given‘s clusters representative frequency profile must be less than the 

threshold. The row labeled ―Sec. Struct. Sim.‖ is shorthand for secondary structural similarity, a 

measure introduced in the previous chapter (Equation 4). In this case, the measure refers to the 

overall secondary structure similarity of the proteins contained in the decision tree/cluster the 

prediction is being made on. Again, just like distance, this acts as a threshold, such that only the 

predictions made on trees or clusters of at least 70% or at least 80% secondary structure 

similarity are reflected in the above charts. Naturally, coverage and the 0.5 Å – 1.5 Å columns 
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refer to the aforementioned prediction coverage and prediction accuracy measures, such that the 

values that exist in the columns reflect percentages out of 100%.  

 Granted this, Table 1 reflects the results of using only the FGK model to perform tertiary 

structure predictions, while Table 2 reflects the results of using the FGK-DF model to perform 

tertiary structure predictions. Table 3 summarizes the differences between the two result sets, 

noting areas that decreased with the use of the FGK-DF model with red cells, and areas that 

increased with blue cells. A brief glance at Table 3 will note that most of the table is populated 

by blue cells, indicating an overall increase in result quality by using the FGK-DF model over 

that of the FGK model. The only consistent drop in quality is a minor decrease in coverage, with 

overall decreases averaging less than 1%. This minor drop in coverage is more than adequately 

offset by the massive increases in prediction accuracy, especially in terms of the exception 

prediction accuracy tier (0.5 Å). This, in itself, justifies at least the use of the FGK-DF model 

over that of the FGK model for the purpose of predicting local tertiary structure. In order to 

justify the use of the FGK-DF model in terms of pure coverage and prediction accuracies, one 

need only look at Table 2. Considering that these results are based on comparing molecular 

distances between experimentally determined protein structures and predicted protein structures, 

the top prediction accuracies of 75.173%, 92.788%, and 96.533% for the prediction accuracy 

tiers 0.5 Å, 1.0 Å, and 1.5 Å, respectively, are astounding. Of course, one would note that the 

coverage at such levels is extremely low (0.148%). Instead, one can regard other distance 

thresholds and secondary structure similarity thresholds which, while they often times have 

lower prediction accuracies, they have much higher coverage. Consider bottom row (distance of 
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1300) on Table 2, with a secondary structure similarity threshold of greater than 70%. While its 

prediction accuracies are lower (though still acceptable in both the good and adequate 

categories), its coverage of 11.442% means that roughly 55,000 protein segments were predicted 

with the noted prediction accuracies. Again, given the scale at which these predictions are being 

made, the success here cannot be understated. As such, these objective results also justify the use 

of the FGK-DF model for predicting local tertiary structure.  

 Thus, the conclusion for this experiment, which asks if the use of the FGK-DF for 

predicting local tertiary structure of proteins is justified, is based on two conditions: the FGK-DF 

model outperforms the FGK model in terms of prediction coverage and accuracy, and the FGK-

DF model, using purely objective and stand-alone metrics performs adequately given the 

challenges the problem of tertiary structure prediction presents. From the above analysis and the 

results shown in Tables 1-3, it is very clear that the FGK-DF model not only outperforms the 

FGK model, but that it produces results with acceptable coverage and outstanding prediction 

accuracies. Granted that the FGK-DF can justifiably be utilized for tertiary structure prediction, 

it should be noted that the model itself has a considerable weakness, which is an assumed motif 

size. This assumed motif size is a consequence of relying on a set window size (introduced in the 

previous chapter) for determining what constitutes a given ‗protein segment.‘ A set window size 

limits motif extraction quality in two potential ways. First, the window size may be too 

restrictive to adequately encompass all potential motif lengths. For instance, the window size is 

nine in this work, but it is very possible than a motif in the data could be larger than nine 

positions, resulting in extracted motifs that are disjointed or cut off. The other possibility is that 
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the motif in the data is shorter than the window size, meaning that any extracted data would be 

accompanied by considerable noise. Given that these protein family transcending motifs are 

often weaker and more subtle, this could adversely affect the results. As the FGK-DF model is 

heavily reliant on properly extracted motifs that transcend protein families in order to make 

proper tertiary structure predictions, this work proposes the Hierarchically-Clustered Hidden 

Markov Model (HC-HMM) approach for discovering and extracting protein motifs in a manner 

that makes no assumption on the side of the motif. In this approach, each protein sequence, 

defined in terms of a frequency profile, is modeled as a Hidden Markov Model and hierarchically 

clustered according to the minimum distance achievable between given HMMs. Once all HMMs 

are clustered, those regions with greater than a given threshold of clustered HMM nodes are to 

be considered protein motifs. No assumption is made on the size of the protein motif, as each 

sequence is treated as a separate HMM, and the approach can detect protein motifs that transcend 

protein family boundaries as the model does not rely on protein homologies. The next chapter 

will explore this approach in greater depth, explaining what a Markov Model is, extending this to 

Hidden Markov Models, connecting this structure to the representation of primary sequences of 

proteins, laying out the HC-HMM algorithm, and finally exploring the results of using the HC-

HMM algorithm to extract primary sequence motifs.  
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IV. Hierarchically Clustered-Hidden Markov Models Algorithm 

 As the previous chapters would explore, one of the greatest short comings of the FGK-

DF model, and many other algorithms that rely on extracting primary sequence motifs (such as 

PROSITE [9], PRINTS [36], MEME [37], DREME [13], etc.), is that there are assumptions on 

the maximum or minimum length of the extracted sequential motifs. In the FGK-DF model, this 

assumption is explicitly set by the window size, such that the training and testing data is 

segmented into individual window size-length residues and then merged using a sliding window 

technique explained in previous chapters. The limitation of using an assumed motif size can be 

overcome by two distinct steps: (A) changing the way that the data is represented such that the 

protein segments are not needlessly segmented into residues and (B) changing the way the data is 

clustered and the way sequential motifs are extracted such that each data point does not need to 

the same assumed size to perform the distance calculations for clustering and extraction. The 

following sections will explore how the Hierarchically Clustered-Hidden Markov Models (HC-

HMM) algorithm solves these two problems, respectively, by representing the primary sequence 

of the proteins as Hidden Markov Models, and by hierarchically clustering those HMMs along 

sections of greatest similarity and extracting those sections with high numbers of clustered 

HMMs as sequential motifs. As such, it is pertinent to understand what a Markov Model is, what 

a Hidden Markov Model is, and how these data structures can be used to represent protein 

primary sequences.  
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4.1 Markov Models, Hidden Markov Models, and Proteins 

 A Markov Model, and by extension a Hidden Markov Model (HMM) is based on a 

system of states and probabilities that exist between those states. An example of this is shown 

below: 

 

Fig. 7: Markov Model Example 

In Figure 7, the states in question are weather and the probabilities suggest the likelihood that 

one weather pattern will be replaced by another one in the following day. In other words, regard 

state S1, which corresponds to sunny weather. One can follow the model and note that the 

probability that the sunny weather will transition to S2, which is cloudy weather, is 0.3, or 30%. 

From there, the probability that the cloudy weather will transition back to sunny weather, 

assuming it can measured based solely on the previous day‘s weather, is 0.2, or 20%. The rest of 

the transitions and states follow suit, however one should note that this is a simple Markov 

Model, both in terms of the transition equation (which can get quite complex), and that it isn‘t an 
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HMM. HMMs make use of hidden states, and is more complex in concept that the Markov 

Model. It is best exemplified by the following figure:  

 

Fig. 8: Hidden Markov Model Example 

 In Figure 8, one will note that there is a division between those states that are 

―observable‖ (―soggy,‖ ―damp,‖ ―dryish,‖ and ―dry‖) and the ―hidden‖ states of the model 

(―sunny,‖ ―cloudy,‖ ―rainy‖), which are used to build the model and determine, or output, the 

observable states. The states ―sun,‖ ―cloud,‖ and ―rain,‖ are ―hidden‖ because the sequence these 

states are fired in in order to produce the observable states is unknown; only the output, the 

―observable‖ states, can be seen. The HMM can contain multiple hidden levels, where there are 

probabilities to go from one level to the next, as well as probabilities to output an observable 

state, making it very flexible and much more representative of how processes in the world 

actually work [26]. 

 Granted this, the question now becomes how does one use a Hidden Markov Model to 

more adequately and accurately represent a protein primary sequence? The answer lies in a work 
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by Baldi et al., titled ―Hidden Markov models of biological primary sequence information,‖ in 

which the HMM is structured with five primary states: the start state, terminal state, the emission 

state, the insert state, and the delete state, following the evolutionary behavior explained in 

Figure 2, Chapter 1 [30], such that the traversal each node of the HMM produces an amino acid 

(or is mute) to build up and represent the overall primary sequence of a protein. A graphical 

representation of this structure is shown in the figure below:  

 

Fig. 9: Protein Primary Sequence as a Hidden Markov Model 

 In Figure 9, state S refers to the aforementioned starting state of the HMM. It produces no 

output and its transitional probabilities are defined by first node in the protein sequence, where 

―node‖ refers to the collection of transitional probabilities {p(Di), p(Ii), p(Ei)} and states {Di, Ii, 

Ei} which describe the behavior and characteristics of the ith position in a protein sequence. For 

each node, the state Di refers to the delete state, which outputs no amino acids. p(Di) refers to the 

transitional probability that a given state in nodei-1 will transition to Di. State Ii refers to the 

insertion state and outputs an amino acid based on the frequency profile of nodei, where 
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frequency profile refers to a probability distribution of each possible amino acid appearing at a 

given position within a given protein sequence.  p(Ii) refers to the transitional probability that a 

given state in nodei-1 will transition to Ii as well as the probability that Ii will transition to itself 

again (which can be repeated to an arbitrary degree based on said probability). State Ei refers to 

the emission state, which outputs a single amino acid based on the frequency profile of nodei. 

p(Ei) refers to the transitional probability that a given state in nodei-1 will transition to Ei. Finally, 

state T refers to the terminal state, which marks the end of the Markov chain and produces no 

output.  

 Using this structure, any number of protein primary sequences can be easily represented, 

both structurally and behaviorally, by simply defining the probabilities of each of the three 

primary states (emission, insertion, and deletion) for each amino acid position in the protein 

sequence. However, while representing a protein primary sequence using its behaviorally 

probabilities does more accurately describe the sequential structure and makes no assumptions 

on motif size (as the protein sequence is in no way segmented), simply representing a protein 

primary sequence as a HMM does not resolve the problem of being able to extract primary 

sequence motifs without an assumed protein motif size. The solution this work explores to 

resolve this issue of extracting motifs without an assumed size is to perform hierarchical 

clustering on the produced HMMs by aligning and clustering two or more HMMs along nodes of 

highest similarity based on distance calculations and extracting areas with at least m aligned 

HMMs as sequential motifs. This process is noted as the Hierarchically-Clustered Hidden 

Markov Model algorithm, as the next section will explore in greater depth. 
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4.2 HC-HMM Methodology 

 As mentioned in the previous section, in order to make no assumptions on the size of the 

protein sequential motifs that are to be extracted, the HC-HMM uses hierarchical clustering, 

which builds a hierarchy of clusters rather than treating all clusters as distinct, equal entities, 

such as in K-Means clustering. A simple example of hierarchical clustering is shown in Figure 

10 below. 

 

Fig. 10: Hierarchical Clustering Example 

The process of hierarchical clustering begins like any other clustering process, with distinct, un-

clustered data elements. In Figure 10 above, these data elements constitute a set containing C1, 
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C2, C3, C4, and C5. The clustering process begins in Step 1, such that, using a distance equation 

or other comparable similarity metric, hierarchical clustering determines the first two data points 

that are most similar to each other. In the example above, the first two data elements that are 

most similar to each other are C1 and C2, which are clustered together as the first level of the 

cluster hierarchy. The clustering process continues by determining the next two most similar data 

points, which in this example include C4 and C5. Just as with C1 and C2, these are clustered and 

added to the hierarchy. This same process is carried out in Step 3, with C3 being determined to 

be most similar to the cluster generated by C4 and C5, creating a new cluster containing a lower 

level cluster and a data point. This process of determining the similarity between a single data 

point and cluster can be carried out a great number of ways, one of the more common including 

averaging all of a cluster‘s data points into one representative data point and comparing it against 

the single data point. Finally, the clustering is completed in step 4 when only one, last cluster is 

possible to be generated, the one encompassing clusters {C1, C2} and {C3, C4, C5}, which is 

added at the third and final level of the hierarchy. The process of hierarchical clustering can be 

terminated prematurely based on a given threshold or by reaching a certain level in the hierarchy. 

For instance, the example in Figure 10 could have been terminated after a certain step (such as 

Step 3) or once the similarity measures being generated were beyond a given threshold.  

 Granted the process of hierarchical clustering, HC-HMM attempts to build a hierarchy by 

comparing each node of a HMM chain against another node in another HMM chain based on 

weighted distance calculations utilizing each nodes‘ emission state, insert state, and delete state 

probabilities. Those HMM chains containing the nodes that are considered the most similar are 
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clustered as a level in the hierarchy. The clustering process begins with the shortest HMM chain 

and terminates when all HMM chains have been clustered into one root cluster. The pseudocode 

for this approach is shown in Figure 11 below: 

 

 

 

 

 

 

 

 

Fig. 11: HC-HMM Algorithm 

In Figure 11, ‗α‘ refers to the list of HMM chains generated using the same source of protein 

primary sequence information described in previous chapters, the HSSP. ‗β‘ refers to the list of 

processed HMM chains, containing those models that have failed to achieve the minimum 

distance threshold. Ultimately, all chains will be placed in list ‗β‘ due to the traversal of the chain 

size hierarchy. The function ‗Find_And_Remove_Shortest_Model()‘ removes the HMM chain 

α = List of generated HMM models 
β = List of processed HMM models 
 
WHILE length(α) > 0: 
    αi = Find_And_Remove_Shortest_Model(α) 
 
    minDistance, curDistance, offset = 0 
    leastModel = NULL 
  
    FOR each αj in α: 
        FOR each nodek in αj: 
            FOR each nodel in αi: 
                curDistance += Dis(nodek+l, nodel) 
             
            curDistance /= length(nodel) 
   
            IF curDistance <= minDistance: 
                leastModel = αj 
                minDistance = curDistance 
                offset = k 
 
    IF minDistance <= THRESHOLD: 
        Add_Model_To_Cluster(leastModel, αi, offset) 
    ELSE: 
        β ← αi 
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with the fewest number of nodes from the list α and stores the removed value in αi. The local 

variables ‗minDistance,‘ ‗curDistance,‘ and ‗offset‘ respectively refer to the minimum distance 

between two HMM chains that has been achieved thus far, the current distance of the current 

chains being examined, and the number of empty nodes to be inserted at the beginning of chain 

‗αi‘ to achieve the proper clustering with the currently examined chain. The local variable 

‗leastModel‘ holds a pointer to the HMM chain that currently has the shortest cluster distance 

with chain ‗αi.‘ The function ‗Dis(nodek, nodel)‘ determines the distance between two input 

nodes using one of the following three equations:  

           |           |  |           |           

Eq. 9: HC-HMM Naïve Distance Calculation 

           |           |      |           |              

Eq. 10: HC-HMM Multiplicative Distance Calculation 

         |           |           |           |                    

Eq.11: HC-HMM Additive Distance Calculation 

 

Where ‗k‘ and ‗l‘ refer to two nodes from two different HMM chains, ‗p(Dk)‘ refers to the 

deletion state transitional probability of node ‗k,‘ ‗p(Ik)‘ refers to the insertion state transitional 
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probability of node ‗k,‘ and ‗FPD‘ returns the frequency profile distance between two nodes, 

defined by the following equations: 

         ∑|                 |

  

   

 

Eq. 12: Frequency Profile Distance 

Where ‗Freqk(i)‘ refers to the probability that amino acid ‗i‘ will be emitted by node ‗k.‘ 

Equations 9, 10, and 11 are referred to, respectively, as the Naïve, Multiplicative, and Additive 

distance equations. The Naïve distance equation lightly penalizes the cluster distance by adding 

the absolute difference between the insertion and deletion transitional probabilities of node ‗k‘ 

and node ‗l‘ to the frequency profile difference. The Multiplicative distance equation heavily 

penalizes the cluster distance by multiplying the absolute difference of each node‘s deletion and 

insertion transitional probability plus one (such that if the transitional probabilities are equal, the 

distance is not penalized at all) with the frequency profile distance. Finally, the Additive distance 

equation penalizes the cluster distance by separately multiplying insertion transitional probability 

absolute difference and deletion transitional probability absolute difference with the frequency 

profile distance.  

 Once the distance is found for a particular clustering attempt, it is compared against the 

‗minDistance.‘ If it less than the ‗minDistance,‘ the leastModel, minDistance, and offset are all 

updated appropriately. This is repeated for all possible clusters for a given chain, for all chains. 
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Once the chain with the minimum clustering distance is found, its distance with chain ‗α i‘ is 

compared against a set value stored in ‗THRESHOLD.‘ If the distance is less than the threshold, 

the function ‗Add_Model_To_Cluster()‘ is called, which averages the transitional probabilities 

and frequency profiles of each node clustered in the chains ‗leastModel‘ and ‗αi.‘ Each averaged 

value is weighted by the number of proteins represented by that node, which is extracted from 

the HSSP data. 

 This process of removing the smallest HMM chain and attempting to cluster it with the 

remaining chains is performed until the list ‗α‘ is empty. At this point, the list ‗β‘ will contain all 

remaining models, including those that have clustered with other chains as well as chains that 

failed to cluster with any chains. The latter of these are ignored in the final step of the HC-HMM 

approach, which constitutes the sequential motif extraction.  

 The final and most pivotal step in the HC-HMM method, motif extraction, is 

conceptually simple: extract all local sequences with at least m HMM chains clustered at a given 

position and declare each one to be a sequential motif. This takes advantage of the fact that the 

HC-HMM compares and clusters HMM chains along their most similar nodes, generating what 

is effectively an alignment. In a given hierarchy generated by the HC-HMM, there can be a large 

number of prominent alignments composed of two or more HMM chains overlapping over 

several nodes. These overlapping alignments composed of at least m HMM chains, again, are to 

be considered sequential motifs. The process of extracting these motifs can be autonomously 

performed by iterating over all produce HMM clusters and flagging any contiguous sequences 



60 
 

within a HMM cluster that meet the above criteria. To verify that a flagged sequence is a 

potential motif, visual inspection through a HMM cluster visualizer utility can be performed. An 

example of the output of the visualizer using a sample HMM cluster is shown in Figure 12 

below: 

 

Fig. 12: HC-HMM Sequential Motif Visualizer 

 In the above output the average frequency profile (Freq Val), the number of clustered 

HMMs (Count), and the secondary structure similarity (SSS) per node are shown for HMMs that 

have been successfully clustered. The average frequency profile per node is shown in terms of 

single, multi-colored bar denoting values between 0 and 100%. Each color corresponds to a set 

of amino acids: amino acids V, L, I, M, A are white, F, W, Y are magenta, G, P are orange, S, T, 

Q, N are green, C is yellow, H, R, K are blue, and E, D are red. Note that as certain amino acids 
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share colors in the visualizer, some contiguous blocks of color (such as the R and K or V, I, and 

M blocks in Figure 12) are separated by black lines to denote individual amino acid frequencies.  

For the sake of clarity, amino acids with frequencies of less than 8% are not shown.  

 In addition to the amino acid frequencies, the count for each node is provided, shown as a 

number in the first row below the frequency profile data in Figure 12, which denotes the number 

of chains that were clustered on each node. In the example shown in Figure 12, there are two 

chains clustered on each node, meaning the resulting ―alignment‖ is composed of two HMM 

chains. Finally, the secondary structural similarity, shown as a number between 0.0 and 1.0 (with 

1.0 denoting complete structural homology) on the bottom row below the frequency profile data 

in Figure 11, refers to the overall homology of the secondary structure of each node in a given 

cluster, computed using equation 4 introduced in Chapter 2.  

 Thus, all together, the Hierarchically Clustered-Hidden Markov Model method first takes 

in protein primary sequence information and generates, for each protein sequence, a Hidden 

Markov Model. Each of these generated HMM chains are then removed, starting with the 

smallest chain, and clustered with other HMM chains or HMM chain clusters based on largest 

nodal similarity utilizing one of the three weighted distance equations listed above. The 

clustering process terminates once all HMM chains are clustered, at which point sequential 

motifs can be extracted based on discovering and flagging contiguous sequences of at least m 

clustered chains. Therefore, given the process involved in the HC-HMM method, the following 
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section will explore the effectiveness of the method in extracting sequential motifs from a set of 

protein primary sequences, and examine notable motifs extracted by the process. 

4.3 HC-HMM Motif Extraction Results (Data Trends) 

 In order to test the effectiveness of the HC-HMM for extracting sequence motifs that 

transcend protein family boundaries, 2,593 HSSP files representing proteins exhibiting less than 

25% sequence identity were processed by the HC-HMM method utilizing each of the three 

distance formulas defined in the Methodologies section (Naïve, Multiplicative, and Additive) 

over a range of distance thresholds normalized between 0 and 1 and a step size of 0.01. Each 

HSSP file, which contains not only the frequency profile information but also the insertion and 

deletion probabilities for each amino acid position in the protein primary sequence, was 

converted into a distinct HMM chain using the structure described in the previous sections. The 

data was supplemented by the DSSP for secondary structure information strictly for the 

evaluatory purposes as outlined in the previous section. For each produced HMM cluster, motifs 

were extracted based on a minimum node cluster count, m, such that any contiguous sequence of 

HMM nodes with at least a node cluster count of m would be considered a motif.  The count, 

average length, and average secondary similarity of the extracted motifs for each application of 

the HC-HMM method were recorded. This process was executed for values of m ranging 

between 3 and 5, the results of which are shown in Figures 13-18 below: 
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Fig. 13: Motif Count and Secondary Structural Similarity when m = 3 

 

Fig. 14: Motif Count and Secondary Structural Similarity when m = 4 



64 
 

 

Fig. 15: Motif Count and Secondary Structural Similarity when m = 5 

 

Fig. 16: Motif Count Length when m = 3 
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Fig. 17: Motif Count Length when m = 4 

 

Fig. 18: Motif Count Length when m = 5 
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 In Figures 13-15, the average motif count and secondary structural similarity of each 

HMM cluster produced by a given threshold (ranging from 0.0 to 0.50, omitting distance 

thresholds that do not produce HMM clusters) is shown for each of the three distance functions 

and increasing values of m. Note that in Figures 13-15, average secondary structure similarity is 

scaled by the right vertical axis while average motif count is scaled by the left vertical axis. A 

common trend for all values of m shown above is that as distance threshold increases (and thus 

becomes less restrictive) the motif count, in general, increases as secondary structure similarity 

decreases. This trend continues until a tipping point in the distance threshold is met, at which all 

protein data is clustered into one large cluster. At this point, the motif count and secondary 

structure similarity both spike, producing a significant local maximum for both count and 

secondary structure similarity. This trend is most apparent when m = 3, growing gradually more 

subtle as m increases.  

 A similar trend can be seen in Figures 16-18, showing the average length of each motif as 

distance threshold increases for each of the three distance functions. Motif length increases as the 

distance threshold increases. This is due to the less restrictive distance thresholds, again, causing 

the HMMs to cluster into one large cluster, increasing the possible length of contiguous 

sequences.  Inverse to what Figures 13-15 exhibited, the motif length drops to a local minimum 

as the distance threshold tipping point is reached. It is notable that as m increases, the average 

length of the motifs also increases. This is most likely due to smaller values of m detecting 

shorter, sparser motifs, thus lowering the overall average length.  
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 Interestingly enough, all three distance formulas produce roughly identical trends with 

varying distance threshold scales, suggesting that the primary difference in the three distance 

formulas is sensitivity, with Multiplicative being the most sensitive and Naïve being the least 

sensitive. Given that, the Naïve function will be the only function discussed any further.  

4.3 HC-HMM Motif Extraction Results (Extracted Motifs) 

 Given the assumption that motifs generated with greater values of m indicate more 

prominent motifs, and given the assertion that there exists a local maximum for motif secondary 

structural similarity as distance threshold increases, this work extracts three notable motifs 

generated with the Naïve distance function with a distance threshold of 0.30 where m=3 and m = 

5. These motifs, as depicted by the visualizer, are shown in Figures 19, 20, and 21. The proteins 

used to generate Figure 19 include 1qsu (chain A), 1q7d (chain A), and 1dzi (chain B). The 

proteins used to generate Figure 20 include 1cgd (chain A), 1ei8 (chain A), and 1bkv (chain A). 

The proteins used to generate Figure 21 include 1gqe (chain A), 1ic2 (chain A), 1gmj (chain A), 

1uuj (chain A), and 1na3 (chain A).  
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Fig. 19: Motif (29 Residues, 100% Secondary Structural Similarity) when m = 3 

 

Fig. 20: Motif (21 Residues Long, 100% Secondary Structural Similarity) when m = 3 
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Fig. 21: Motif (64 Residues Long, 91.09% Sec. Struc. Sim.) when m = 5 

 

 In Figure 19, there is a clear and relatively consistent three residue pattern in the 

extracted motif, with a residue predominately composed of glycine followed by a residue 

typically composed of proline and ended by a residue composed of alanine, proline, and 

glutamine. This pattern is roughly repeated seven times in the extracted motif. Figure 19 holds a 

similar repeated pattern structure, with two clear patterns: proline-dominant residue followed by 

glycine, alanine, and proline-dominant residue followed by a glycine dominant residue, and a 

pattern defined by proline-dominant residue followed by a glycine-dominant residue followed by 

roughly equal parts proline and glycine. Each of these two patterns repeat themselves roughly 

five times within the motif. It is important to note that the average secondary structure similarity 

of these two motifs is 100%, which suggests that these motifs are significant not only for primary 

sequence analysis, but structural analysis as well. 
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 Figure 21 denotes a much larger but less regular motif, extracted based on high overall 

secondary structural similarity (91.09%) as well as its high cluster count, which ranges from 5 to 

6. While this motif does not contain any apparent repeating patterns, there are regularities to 

note. The motif, as a whole, generally exhibits a high frequency of glutamic acid with smaller 

but persistent traces of aspartic acid. Though not as consistently present, there is a notable 

frequency of lysine as well as leucine. Again, given the high cluster count and high secondary 

structure similarity, this motif has strong implications for both sequential and structural analysis. 

It is also possible that this motif, given its considerable length, is potentially composed of sub 

motifs, though further analysis would be required to test this assertion.  

 To explore the potential of this methodology for structural prediction and analysis, an 

average tertiary structure for the three motifs shown in Figures 19-21 was generated and 

visualized. To generate the tertiary structure information, the base protein models and chain for 

each extracted motif (described in the prior paragraphs) was used to perform a query on the 

PDB. The three dimensional positions for each alpha carbon atom for a given chain of a given 

protein was recorded, and a mutual distance matrix was calculated between each recorded vertex 

contained within the generated motif to remove any rotational, mirroring, etc. inconsistencies in 

the extracted tertiary information. Each mutual distance matrix was then averaged for each 

protein present in a given motif. The resulting tertiary structures for the motifs denoted by 

Figures 18-20 are shown, respectively, by Figures 22-24 below: 
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Fig. 22: Visualized Tertiary Structure of Motif Containing Proteins 1qsu, 1q7d, and 1dzi 

 

Fig. 23: Visualized Tertiary Structure of Motif Containing Proteins 1cgd, 1ei8, and 1bkv 
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Fig. 24: Visualized Tertiary Structure of Motif Containing Proteins 1gqe, 1ic2, 1gmj, 1uuj, 

and 1na3 

 Thus, taken together, the limitations of the FGK-DF model, as well as many other motif 

extraction methodologies, is examined, with a focus on an assumed window size. This particular 

limitation is analyzed and overcome by utilizing the Hierarchically Clustered-Hidden Markov 

Model (HC-HMM) approach by representing protein data as Hidden Markov Models capturing 

protein behavior and metrics in terms of insertion, deletion, and amino acid probability nodes 

and hierarchically clustering the resulting HMM chains by minimizing distance between any two 

given chains. Motifs can then be extracted without any assumption on the length of the motif by 

analyzing the clusters and extracting contiguous sequences with a given threshold of clustered 

proteins. The effectiveness of this methodology and various parametric setups were critically 
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examined in terms of the number, quality, and length of the resulting motifs. Furthermore, 

several example motifs generated by the HC-HMM approach were shown, examined, and 

visualized in terms of their averaged tertiary structure. 

 Granted the effectiveness of this approach for eliminating both outlined shortcomings, 

there is still much that can be improved upon. While the application of the HC-HMM on the 

outlined data is capable of generating over 100 distinct motifs from the generated clusters, those 

motifs typically only represent small contiguous segments where m = 2. While these motifs still 

contain valuable information, for the purposes of utilizing the HC-HMM for motif extraction and 

the FGK-DF for processing said motifs, further improvements are necessary, as the concluding 

chapter will touch on briefly.   
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V. Conclusion 

 Throughout this work, the methodology, results, merits, and drawbacks of the FGK-DF 

model for predicting protein local tertiary structure and the HC-HMM method for extracting 

primary sequence motifs have been laid out. Granted this, one must come back to why the work 

is important. What purpose is there in the FGK-DF and HC-HMM in the grand scheme of 

structural genomics? Even more abstractly, one must question the point of structural genomics, 

why finding the structure and thus function of proteins is important. Furthermore, it is pivotal to 

examine future works, particular focused on extending the functionality of the HC-HMM for 

extracting more informative and higher quality sequential motifs. As this work concludes, these 

two questions will be answered in the following sections, noting the importance of structural 

genomics (and by consequence the FGK-DF/HC-HMM methods) in cheap and effective drug 

design, as well as the future improvements on the HC-HMM that would generate both more 

numerous and higher quality motifs. 

5.1 The Social Implications of Rapid Protein Structure Prediction 

 As noted in the Introduction, x-ray crystallography and NMR spectroscopy, the accepted 

historical approach to determining protein structures directly, were extremely time consuming, 

expensive, requiring expertise, etc., whereas models such as the FGK-DF model were incredibly 

cheap in terms of time and effort per prediction. Granted that, the question that is asked, now, is 

what are the implications using rapid protein structure prediction models, such as the FGK-DF 

model? How does protein structure prediction via an algorithm and a computer, rather than a lab 
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brimming with biologists, time, and money, change or benefit society? The answer lies in the 

explicit goals of the field of structural genomics, and the potential it holds for pharmaceutical 

companies. Structural genomics, to reiterate, is best explained by the following passage: 

―Structural genomics (SG) is an international effort to determine the three-dimensional shapes of 

all important biological macromolecules, with a primary focus on proteins. A major secondary 

goal is to decrease the average cost of structure determination…‖ [20]. Clearly, this paper is well 

aligned with the concepts and goals of structural genomics, as not only has this work provided a 

method by which one can predict the local tertiary structure of a protein, it does so quickly (over 

2,000 protein structures determined to some degree in less than an hour) and with an appreciable 

level of accuracy. But what connection does structural genomics and tertiary structure prediction 

share with pharmaceutical companies? As it has been heavily implied throughout this work, the 

structure of a protein determines its function [15]. Knowing the structure and function of a 

protein is invaluable to pharmaceutical companies as the following passage states:  

The long path from genomic data to a new drug can conceptually be divided into two parts. The 

first task is to select a target protein whose molecular function is to be moderation, in many cases 

blocked, by a drug molecule binding to it. Given the target protein, the second task is to select a 

suitable drug that binds to the protein rightly, is easy to synthesize, is bio-accessible and has no 

adverse effects such as toxicity. The knowledge of the three-dimensional structure of a protein 

can be of significant help in both phases [and] affords well-founded hypotheses of the function 

of the protein. [38] 

 

 Put a different way, knowing the structure of a protein allows drug designers to create a 

drug that directly tackles the problem with significantly reduced risk of adverse side effects, as 

the drug would be designed specifically to bind to the target protein. This potential has been 
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noted by pharmaceutical companies, which can spend millions in testing and design of new 

drugs (whose benefits can be outweighed by the aforementioned side effects). This has led to a 

larger exploration of what can be safely gleaned from predicting protein structures, in lieu of 

experimentally determined structures. The information can be as broad as the type of protein 

(such as enzyme or hormonal protein), to much more detailed information concerning the 

binding sites, and how other molecules interact with them [38]. This information, depending on 

the resolution, can lead directly to more beneficial drugs, with the ultimate goal of the research 

being the advent of truly personalized medicine, a goal structural genomics is making 

increasingly viable [14].  

 Of course, the previous passage, as well as this work as a whole, suggests that this 

research is already well on its way, that the FGK-DF model for local tertiary structure prediction, 

or the HC-HMM for motif extraction, has nothing new to add to the brimming potential of 

structural genomics. But this is far from true, as the FGK-DF model and HC-HMM method 

holds implications for the field of structural genomics itself. One of the primary concerns is that 

to actually reach the goals set forth by structural genomics, such that the research is viable for 

pharmaceutical companies, the structures predicted by the various models must be a novel 

protein structure. That is to say, the structure produced by the models must be unique [38] [20]. 

Clearly, this is not an easy obstacle for methods that are based on homology-modeling, which 

rely, at their core, on predicting structure based on the lack of uniqueness. Homology-modeling 

and experimental structure deduction can be used in tandem to overcome this weakness, but it 

begs the question: why bother? While the FGK-DF model cannot produce completely unique 
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sequences, the fact that it A: relies on sequence motifs that transcend protein families and B: 

predicts tertiary structure at a local level, meaning that the structures the model produces are 

much more dynamic and have a much higher possibility of reflecting the true tertiary structure of 

the protein in question. This leads one to another problem with most current methods of 

structural prediction, which generally work on a global level and thus loss the aforementioned 

resolution. In fact, research suggests that ―the molecular function of the protein is tied to local 

structural characteristics pertaining to binding pockets on the protein surface‖ [38]. The FGK-DF 

model provides high resolution predictions on exactly that, providing an excellent basis for 

determining not just binding sites in particular proteins, but patterns shared by all binding sites 

due to its basis in protein family-transcending sequence motifs. And of course, the HC-HMM 

method has the prominent benefit that it makes no assumptions on the motif size, allowing it to 

outperform, in regards to accurate motif extraction and depiction, most popular sequential motif 

extraction methods that currently exist in the field of structural genomics.  

 Thus, the main social implication of the FGK-DF model combined with the HC-HMM 

method, as well as other such models that further the aims of structural genomics, is to make 

drug design cheaper, more efficient, and the end drugs much more beneficial and safer to use. If 

the end goal is realized, personalized medicine, side effects are expected to all but disappear, as 

well as many debilitating ailments that can be remedied through gene therapy (supported also by 

structural genomics research) and personalized drugs. It is easy to see that this should lead to 

longer, more fulfilling lives to those otherwise doomed to struggle through life with either 

symptoms or side effects disrupting their daily routine. Though this is a very idealistic situation, 
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it should be clear that the FGK-DF model and HC-HMM method, amongst its sister algorithms 

and competing approaches, are leading the way to such a situation one step at a time.  

5.2 Extending the HC-HMM Method 

 As mentioned in the previous chapter, one of the most prominent areas requiring 

improvement is the HC-HMM‘s ability to extract meaningful motifs both in numerous quantities 

and higher quality. To reiterate, the HC-HMM generated over 100 distinct motifs from the 

produced clusters, such that the motifs were usually only short, contiguous segments where m = 

2. This could be due to a great number of reasons, most prevalent possibly being that a given 

HMM chain clusters with another HMM chain based on only one node without the possibility of 

introducing of gaps. This implies than between two HMM chains, there can only exist one motif, 

which is not a correct assumption given that two or more protein sequences can exhibit more 

than one motif at a given time.  

 Therefore, one of the possible improvements to the HC-HMM method is to allow for the 

introduction of gaps. This can be done in a variety of ways, but the proposed method in this work 

is to create a mutual distance matrix examining the difference, in terms of the distance equations 

set forth in Chapter 4, of all of the nodes for all of the HMM chains being processed. Those node 

pairs that exhibit below a given dissimilarity would then be flagged as what would effectively be 

motif ―seeds.‖ These ―seeds‖ could then be grown, from left to right on their respective chains 

based on a diminishing similarity threshold, such that each subsequently added node onto a given 

seed would have less stringent similarity requirements.  
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 With this approach, multiple motif ―seeds‖ can appear in any given HMM chain pair, 

allowing multiple motifs to be extracted from only one HMM pair (and thus, implicitly, the 

introduction of gaps). This would allow for more numerous motif extractions and, ideally, the 

motifs extracted, given the fine grained, node-based similarity measures, would be of much 

higher quality. Granted such success, this new method could completely replace the FGK portion 

of the FGK-DF model, in so far as protein sequential motif extraction is concerned. This would 

allow the newly improved FGK-DF model, trained with extremely accurate and high quality 

motifs that transcend protein family boundaries, to perform even higher quality tertiary structure 

predictions with, ideally, higher coverage. With increased coverage, the FGK-DF model could be 

extended to begin predicting global tertiary structure as well as protein folding (known as 

quaternary structure). With this in hand, the complete three-dimensional model of the protein can 

be produced, and thus its function elucidated. This, of course, is too far in the distance to 

adequately discuss with any true accuracy without first ascertaining the effectiveness of the 

extended HC-HMM method for protein sequential motif extraction. 

5.3 Final Remarks 

 In this work, the problem of determining/predicting local tertiary structure of proteins 

cheaply, accurately, and quickly was examined, with the proposed solution being the FGK-DF 

model.  The competing models, which ranged from the wet-lab experiments of x-ray 

crystallography and NMR spectroscopy, to the bioinformatics approaches that included 

homology-modeling, de novo approaches, and threading approaches, each had their caveats, 
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whether that be the extreme slowness, inherent limitations, or overt complexity. Instead, this 

work proposed one approach the problem not by explicitly determining the structure or looking 

for homologues, but rather by using conserved primary sequence motifs that transcend protein 

family boundaries. This approach allows users of the model to predict proteins with no known 

homologues, and to predict proteins of any size (feats homology-based modeling and de novo 

approaches can‘t currently accomplish). The FGK-DF, even in it‘s somewhat naïve state, can 

produce thousands of local tertiary structure predictions in less than an hour, with acceptable 

accuracy and coverage.  

 The work extends the FGK-DF model by tackling the limitation that is the model‘s 

assumed window size by introducing the HC-HMM method, which utilizes hierarchical 

clustering to allow for the extraction of motifs of different lengths. The HC-HMM‘s ability to 

extract motifs in terms of the number, quality, and length of the resulting motifs was examined, 

with focus on select motifs extracted by the method. The results and the examined motifs both 

strongly support utilizing and extending the HC-HMM as a tool for extracting sequential motifs 

without an assumed window size. Given this, while the FGK-DF model and HC-HMM method 

are in no way finished or near completion, granted the possibility of dynamic sequence 

representation as well as much further changes, such as global tertiary structure prediction, the 

combined strengths of the FGK-DF model and HC-HMM method already hold powerful 

implications not only for the aforementioned drug research and development, but for structural 

genomics itself.  
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 Thus, in the end, does this work provide the end all for structural genomics, protein 

tertiary structure prediction, and protein sequential motif extraction? No. Does it provide 

exceedingly cheap and effective personalized medicine? No. Does the model and results shown 

in this work provide justification for further research and development on this model? Yes. And 

does this work provide the necessary steps towards providing a model that can provide strong 

implications for structural genomics in terms of tertiary structure prediction that produces novel 

folds and sequential motif extraction that makes no assumption on the motif size? Yes, yes it 

does. 
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