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ABSTRACT 

Color quantization is a technique to reduce the number of colors in a digital color image. 

Although the hardware constrains that ensued the need for color quantization are 

uncommon nowadays, color quantization remains an important image processing 

technique. In this thesis, a novel, fast, and effective color quantization method based on 

the k-means algorithm is introduced. The proposed method utilizes careful initialization, 

data subsampling, and coreset construction to attain high quality and high speed 

quantization. Tests on various well-known, publicly available images demonstrate that 

the proposed method outperforms k-means in terms of speed while delivering nearly 

identical results. 
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CHAPTER 1 

INTRODUCTION 

A true color image is generally comprised of pixels with three components: red, 

green, and blue, each of which is typically represented by 1 byte. Thus, 3 bytes are 

required to store each color pixel. This yields 224 (approximately 16.8 million) possible 

color combinations. Color quantization is an image processing technique that reduces the 

number of unique colors in a digital color image, thereby allowing true color images to be 

stored and displayed using only a small number of colors. Color quantization was 

originally used to satisfy display hardware constraints. Although 24-bit true-color 

displays are common today, color quantization is still an important step in image 

processing and computer graphics. Some of its uses include compression, segmentation, 

text localization/detection, color texture analysis, watermarking, non-photorealistic 

rendering, and content-based retrieval (Celebi, 2011). 

Quantization Methods 

Color quantization methods can be broadly classified in two categories according 

to their initial palette selection scheme: image-independent and image-dependent. Image-

independent methods (Gentile, Allebach, & Walowit, 1990), such as uniform 

quantization, achieve color quantization regardless of the original image’s color 

distribution. These methods produce lower quality results. Nevertheless, they provide 

results in real-time. Image-dependent methods obtain the reduced color palette by 

analyzing the image itself. These methods produce high-quality results at the expense of 

higher computational requirements (Berge & Berger, 2009). Image-dependent methods 

can be categorized into preclustering (or hierarchical) and postclustering (or partitional) 
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approaches (Celebi, 2011). Preclustering methods are typically based on the statistical 

analysis of the original image’s color distribution. Divisive preclustering procedures start 

with one cluster that contains all n image pixels. This cluster is then repeatedly divided 

until k clusters are obtained, where k is the target number of colors. In contrast, 

agglomerative preclustering methods start with n clusters, each containing one pixel. 

These are then combined repeatedly until k clusters remain. Postclustering algorithms 

find all k clusters simultaneously as a partition of the data, without imposing a 

hierarchical structure. These algorithms, although time consuming, produce better results 

than preclustering approaches as they start with an initial color palette and then iteratively 

improve it. In this thesis, we focus on postclustering methods. 

Data Clustering as Means of Color Quantization 

Since the color of a pixel is comprised of three components, red, green, and blue, 

color quantization can be viewed as a clustering problem in three dimensions (Celebi, 

2009). The task is to identify the clusters that are most representative of the colors in an 

image. The color quantization process consists of two main steps that correspond to the 

steps in partitional clustering. The first step is to choose a color palette (a.k.a. 

initialization or seeding), with a smaller number of colors than that of the original image 

– typically in the range of 8–256. The second step is to map each original image pixel to 

one of the colors in the reduced palette which is achieved by clustering the pixel data. 
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CHAPTER 2 

RELATED WORK 

Color Quantization 

Numerous color quantization  techniques exist in the literature, such as popularity 

(Heckbert, 1982), median-cut (Heckbert, 1982), modified popularity (Braudaway, 1987), 

octree (Gervautz & Purgathofer, 1988), variance-based method (Wan, Prusinkiewicz, & 

Wong, 1990), greedy orthogonal bipartitioning (Wu, 1991), center-cut (Joy & Xiang, 

1993), self-organizing map (Dekker, 1994), radius-weighted mean-cut (Yang & Lin, 

1996), modified maximin (Xiang, 1997), pairwise clustering (Velho, Gomez, & Sobreiro, 

1997),  split and merge (Brun, & Mokhtari, 2000), Cheng and Yang (Cheng & Yang, 

2001), weighted sort-means (Celebi, 2009), modified weighted sort-means (Celebi, 

2011), fuzzy c-means (Wen & Celebi, 2011), adaptive distributing units (Celebi, Hwang, 

& Wen, 2014), and variance-cut (Celebi, Wen, & Hwang, 2015).  

Heckbert (1982) proposed two color quantization methods – popularity and 

median-cut. Popularity builds a 16 ×  16 ×  16 color histogram using 4 bits/channel 

uniform quantization and then takes the k most frequent colors in the histogram as the 

color palette. Median-cut starts by building a 32 ×  32 ×  32 color histogram using 

uniform quantization. This histogram volume is then recursively split into smaller boxes 

until 𝑘 boxes are obtained. At each step, the box that contains the greatest number of 

colors is split along the longest axis at the median point, so that the resulting sub-boxes 

each contain approximately the same number of colors. The centroids of the final k boxes 

are taken as the color palette.  

Braudaway (1987) introduced the modified popularity method. This method starts 
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by building a 2𝑅 ×  2𝑅  ×  2𝑅 color histogram using 𝑅 bits per channel uniform 

quantization. It chooses the most frequent color as the first palette color 𝑐1 and then 

reduces the frequency of each color 𝑐 by a factor of (1 −  𝑒𝛼‖𝑐−𝑐1‖2
), where 𝛼 is a user-

defined parameter. The remaining palette colors are chosen similarly.  

Gervautz and Purgathofer (1988) proposed the octree method. This two-phase 

method first builds an octree—a tree data structure in which each internal node has up to 

eight children—that represents the color distribution of the input image. Then, starting 

from the bottom of the tree, it merges the adjacent colors with the least number of pixels 

to the closest cluster until k colors are obtained. 

Wan, Prusinkiewicz, and Wong (1990) introduced the variance-based method. 

This method is very similar to median-cut. At each step of this method, the box with the 

greatest error is split along the axis with the least weighted sum of projected variances at 

the point that minimizes the marginal error. 

Wu (1991) proposed the greedy orthogonal bipartitioning procedure. It is 

analogous to the variance-based method, except at each step, the box is split along the 

axis that minimizes the sum of variances on both sides. 

Joy and Xian (1993) presented the center-cut method. It is comparable to the 

median-cut method, except at each step, the box with the greatest range on any coordinate 

axis is split along its longest axis at the mean point cut. 

Dekker (1994) proposed the self-organizing map scheme. It utilizes a one-

dimensional self-organizing map with k neurons. A random subset of n / f pixels (f is a 

sampling factor greater than or equal to 1) is used in the training phase and the final 

weights of the neurons are taken as the color palette. 
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Yang and Lin (1996) proposed the radius-weighted mean-cut method. This 

method is nearly equivalent to the variance based method. The exception is that the box is 

split along the vector from the origin to the radius-weighted mean (RWM) at the RWM 

point. 

Xiang (1997) introduced the modified maximin method. This method chooses the 

first palette color 𝑐1 arbitrarily from the input image colors. The 𝑖-th color 𝑐𝑖 (𝑖 =

2, 3, … , 𝑘) is then chosen to be the color that has the greatest minimum weighted 

Euclidean distance to the previously selected colors. The weights for the red, green, and 

blue channels are taken as 0.5, 1.0, and 0.25 respectively. Each of these initial palette 

colors is then recalculated as the mean of the colors assigned to it. 

Velho, Gomez, and Sobreiro (1997) introduced pairwise clustering as an 

adaptation of Ward’s agglomerative hierarchical clustering method (1963) to color 

quantization. It builds a 2𝑅 × 2𝑅  ×  2𝑅 color histogram and constructs a Q × Q joint 

quantization error matrix where Q is the number of colors in the reduced color histogram. 

The clustering procedure starts with Q singleton clusters, each of which contains one 

image color. In each iteration, the pair of clusters with the least joint quantization error is 

merged. This merging process is repeated until k clusters remain. 

Brun and Mokhtari (2000) devised the split and merge method. This two-phase 

method first partitions the color space uniformly into B partitions. This initial set of B 

clusters is represented as an adjacency graph. Then, (B − k) merge operations are 

performed to obtain the final k clusters. At each step of the second phase, the pair of 

clusters with the least joint quantization error is merged. 

Cheng and Yang (2001) developed their self-named method. This method is 
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equivalent to the variance based-method, with the exception that at each step the box is 

split along a specially chosen line defined by the mean color and the color that is farthest 

from it at the mean point. 

Celebi (2009, 2011) introduced the weighted sort-means procedure. This method 

is an efficient adaptation of the conventional k-means clustering algorithm to color 

quantization. It involves data reduction, sample weighting, and accelerated nearest 

neighbor search.  

Wen and Celebi (2011) adapted the fuzzy c-means clustering algorithm (Bezdek, 

1981) to color quantization. This algorithm is a modification of the (hard) c-means (or k-

means) algorithm in which points can belong to more than one cluster. Its goal is to 

create optimal fuzzy C-partitions of the data set by minimizing the following objective 

function 𝐽𝑚(𝑼, 𝑽) ∑ ∑ (𝑢𝑖𝑘)𝑚(𝑑𝑖𝑘)2𝐶
𝑖=1

𝑁
𝑘=1 , where N is the number of pixels, C is the 

target number of clusters/colors, 1 ≤ 𝑚 < ∞ controls the degree of fuzziness, 𝑼 is the 

fuzzy partition matrix, and 𝑽 is the prototype matrix. 

Celebi, Hwang, and Wen (2014) proposed the adaptive distributing units (ADU) 

color quantization method as an adaptation of Uchiyama and Arbib’s clustering algorithm 

(1994). ADU is a competitive learning algorithm in which units compete to represent the 

input point presented in each iteration. The winner is then rewarded by moving it closer 

to the input point at a rate of γ (the learning rate). The procedure starts with a single unit 

whose center is given by the centroid of the input points. New units are added by splitting 

existing units that reach a user-defined number of wins until the number of units reaches 

K. 

Finally, Celebi, Wen, and Hwang (2015) proposed an effective color quantization 
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method based on divisive clustering named the variance-cut. This algorithm starts by 

building a 32 ×  32 × 32 color histogram using 5 bits per channel uniform quantization. 

In each iteration, the partition with the greatest error is split along the coordinate axis 

with the greatest variance at the mean point. After 𝑘 −  1 splits, the centroids of the 

resulting 𝑘 subpartitions are taken as the color palette. 

Many of the most recent color quantization methods are based on metaheuristics 

(Blum & Roli, 2003) or a hybrid of a classical clustering algorithm (e.g., k-means and 

fuzzy c-means) and metaheuristics. These methods formulate color quantization as a 

global optimization problem and then attempt to solve it using a variety of nature-

inspired metaheuristics (simulated annealing, genetic algorithms, differential evolution, 

etc.). These algorithms can be fairly effective, but this comes at the expense of a 

significant computational burden (e.g., they can be orders of magnitude slower than k-

means). In the following, we briefly mention a few representative color quantization 

methods based on metaheuristics. 

Su and Hu (2013) proposed a hybrid method that combines k-means clustering 

algorithm and self-adaptive hybrid differential evolution. Ozturk et al. (2014) proposed a 

method based on the artificial bee colony algorithm. Schaefer and Nolle (2015) proposed 

a method that minimizes the S-CIELAB image quality metric using the step width 

adapting simulated annealing algorithm. Pérez-Delgado (2015) proposed a method based 

on the ant-tree algorithm. El-Said (2015) proposed a hybrid method that combines the 

fuzzy c-means clustering algorithm and the artificial fish swarm algorithm. Khaled et al. 

(2016) proposed a hybrid method that combines k-means clustering algorithm and 

harmony search algorithm. Finally, Hu et al. (2016) presented a method that minimizes 
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intracluster distance while maximizing intercluster separation. They tackled this 

multiobjective optimization problem using a self-adaptive hybrid differential evolution 

approach. 

Coresets 

Coresets are concise summaries of large data sets. Coreset construction and its 

applications have been considered in many contexts including k-means, principal 

component analysis and projective clustering (Feldman, Schmidt, & Sohler, 2013), real-

time data segmentation and summarization (Volkov, 2016), vector summarization applied 

to network graphs (Feldman, Ozer, & Rus, 2017), and machine learning (Bachem et al., 

2017).  

Feldman et al. (2013) proposed coreset construction algorithms that produce 

coresets of constant size that is independent of the complete data set size 𝑛, and 

dimensionality 𝑑. Particularly beneficial when 𝑑 ~ 𝑛, these coresets allow the handling of 

k-means, principal component analysis, and projective clustering with update time and 

memory that is polynomial in 𝑙𝑜𝑔 𝑛 and only linear in 𝑑.  

Volkov (2016) developed a group of real-time data reduction algorithms for big 

data streams through coreset construction. These coresets were then used to perform 

effective analysis such as segmentation, summarization, classification, and prediction. 

Volkov proposed a theoretical framework for the various coreset construction algorithms 

that can handle boundless, real-time data streams, and is easily scalable and 

parallelizable. 

Feldman et al. (2017) presented coresets as a deterministic data summarization 

algorithm that aims to approximate the mean 𝑝̅ of a complete set, by a weighted mean 𝑝 
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that is independent of both the size of the complete set and its dimensionality. The main 

application of this algorithm is to build a sparse social graph from the GPS location data 

of smart-phone users. This graph is then used to recognize and forecast various activities 

such as meetings, friend groups, and gathering places. 

Bachem et al. (2017) introduced a coreset construction algorithm based on 

importance-weighted subsampling that is applicable to a variety of machine learning 

problems such as maximum likelihood estimation of mixture models, Bayesian non-

parametric models, principal component analysis, regression, and general empirical risk 

minimization. 

The work presented in the next chapter builds on previous research and develops 

a novel, fast, and effective color quantization method based on a recently proposed 

coreset construction method. We propose an approach similar to weighted sort-means 

(Celebi, 2011) in that it combines various performance enhancing techniques: data 

reduction, effective initialization, and an efficient k-means clustering algorithm. 

However, unlike the weighed sort-means method, a coreset will be constructed and the 

data clustering algorithm will be executed on this reduced data set. 
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CHAPTER 3 

PROPOSED COLOR QUANTIZATION METHOD 

In this chapter, the implementation of the proposed color quantization method is 

explained. First, a deterministic decimation method that reduces the size of the input 

image is described. Then, a fast and effective cluster center initialization method is 

introduced. Thereafter, coresets are introduced and a coreset construction algorithm is 

presented as a means of further reducing computational time. Finally, the data clustering 

algorithm is described. 

Decimation 

One of the simplest ways to improve the speed of the k-means algorithm is to 

reduce the amount of data to be processed. Let f be the decimation factor desired. A 

deterministic decimation method can be implemented in which only rows and columns 

that are multiples of f, that is, rows/columns 0, f, 2f, …, will be sampled to form the initial 

data set for clustering. Since color images contain many redundant colors especially 

within small neighborhoods, this kind of subsampling is very effective in reducing the 

computational time without degrading quantization quality in an appreciable manner. 

Initialization 

A common approach to determine the initial cluster centers is to select k points 

uniformly at random from the complete data set and take these as the initial cluster 

centers (Celebi et al., 2013). 

According to Celebi et al. (2013), k-means is relatively sensitive to initialization. 

Some of the negative effects of improper initialization include empty clusters, slower 

convergence, and a higher probability of getting stuck at a bad local minima. Arthur and 
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Vassilvitskii (2007) proposed an adaptive initialization method to address these 

drawbacks and improve the overall performance of k-means. This method, simply 

referred to as k-means++, is described in Table 1. 

Table 1 

The k-means++ algorithm 

Step Description 

1a 

1b 
Take one center c1, chosen uniformly at random from X. 

Take a new center 𝑐𝑖, choosing 𝑥 ∈  𝑋 with probability   
𝐷(𝑥)2

∑ 𝐷(𝑥)2
𝑥∈𝑋

 

1c Repeat Step 1b. until we have taken k centers altogether. 

 

In this algorithm, the first center is chosen uniformly at random from the data set. 

The remaining 𝑘 − 1 centers are then chosen with a probability proportional to the 

squared Euclidean distance from the centers already chosen. This weighting is referred to 

as simply “𝐷2 weighing”. This weighted sampling ensures that points that are well 

separated are more likely to be selected as initial center centers. 

Coreset Construction 

Originally studied in computational geometry, coresets relied on computationally 

expensive methods (Har-Peled, 2011). It is just recently that coresets have evolved to 

utilize a sampling-based approach that allows practical construction for various 

applications.  

Although aimed toward machine learning problems, the theoretically- 

comprehensive framework for coreset construction introduced by Bachem et al. (2017) is 

applicable to general problem-solving. Given a data set and a particular problem, a 
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coreset of the former for the latter gives a solution that is provably competitive with the 

solution found on the former. The coreset construction procedure, detailed in Table 2, 

consists of two key steps. First, the importance of the different data points with regards to 

the objective function and optimal solution is determined. Then, this importance 

information is used to select a coreset by means of importance sampling. 

Table 2 

Coreset construction algorithm 

Step Description 

Require 𝑋, 𝑘, 𝐵, 𝑚 

1 

2 

3 

 

4 

 

𝛼 ← 16(log 𝑘 + 2)  

For each 𝑏𝑖 in 𝐵 do 

𝐵𝑖  ← Set of points from 𝑋 closest to 𝑏𝑖 in terms of 𝑑. Ties 

broken arbitrarily. 

𝑐𝜙 ←  
1

|𝑋|
∑ 𝑑(𝑥′, 𝐵)𝑥′∈ 𝑋    

5 

 

6 

7 

8 

9 

For each 𝑏𝑖 ∈ 𝐵 and 𝑥 ∈  𝐵𝑖 do 

𝑠(𝑥) ←  
𝛼 𝑑(𝑥,𝐵)

𝑐𝜙
+

2𝛼 ∑ 𝑑(𝑥′,𝐵)𝑥′∈ 𝐵𝑖

|𝐵𝑖|𝑐𝜙
+

4|𝑋|

|𝐵𝑖|
  

For each 𝑥 ∈ 𝑋 do 

𝑝(𝑥) ← 𝑠(𝑥) ∑ 𝑠(𝑥′)𝑥′∈ 𝑋 ⁄   

𝐶 ←Sample 𝑚 weighted points from 𝑋 where each point 𝑥 has 

weight 
1

𝑚∙𝑝(𝑥)
 and is sampled with probability 𝑝(𝑥) 

10 Return 𝐶 

 

The algorithm first selects a set of k centers through 𝐷2 sampling, as detailed in 

Table 1. This set is then used to compute the sensitivity 𝑠(𝑥) of each point x. Sensitivity 

is the worst-case impact of each data point on the objective function. Finally, 𝑚 points 

are sampled where each point is included in the coreset with probability proportional to 

the normalized sensitivity 𝑝(𝑥). In this coreset, point x is assigned a weight of (𝑚 ∙

𝑝(𝑥))−1 where 𝑚 is the size of the coreset. 
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The research below proposes the use of the aforementioned algorithm to construct 

such a summary data set and solve the color quantization problem on this smaller data 

set. In this implementation, the coreset size 𝑚 is defined as 𝑚 = 𝑛 ∙ 𝑐𝑓; where n is the 

size of original data set and 𝑐𝑓, or coreset fraction, is a number that satisfies 0 < 𝑐𝑓 ≤ 1. 

Clustering 

Perhaps, the most frequently used clustering method in color quantization is the 

Lloyd’s algorithm (1982). Commonly referred to as k-means, Lloyd’s method starts with 

a given integer value k, which denotes the number of clusters or colors in this context. 

The algorithm then assigns each data point x, in the data set, to the closest cluster by 

minimizing the Sum of Squared Error (SSE) defined as: 

𝑆𝑆𝐸 =  ∑ ∑ 𝑑(𝒙, 𝒙𝐶𝒊
)

2
𝑥∈𝐶𝑖

𝐾
𝑖=1 , 

where  𝒙𝐶𝒊
  denotes the centroid (or center of mass) of cluster Ci. To determine the closest 

cluster, the Euclidean distance (d) between the point and each cluster’s centroid is 

computed. K-means is illustrated in Table 3. 

Table 3 

The k-means algorithm 

Step Description 

1 

2 

 

3 

 

Randomly choose an initial set of k centers 𝐶 = {𝑐1, 𝑐2, ⋯ , 𝑐𝑘} 

For each 𝑖 ∈ {1, … , 𝑘}, set the cluster Ci  to be the set of points in X 
that are closer to ci  than they are to cj  for all j ≠ i 
For each 𝑖 ∈ {1, … , 𝑘}, set ci  to be the centroid of all points in 

𝐶𝑖: 𝑐𝑖 =  
1

|𝐶𝑖|
∑ 𝑥𝑥∈𝐶𝑖

 

4 Repeat Steps 2 and 3 until a user-defined termination criterion 
is satisfied 

 

The algorithm first selects a set of k centers uniformly at random, unless a 



 

 

 

14 

different initialization scheme is implemented. Then the squared Euclidean distance 

between each point and each center is computed. Each point is assigned to the cluster to 

which it is closest. At the end of each iteration, each new cluster centroid is computed to 

be the centroid of all the points that belong to the cluster. This algorithm continues until 

the relative improvement in the SSE drops below a user-defined threshold T, that is, 

(𝑆𝑆𝐸𝑖−1 − 𝑆𝑆𝐸𝑖) 𝑆𝑆𝐸𝑖⁄ ≤ 𝑇, where 0 < 𝑇 < 1. 
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CHAPTER 4 

EXPERIMENTAL RESULTS AND DISCUSSION 

This chapter describes the experimental procedure followed and then presents a 

discussion of the results. First, the input data sets for both the proposed and the 

comparison algorithms are outlined and their use is explained. Then, a brief description 

of the performance measures collected, and their significance, is presented. Thereafter, 

the variables as well as the constant parameters utilized in the experiments are outlined. 

Finally, the results of the experiment are discussed and the data gathered during the 

experiment is presented in the form of tables and figures. 

Experimental Setup 

First, the program reads the original image data from a PPM file. PPM images are 

amongst the simplest image file formats. The headers for such images contain a number 

that identifies the image format, the image width and height, and the maximum 

brightness value which determines the required number of bits-per-pixel for each 

channel. The proposed algorithm was tested on 8 commonly used, publicly available 

PPM images given in Table 4. The original image data set is then decimated, that is 

subsampled as described in Chapter 2, so as to reduce the amount of data to be processed. 

Then, the k-means++ algorithm is executed to select the initial set of centers. This 

decimated set and initial center set are the basis for all the subsequent processing for both 

k-means and the proposed algorithm. Hereinafter, the k-means method executed on the 

full set will simply be referred to as k-means, whereas the k-means method run on the 

coreset will be referred to as coremeans. The initial set of centers selected by k-means++ 

are then duplicated so that it can be used to initialize the coreset construction algorithm, 
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k-means, and coremeans. The coreset algorithm takes the decimated data set and the 

initial set of centers and constructs the coreset. Once the coreset is constructed, k-means 

is executed separately on the coreset and the full set. The input image is then quantized 

by a mapping function that replaces the original colors with the colors represented by the 

final centroids given by each execution. Next, the quantized images are compared to the 

original image by means of the Mean Absolute Error and Mean Squared Error measures 

described in the next section for each method (k-means and coremeans). The two 

quantized images are then written to separate PPM files. The previously mentioned steps 

are illustrated in Figure 1. 

 

Figure 1. Experimental procedure flow chart. 
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Table 4 

Image set 

Image  File Name Size 

Number of 

Colors 

 

 

Baboon 512 × 512 230,427 

 

Lenna 512 × 512 148,279 

 

Peppers 512 × 512 183,525 

 

Fish 300 × 200 63,558 
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Goldhill 720 × 576 30,966 

 

Motocross  768 × 512 63,558 

 

Parrots 768 × 512 72,079 

 

Pills 800 × 519 206,609 
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Performance Measures 

Mean Absolute Error 

The Mean Absolute Error (MAE) is a dimensioned measure of average model 

performance error. This measure is said to be “dimensioned” in that it expresses average 

model-prediction error in the units of the variable of interest. MAE is computed as 

follows: 

𝑀𝐴𝐸(𝑋, 𝑋̂) =  
1

𝐻𝑊
∑ ∑|𝑋(ℎ, 𝑤) −  𝑋̂(ℎ, 𝑤)|

𝑊

𝑤=1

𝐻

ℎ=1

 

where X and X̂ denote, respectively, the H × W original and quantized images in the RGB 

color space (Celebi, 2011). 

Mean Squared Error 

One of the simplest and most extensively used image quality metrics is the Mean 

Squared Error (MSE). It is computed by averaging the squared intensity differences of 

corresponding pixels from two images. This quality measure is appealing because it is 

simple to calculate, has clear physical meaning, and is mathematically convenient in the 

context of optimization (Wang, Bovik, Sherikh, & Simoncelli, 2004). MSE is computed 

as follows: 

𝑀𝑆𝐸(𝑋, 𝑋̂) =  
1

𝐻𝑊
∑ ∑‖𝑋(ℎ, 𝑤) − 𝑋̂(ℎ, 𝑤)‖

2
𝑊

𝑤=1

𝐻

ℎ=1

 

where X and X̂ denote, respectively, the H × W original and quantized images in the RGB 

color space (Celebi, 2011). 

Time 

The computational efficiency of an algorithm was measured by the CPU time it 
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uses. The data type struct timeval, which is part of the GNU C Library, was used to 

represent the elapsed time between the start of the considered functions and their end. 

Time measurements were computed using the getrusage function, which is able to 

measure CPU time to an accuracy of a microsecond. Time measurements were converted 

to milliseconds for display purposes. For the full set, initial center selection through k-

means++, and k-means running times were added. For the coreset, initial center selection 

through k-means++, coreset construction, and k-means running times were considered.  

Experimental Parameters 

The variable parameters for k-means and coremeans were the following: desired 

number of colors, 𝑘 = {32, 64, 128, 256}; decimation factor, 𝑑𝑓 = {1, 2, 4}; and coreset 

fraction, 𝑐𝑓 = {0.125, 0.250, 0.375, 0.500}. The constant parameters used throughout all 

the test runs were as follows: the maximum number of k-means iterations per run, 𝐼 =

 50; number of runs, 𝑅 =  10; and threshold for k-means convergence, 𝑇 =  10−3. 

Each time the program was executed, MAE, MSE, and total running time for each 

method were collected. This data was used to calculate the mean and standard deviation 

for the collected performance measures for each image. The program was implemented in 

the C++ programming language, compiled with the GNU g++ compiler version 5.4.0, 

and executed on a 3.40GHz Intel Core i7-6700 CPU. 

Discussion 

The statistics based on the experimental results are given in Tables 5-16. Tables 

5-8 contain MAE, Tables 9-12 present MSE, and Tables 13-16 display CPU time, in 

milliseconds, for each 𝑘 value tested. Only one result is provided for k-means as the 

variable parameters do not influence the results of this algorithm. For coremeans, the best 
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results are displayed in bold. Based on the collected statistics, the following observations 

can be made: 

Coremeans performs significantly worse regarding CPU time in certain scenarios; 

namely, when the decimation factor and the coreset fraction are close to 1. In such cases, 

the extra steps performed to construct the coreset are detrimental as the resulting coreset 

is nearly as large as the full set, see Figure 2.  

 

Figure 2. K-means vs. coremeans: CPU time for k = 256 and df = 1. 

The decimation factor and coreset fraction parameters influence the quantization 

quality (as measured by MAE and MSE) in opposite ways in that the greater the former 

the lower the quality, whereas the greater the latter the higher the quality. For the 

proposed method to produce satisfactory results, the following must be true: 𝑑𝑓 ≥ 2 and 

0 < 𝑐𝑓 ≤ 0.5. This effect is visualized in Figure 3. 
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Figure 3. K-means vs coremeans: CPU time for various cf and df values 

Clearly, the added burden of the coreset construction algorithm on CPU time can 

only be offset when the coreset fraction is small and decimation factor is large. In such 

scenarios, coremeans processing time diverges positively from k-means. In the 

experimental scenario illustrated in Figure 4, coremeans completed approximately 48 

times faster than k-means. 
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Figure 4. K-means vs coremeans: CPU time for k = 256 and df = 4. 

Based on the data collected, and with respect to the error measures used, the 

effectiveness of coremeans is very competitive with that of k-means. Although the 

coreset quantized image’s MSE is oftentimes slightly higher than that of the k-means 

quantized image, visually, the differences between the results obtained are virtually 

indistinguishable. 

Figures 5 to 8 illustrate some of the experimental results with various k values. It 

is evident that although there is a slightly higher MAE and MSE for the coremeans-

quantized images, coremeans outperforms k-means with respect to CPU time in nearly all 

presented scenarios and this time difference grows considerably as 𝑘 increases. 
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(a) Kmeans output image 

Time = 647 

 
(b) Kmeans error image 

MAE = 19 

MSE = 203 

 
(c) Original image 

 
(d) Kmeans vs coremeans error image 

 
(e) Coremeans output image 

Time = 68 

 
(f) Coremeans error image 

MAE = 20 

MSE = 208 

Figure 5. Pills input/output images, K = 32. 

  



 

 

 

25 

 
(a) Kmeans output image 

Time = 1454 

 

 
(b) Kmeans error image 

MAE = 12 

MSE = 85 

 
(c) Original image 

 
(d) Kmeans vs coremeans error image 

 
(e) Coremeans output image 

Time = 74 

 
(f) Coremeans error image 

MAE = 13 

MSE = 91 

Figure 6. Goldhill input/output images, K = 64.  
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(a) Kmeans output image 

Time = 2285 

 
(b) Kmeans error image 

MAE = 10 

MSE = 63 

 
(c) Original image 

 

 

 
(d) Kmeans vs coremeans error image 

 
(e) Coremeans output image 

Time = 72 

 
(f) Coremeans error image 

MAE = 11 

MSE = 70 

Figure 7. Motocross input/output images, K = 128. 
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(a) Kmeans output image 

Time = 3152 

 
(b) Kmeans error image 

MAE = 14 

MSE = 97 

 

 
(c) Original image 

 

 
(d) Kmeans vs coremeans error image 

 
(e) Coremeans output image 

Time = 58 

 
(f) Coremeans error image 

MAE = 15 

MSE = 114 

Figure 8. Baboon input/output images, K = 256. 
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Table 5 

MAE, 32 Colors 

IMG DF CF KM CM IMG DF CF KM CM 

Baboon 1 .125 27 ± 0 27 ± 0 Goldhill 1 .125 16 ± 0 16 ± 0 

  .250  27 ± 0   .250  16 ± 0 

  .375  27 ± 0   .375  16 ± 0 

  .500  27 ± 0   .500  16 ± 0 

 2 .125  27 ± 0  2 .125  16 ± 0 

  .250  27 ± 0   .250  16 ± 0 

  .375  27 ± 0   .375  16 ± 0 

  .500  27 ± 0   .500  16 ± 0 

 4 .125  27 ± 0  4 .125  16 ± 0 

  .250  27 ± 0   .250  16 ± 0 

  .375  27 ± 0   .375  16 ± 0 

  .500  27 ± 0   .500  16 ± 0 

Lenna 1 .125 15 ± 0 15 ± 0 Motocross 1 .125 18 ± 0 18 ± 0 

  .250  15 ± 0   .250  18 ± 0 

  .375  15 ± 0   .375  18 ± 0 

  .500  15 ± 0   .500  18 ± 0 

 2 .125  15 ± 0  2 .125  18 ± 0 

  .250  15 ± 0   .250  18 ± 0 

  .375  15 ± 0   .375  18 ± 0 

  .500  15 ± 0   .500  18 ± 0 

 4 .125  15 ± 0  4 .125  18 ± 0 

  .250  15 ± 0   .250  18 ± 0 

  .375  15 ± 0   .375  18 ± 0 

  .500  15 ± 0   .500  18 ± 0 

Peppers 1 .125 20 ± 0 20 ± 0 Parrots 1 .125 20 ± 0 20 ± 0 

  .250  20 ± 0   .250  20 ± 0 

  .375  20 ± 0   .375  20 ± 0 

  .500  20 ± 0   .500  20 ± 0 

 2 .125  20 ± 0  2 .125  20 ± 0 

  .250  20 ± 0   .250  20 ± 0 

  .375  20 ± 0   .375  20 ± 0 

  .500  20 ± 0   .500  20 ± 0 

 4 .125  21 ± 0  4 .125  20 ± 0 

  .250  21 ± 0   .250  21 ± 0 

  .375  20 ± 0   .375  20 ± 0 

  .500  20 ± 0   .500  20 ± 0 

Fish 1 .125 15 ± 0 16 ± 0 Pills 1 .125 19 ± 0 19 ± 0 

  .250  16 ± 0   .250  19 ± 0 

  .375  16 ± 0   .375  19 ± 0 

  .500  16 ± 0   .500  19 ± 0 

 2 .125  16 ± 0  2 .125  19 ± 0 

  .250  16 ± 0   .250  19 ± 0 

  .375  16 ± 0   .375  19 ± 0 

  .500  16 ± 0   .500  19 ± 0 

 4 .125  17 ± 0  4 .125  20 ± 0 

  .250  16 ± 0   .250  20 ± 0 

  .375  16 ± 0   .375  19 ± 0 

  .500  16 ± 0   .500  19 ± 0 
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Table 6 

MAE, 64 Colors 

IMG DF CF KM CM IMG DF CF KM CM 

Baboon 1 .125 21 ± 0 21 ± 0 Goldhill 1 .125 12 ± 0 12 ± 0 

  .250  21 ± 0   .250  12 ± 0 

  .375  21 ± 0   .375  12 ± 0 

  .500  21 ± 0   .500  12 ± 0 

 2 .125  22 ± 0  2 .125  12 ± 0 

  .250  21 ± 0   .250  12 ± 0 

  .375  21 ± 0   .375  12 ± 0 

  .500  21 ± 0   .500  12 ± 0 

 4 .125  22 ± 0  4 .125  13 ± 0 

  .250  22 ± 0   .250  12 ± 0 

  .375  22 ± 0   .375  12 ± 0 

  .500  22 ± 0   .500  12 ± 0 

Lenna 1 .125 12 ± 0 12 ± 0 Motocross 1 .125 13 ± 0 13 ± 0 

  .250  12 ± 0   .250  13 ± 0 

  .375  12 ± 0   .375  13 ± 0 

  .500  12 ± 0   .500  13 ± 0 

 2 .125  12 ± 0  2 .125  13 ± 0 

  .250  12 ± 0   .250  13 ± 0 

  .375  12 ± 0   .375  13 ± 0 

  .500  12 ± 0   .500  13 ± 0 

 4 .125  12 ± 0  4 .125  14 ± 0 

  .250  12 ± 0   .250  14 ± 0 

  .375  12 ± 0   .375  13 ± 0 

  .500  12 ± 0   .500  14 ± 0 

Peppers 1 .125 16 ± 0 16 ± 0 Parrots 1 .125 15 ± 0 15 ± 0 

  .250  16 ± 0   .250  15 ± 0 

  .375  16 ± 0   .375  15 ± 0 

  .500  16 ± 0   .500  15 ± 0 

 2 .125  16 ± 0  2 .125  15 ± 0 

  .250  16 ± 0   .250  15 ± 0 

  .375  16 ± 0   .375  15 ± 0 

  .500  16 ± 0   .500  15 ± 0 

 4 .125  16 ± 0  4 .125  15 ± 0 

  .250  16 ± 0   .250  15 ± 0 

  .375  16 ± 0   .375  15 ± 0 

  .500  16 ± 0   .500  15 ± 0 

Fish 1 .125 12 ± 0 12 ± 0 Pills 1 .125 14 ± 0 14 ± 0 

  .250  12 ± 0   .250  14 ± 0 

  .375  12 ± 0   .375  14 ± 0 

  .500  12 ± 0   .500  14 ± 0 

 2 .125  12 ± 0  2 .125  14 ± 0 

  .250  12 ± 0   .250  14 ± 0 

  .375  12 ± 0   .375  14 ± 0 

  .500  12 ± 0   .500  14 ± 0 

 4 .125  13 ± 0  4 .125  15 ± 0 

  .250  13 ± 0   .250  15 ± 0 

  .375  13 ± 0   .375  14 ± 0 

  .500  13 ± 0   .500  14 ± 0 
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Table 7 

MAE, 128 Colors 

IMG DF CF KM CM IMG DF CF KM CM 

Baboon 1 .125 17 ± 0 17 ± 0 Goldhill 1 .125 10 ± 0 10 ± 0 

  .250  17 ± 0   .250  10 ± 0 

  .375  17 ± 0   .375  10 ± 0 

  .500  17 ± 0   .500  10 ± 0 

 2 .125  17 ± 0  2 .125  10 ± 0 

  .250  17 ± 0   .250  10 ± 0 

  .375  17 ± 0   .375  10 ± 0 

  .500  17 ± 0   .500  10 ± 0 

 4 .125  18 ± 0  4 .125  10 ± 0 

  .250  18 ± 0   .250  10 ± 0 

  .375  18 ± 0   .375  10 ± 0 

  .500  18 ± 0   .500  10 ± 0 

Lenna 1 .125 9 ± 0 9 ± 0 Motocross 1 .125 10 ± 0 10 ± 0 

  .250  9 ± 0   .250  10 ± 0 

  .375  9 ± 0   .375  10 ± 0 

  .500  9 ± 0   .500  10 ± 0 

 2 .125  9 ± 0  2 .125  10 ± 0 

  .250  9 ± 0   .250  10 ± 0 

  .375  9 ± 0   .375  10 ± 0 

  .500  9 ± 0   .500  10 ± 0 

 4 .125  10 ± 0  4 .125  11 ± 0 

  .250  10 ± 0   .250  10 ± 0 

  .375  10 ± 0   .375  10 ± 0 

  .500  9 ± 0   .500  10 ± 0 

Peppers 1 .125 12 ± 0 12 ± 0 Parrots 1 .125 11 ± 0 11 ± 0 

  .250  12 ± 0   .250  11 ± 0 

  .375  12 ± 0   .375  11 ± 0 

  .500  12 ± 0   .500  11 ± 0 

 2 .125  13 ± 0  2 .125  12 ± 0 

  .250  12 ± 0   .250  12 ± 0 

  .375  12 ± 0   .375  11 ± 0 

  .500  12 ± 0   .500  11 ± 0 

 4 .125  13 ± 0  4 .125  12 ± 0 

  .250  13 ± 0   .250  12 ± 0 

  .375  13 ± 0   .375  12 ± 0 

  .500  13 ± 0   .500  12 ± 0 

Fish 1 .125 9 ± 0 10 ± 0 Pills 1 .125 11 ± 0 11 ± 0 

  .250  9 ± 0   .250  11 ± 0 

  .375  9 ± 0   .375  11 ± 0 

  .500  9 ± 0   .500  11 ± 0 

 2 .125  10 ± 0  2 .125  11 ± 0 

  .250  10 ± 0   .250  11 ± 0 

  .375  10 ± 0   .375  11 ± 0 

  .500  10 ± 0   .500  11 ± 0 

 4 .125  11 ± 0  4 .125  11 ± 0 

  .250  10 ± 0   .250  11 ± 0 

  .375  10 ± 0   .375  11 ± 0 

  .500  10 ± 0   .500  11 ± 0 
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Table 8 

MAE, 256 Colors 

IMG DF CF KM CM IMG DF CF KM CM 

Baboon 1 .125 14 ± 0 14 ± 0 Goldhill 1 .125 8 ± 0 8 ± 0 

  .250  14 ± 0   .250  8 ± 0 

  .375  14 ± 0   .375  8 ± 0 

  .500  14 ± 0   .500  8 ± 0 

 2 .125  14 ± 0  2 .125  8 ± 0 

  .250  14 ± 0   .250  8 ± 0 

  .375  14 ± 0   .375  8 ± 0 

  .500  14 ± 0   .500  8 ± 0 

 4 .125  15 ± 0  4 .125  8 ± 0 

  .250  14 ± 0   .250  8 ± 0 

  .375  14 ± 0   .375  8 ± 0 

  .500  14 ± 0   .500  8 ± 0 

Lenna 1 .125 7 ± 0 8 ± 0 Motocross 1 .125 8 ± 0 8 ± 0 

  .250  7 ± 0   .250  8 ± 0 

  .375  7 ± 0   .375  8 ± 0 

  .500  7 ± 0   .500  8 ± 0 

 2 .125  8 ± 0  2 .125  8 ± 0 

  .250  8 ± 0   .250  8 ± 0 

  .375  8 ± 0   .375  8 ± 0 

  .500  8 ± 0   .500  8 ± 0 

 4 .125  8 ± 0  4 .125  8 ± 0 

  .250  8 ± 0   .250  8 ± 0 

  .375  8 ± 0   .375  8 ± 0 

  .500  8 ± 0   .500  8 ± 0 

Peppers 1 .125 10 ± 0 10 ± 0 Parrots 1 .125 8 ± 0 9 ± 0 

  .250  10 ± 0   .250  8 ± 0 

  .375  10 ± 0   .375  8 ± 0 

  .500  10 ± 0   .500  8 ± 0 

 2 .125  10 ± 0  2 .125  9 ± 0 

  .250  10 ± 0   .250  9 ± 0 

  .375  10 ± 0   .375  9 ± 0 

  .500  10 ± 0   .500  9 ± 0 

 4 .125  11 ± 0  4 .125  9 ± 0 

  .250  10 ± 0   .250  9 ± 0 

  .375  10 ± 0   .375  9 ± 0 

  .500  10 ± 0   .500  9 ± 0 

Fish 1 .125 7 ± 0 8 ± 0 Pills 1 .125 8 ± 0 9 ± 0 

  .250  7 ± 0   .250  9 ± 0 

  .375  7 ± 0   .375  9 ± 0 

  .500  7 ± 0   .500  9 ± 0 

 2 .125  8 ± 0  2 .125  9 ± 0 

  .250  8 ± 0   .250  9 ± 0 

  .375  8 ± 0   .375  9 ± 0 

  .500  8 ± 0   .500  9 ± 0 

 4 .125  9 ± 0  4 .125  9 ± 0 

  .250  8 ± 0   .250  9 ± 0 

  .375  8 ± 0   .375  9 ± 0 

  .500  8 ± 0   .500  9 ± 0 
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Table 9 

MSE, 32 Colors 

IMG DF CF KM CM IMG DF CF KM CM 

Baboon 1 .125 378 ± 2 379 ± 3 Goldhill 1 .125 145 ± 2 146 ± 2 

  .250  382 ± 5   .250  146 ± 3 

  .375  379 ± 3   .375  145 ± 1 

  .500  381 ± 4   .500  146 ± 2 

 2 .125  385 ± 3  2 .125  147 ± 2 

  .250  382 ± 5   .250  146 ± 2 

  .375  382 ± 3   .375  146 ± 2 

  .500  383 ± 3   .500  146 ± 1 

 4 .125  398 ± 5  4 .125  151 ± 3 

  .250  395 ± 5   .250  149 ± 3 

  .375  390 ± 6   .375  148 ± 1 

  .500  385 ± 3   .500  149 ± 3 

Lenna 1 .125 120 ± 1 120 ± 1 Motocross 1 .125 194 ± 5 195 ± 6 

  .250  121 ± 2   .250  194 ± 4 

  .375  120 ± 1   .375  192 ± 3 

  .500  120 ± 1   .500  195 ± 4 

 2 .125  122 ± 1  2 .125  196 ± 2 

  .250  122 ± 1   .250  198 ± 5 

  .375  121 ± 2   .375  197 ± 5 

  .500  121 ± 1   .500  194 ± 3 

 4 .125  125 ± 1  4 .125  203 ± 6 

  .250  124 ± 3   .250  199 ± 5 

  .375  123 ± 2   .375  197 ± 6 

  .500  123 ± 2   .500  199 ± 5 

Peppers 1 .125 233 ± 4 234 ± 4 Parrots 1 .125 238 ± 4 239 ± 4 

  .250  233 ± 3   .250  239 ± 5 

  .375  234 ± 3   .375  239 ± 5 

  .500  234 ± 2   .500  238 ± 6 

 2 .125  235 ± 4  2 .125  242 ± 5 

  .250  234 ± 3   .250  242 ± 5 

  .375  233 ± 3   .375  241 ± 3 

  .500  232 ± 3   .500  244 ± 6 

 4 .125  244 ± 6  4 .125  247 ± 5 

  .250  240 ± 4   .250  246 ± 6 

  .375  235 ± 4   .375  246 ± 6 

  .500  236 ± 2   .500  244 ± 7 

Fish 1 .125 141 ± 2 143 ± 2 Pills 1 .125 203 ± 4 203 ± 3 

  .250  142 ± 2   .250  204 ± 4 

  .375  142 ± 4   .375  202 ± 2 

  .500  142 ± 3   .500  206 ± 4 

 2 .125  151 ± 3  2 .125  203 ± 2 

  .250  147 ± 3   .250  205 ± 3 

  .375  146 ± 3   .375  205 ± 6 

  .500  144 ± 3   .500  205 ± 3 

 4 .125  161 ± 5  4 .125  208 ± 4 

  .250  153 ± 3   .250  208 ± 6 

  .375  152 ± 5   .375  206 ± 3 

  .500  148 ± 2   .500  206 ± 3 
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Table 10 

MSE, 64 Colors 

IMG DF CF KM CM IMG DF CF KM CM 

Baboon 1 .125 238 ± 1 240 ± 1 Goldhill 1 .125 85 ± 1 86 ± 1 

  .250  239 ± 2   .250  85 ± 1 

  .375  239 ± 1   .375  85 ± 1 

  .500  239 ± 1   .500  85 ± 0 

 2 .125  245 ± 1  2 .125  87 ± 1 

  .250  243 ± 1   .250  86 ± 1 

  .375  242 ± 1   .375  86 ± 1 

  .500  242 ± 2   .500  85 ± 0 

 4 .125  258 ± 3  4 .125  91 ± 1 

  .250  251 ± 1   .250  88 ± 1 

  .375  248 ± 3   .375  89 ± 1 

  .500  248 ± 1   .500  89 ± 1 

Lenna 1 .125 73 ± 1 73 ± 1 Motocross 1 .125 109 ± 1 109 ± 1 

  .250  73 ± 0   .250  110 ± 2 

  .375  73 ± 1   .375  109 ± 1 

  .500  73 ± 1   .500  109 ± 1 

 2 .125  75 ± 1  2 .125  112 ± 2 

  .250  74 ± 1   .250  112 ± 1 

  .375  74 ± 1   .375  111 ± 2 

  .500  74 ± 1   .500  111 ± 2 

 4 .125  79 ± 1  4 .125  117 ± 3 

  .250  77 ± 1   .250  115 ± 2 

  .375  76 ± 1   .375  112 ± 1 

  .500  76 ± 1   .500  113 ± 1 

Peppers 1 .125 137 ± 3 138 ± 3 Parrots 1 .125 128 ± 1 129 ± 1 

  .250  138 ± 4   .250  128 ± 1 

  .375  136 ± 1   .375  129 ± 2 

  .500  136 ± 3   .500  128 ± 1 

 2 .125  139 ± 3  2 .125  136 ± 3 

  .250  138 ± 2   .250  136 ± 2 

  .375  137 ± 1   .375  134 ± 1 

  .500  137 ± 1   .500  136 ± 2 

 4 .125  146 ± 2  4 .125  140 ± 3 

  .250  144 ± 2   .250  139 ± 3 

  .375  143 ± 1   .375  138 ± 2 

  .500  141 ± 2   .500  137 ± 2 

Fish 1 .125 85 ± 1 87 ± 1 Pills 1 .125 114 ± 1 114 ± 1 

  .250  86 ± 1   .250  114 ± 1 

  .375  86 ± 1   .375  115 ± 2 

  .500  85 ± 1   .500  113 ± 1 

 2 .125  92 ± 1  2 .125  115 ± 1 

  .250  90 ± 2   .250  115 ± 1 

  .375  88 ± 1   .375  115 ± 1 

  .500  87 ± 1   .500  114 ± 1 

 4 .125  102 ± 2  4 .125  121 ± 2 

  .250  96 ± 1   .250  117 ± 1 

  .375  96 ± 2   .375  116 ± 1 

  .500  94 ± 1   .500  117 ± 2 
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Table 11 

MSE, 128 Colors 

IMG DF CF KM CM IMG DF CF KM CM 

Baboon 1 .125 152 ± 1 155 ± 1 Goldhill 1 .125 53 ± 0 53 ± 0 

  .250  154 ± 0   .250  53 ± 0 

  .375  153 ± 1   .375  53 ± 0 

  .500  153 ± 1   .500  53 ± 0 

 2 .125  160 ± 1  2 .125  55 ± 0 

  .250  158 ± 1   .250  54 ± 1 

  .375  157 ± 1   .375  54 ± 0 

  .500  157 ± 1   .500  54 ± 0 

 4 .125  172 ± 3  4 .125  58 ± 1 

  .250  167 ± 1   .250  56 ± 0 

  .375  164 ± 1   .375  56 ± 1 

  .500  162 ± 1   .500  55 ± 1 

Lenna 1 .125 47 ± 0 47 ± 0 Motocross 1 .125 63 ± 1 63 ± 1 

  .250  47 ± 0   .250  63 ± 1 

  .375  47 ± 0   .375  63 ± 0 

  .500  47 ± 0   .500  63 ± 0 

 2 .125  49 ± 0  2 .125  66 ± 1 

  .250  48 ± 0   .250  65 ± 0 

  .375  48 ± 0   .375  65 ± 0 

  .500  47 ± 0   .500  65 ± 1 

 4 .125  52 ± 0  4 .125  70 ± 1 

  .250  51 ± 0   .250  68 ± 1 

  .375  50 ± 0   .375  67 ± 1 

  .500  49 ± 0   .500  67 ± 1 

Peppers 1 .125 84 ± 1 85 ± 1 Parrots 1 .125 73 ± 1 74 ± 1 

  .250  85 ± 0   .250  73 ± 1 

  .375  84 ± 0   .375  73 ± 1 

  .500  84 ± 1   .500  73 ± 1 

 2 .125  88 ± 1  2 .125  81 ± 1 

  .250  87 ± 0   .250  81 ± 1 

  .375  86 ± 1   .375  79 ± 1 

  .500  86 ± 1   .500  79 ± 1 

 4 .125  94 ± 1  4 .125  85 ± 2 

  .250  92 ± 1   .250  82 ± 1 

  .375  90 ± 1   .375  82 ± 2 

  .500  89 ± 1   .500  81 ± 1 

Fish 1 .125 52 ± 0 54 ± 0 Pills 1 .125 67 ± 0 67 ± 0 

  .250  54 ± 1   .250  67 ± 0 

  .375  53 ± 0   .375  67 ± 1 

  .500  53 ± 0   .500  67 ± 1 

 2 .125  59 ± 1  2 .125  69 ± 1 

  .250  56 ± 1   .250  68 ± 1 

  .375  56 ± 1   .375  68 ± 1 

  .500  55 ± 1   .500  68 ± 1 

 4 .125  70 ± 2  4 .125  73 ± 1 

  .250  63 ± 1   .250  71 ± 1 

  .375  62 ± 1   .375  70 ± 1 

  .500  60 ± 1   .500  70 ± 0 
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Table 12 

MSE, 256 Colors 

IMG DF CF KM CM IMG DF CF KM CM 

Baboon 1 .125 97 ± 0 100 ± 0 Goldhill 1 .125 34 ± 0 35 ± 0 

  .250  99 ± 0   .250  34 ± 0 

  .375  98 ± 0   .375  34 ± 0 

  .500  98 ± 0   .500  34 ± 0 

 2 .125  105 ± 1  2 .125  36 ± 0 

  .250  103 ± 0   .250  36 ± 0 

  .375  102 ± 0   .375  35 ± 0 

  .500  101 ± 0   .500  35 ± 0 

 4 .125  114 ± 1  4 .125  39 ± 0 

  .250  109 ± 1   .250  38 ± 0 

  .375  107 ± 0   .375  37 ± 0 

  .500  107 ± 1   .500  37 ± 0 

Lenna 1 .125 30 ± 0 31 ± 0 Motocross 1 .125 37 ± 0 38 ± 0 

  .250  31 ± 0   .250  38 ± 0 

  .375  31 ± 0   .375  38 ± 0 

  .500  31 ± 0   .500  38 ± 0 

 2 .125  33 ± 0  2 .125  40 ± 0 

  .250  32 ± 0   .250  40 ± 0 

  .375  31 ± 0   .375  39 ± 0 

  .500  31 ± 0   .500  39 ± 0 

 4 .125  35 ± 0  4 .125  44 ± 0 

  .250  34 ± 0   .250  42 ± 0 

  .375  33 ± 0   .375  42 ± 0 

  .500  33 ± 0   .500  41 ± 0 

Peppers 1 .125 54 ± 0 55 ± 0 Parrots 1 .125 42 ± 0 43 ± 0 

  .250  55 ± 0   .250  43 ± 0 

  .375  54 ± 0   .375  43 ± 0 

  .500  54 ± 0   .500  43 ± 0 

 2 .125  58 ± 0  2 .125  49 ± 0 

  .250  57 ± 0   .250  49 ± 0 

  .375  56 ± 0   .375  48 ± 1 

  .500  56 ± 0   .500  48 ± 0 

 4 .125  63 ± 1  4 .125  53 ± 1 

  .250  61 ± 1   .250  51 ± 1 

  .375  60 ± 0   .375  50 ± 0 

  .500  59 ± 1   .500  49 ± 1 

Fish 1 .125 32 ± 0 34 ± 0 Pills 1 .125 41 ± 0 42 ± 0 

  .250  33 ± 0   .250  42 ± 0 

  .375  33 ± 0   .375  42 ± 0 

  .500  33 ± 0   .500  41 ± 0 

 2 .125  38 ± 0  2 .125  44 ± 0 

  .250  36 ± 0   .250  43 ± 0 

  .375  35 ± 0   .375  42 ± 0 

  .500  35 ± 0   .500  42 ± 0 

 4 .125  52 ± 2  4 .125  47 ± 0 

  .250  42 ± 1   .250  45 ± 0 

  .375  40 ± 1   .375  45 ± 0 

  .500  40 ± 0   .500  44 ± 0 
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Table 13 

Time, 32 Colors 

IMG DF CF KM CM IMG DF CF KM CM 

Baboon 1 .125 443 ± 70 5538 ± 272 Goldhill 1 .125 738 ± 231 12125 ± 620 

  .250  11106 ± 572   .250  25034 ± 998 

  .375  15828 ± 364   .375  35611 ± 1588 

  .500  21066 ± 1658   .500  47207 ± 3637 

 2 .125  368 ± 19  2 .125  838 ± 46 

  .250  696 ± 18   .250  1680 ± 254 

  .375  1006 ± 14   .375  2325 ± 76 

  .500  1370 ± 29   .500  3177 ± 143 

 4 .125  27 ± 5  4 .125  63 ± 4 

  .250  55 ± 4   .250  117 ± 9 

  .375  87 ± 8   .375  192 ± 37 

  .500  116 ± 8   .500  230 ± 30 

Lenna 1 .125 477 ± 62 5640 ± 143 Motocross 1 .125 604 ± 106 9738 ± 206 

  .250  11411 ± 253   .250  19341 ± 263 

  .375  16548 ± 216   .375  28962 ± 405 

  .500  22776 ± 692   .500  38490 ± 487 

 2 .125  400 ± 53  2 .125  648 ± 13 

  .250  841 ± 152   .250  1283 ± 28 

  .375  1114 ± 55   .375  1894 ± 34 

  .500  1499 ± 104   .500  2533 ± 65 

 4 .125  31 ± 5  4 .125  53 ± 3 

  .250  64 ± 18   .250  99 ± 5 

  .375  90 ± 10   .375  146 ± 9 

  .500  121 ± 25   .500  185 ± 6 

Peppers 1 .125 474 ± 122 5782 ± 83 Parrots 1 .125 559 ± 124 11221 ± 205 

  .250  10630 ± 666   .250  22553 ± 407 

  .375  15028 ± 102   .375  33761 ± 643 

  .500  20661 ± 968   .500  45225 ± 900 

 2 .125  356 ± 12  2 .125  759 ± 18 

  .250  684 ± 10   .250  1476 ± 24 

  .375  1026 ± 60   .375  2215 ± 40 

  .500  1327 ± 11   .500  2912 ± 53 

 4 .125  28 ± 3  4 .125  61 ± 5 

  .250  52 ± 6   .250  114 ± 3 

  .375  88 ± 9   .375  163 ± 6 

  .500  102 ± 10   .500  214 ± 12 

Fish 1 .125 100 ± 18 311 ± 41 Pills 1 .125 647 ± 117 12416 ± 121 

  .250  581 ± 55   .250  24800 ± 142 

  .375  813 ± 23   .375  36970 ± 332 

  .500  1064 ± 22   .500  49485 ± 232 

 2 .125  26 ± 4  2 .125  825 ± 18 

  .250  44 ± 3   .250  1634 ± 26 

  .375  66 ± 4   .375  2413 ± 21 

  .500  83 ± 5   .500  3201 ± 35 

 4 .125  3 ± 3  4 .125  68 ± 4 

  .250  4 ± 1   .250  122 ± 6 

  .375  6 ± 2   .375  182 ± 11 

  .500  6 ± 2   .500  233 ± 14 
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Table 14 

Time, 64 Colors 

IMG DF CF KM CM IMG DF CF KM CM 

Baboon 1 .125 849 ± 100 5486 ± 376 Goldhill 1 .125 1454 ± 276 13048 ± 1162 

  .250  10650 ± 342   .250  24050 ± 519 

  .375  15764 ± 464   .375  36495 ± 1075 

  .500  21522 ± 564   .500  49039 ± 2453 

 2 .125  382 ± 16  2 .125  850 ± 67 

  .250  754 ± 50   .250  1688 ± 86 

  .375  1070 ± 22   .375  2432 ± 107 

  .500  1436 ± 42   .500  3170 ± 192 

 4 .125  34 ± 3  4 .125  74 ± 4 

  .250  64 ± 4   .250  134 ± 8 

  .375  95 ± 5   .375  190 ± 8 

  .500  123 ± 9   .500  261 ± 21 

Lenna 1 .125 884 ± 159 5720 ± 189 Motocross 1 .125 1094 ± 173 9710 ± 59 

  .250  11795 ± 445   .250  19274 ± 145 

  .375  17390 ± 535   .375  28926 ± 385 

  .500  22569 ± 640   .500  38677 ± 397 

 2 .125  427 ± 34  2 .125  676 ± 6 

  .250  798 ± 27   .250  1314 ± 15 

  .375  1148 ± 56   .375  1948 ± 22 

  .500  1513 ± 28   .500  2589 ± 40 

 4 .125  34 ± 5  4 .125  61 ± 3 

  .250  71 ± 9   .250  111 ± 4 

  .375  94 ± 7   .375  155 ± 5 

  .500  120 ± 8   .500  207 ± 8 

Peppers 1 .125 842 ± 139 5164 ± 45 Parrots 1 .125 1190 ± 316 11643 ± 83 

  .250  10376 ± 358   .250  23062 ± 183 

  .375  16934 ± 684   .375  34618 ± 529 

  .500  21577 ± 573   .500  45950 ± 557 

 2 .125  509 ± 107  2 .125  798 ± 12 

  .250  759 ± 79   .250  1561 ± 26 

  .375  1076 ± 49   .375  2294 ± 43 

  .500  1418 ± 48   .500  3050 ± 63 

 4 .125  36 ± 6  4 .125  68 ± 4 

  .250  67 ± 5   .250  124 ± 6 

  .375  93 ± 4   .375  181 ± 7 

  .500  129 ± 10   .500  236 ± 9 

Fish 1 .125 191 ± 29 317 ± 25 Pills 1 .125 1334 ± 169 12666 ± 81 

  .250  582 ± 21   .250  25170 ± 112 

  .375  862 ± 23   .375  37662 ± 103 

  .500  1134 ± 28   .500  50288 ± 285 

 2 .125  26 ± 3  2 .125  871 ± 12 

  .250  51 ± 3   .250  1697 ± 20 

  .375  75 ± 3   .375  2504 ± 35 

  .500  98 ± 7   .500  3313 ± 32 

 4 .125  3 ± 3  4 .125  74 ± 4 

  .250  6 ± 2   .250  138 ± 6 

  .375  8 ± 3   .375  196 ± 4 

  .500  10 ± 3   .500  252 ± 8 



 

 

 

38 

Table 15 

Time, 128 Colors 

IMG DF CF KM CM IMG DF CF KM CM 

Baboon 1 .125 1706 ± 252 5666 ± 158 Goldhill 1 .125 2285 ± 365 12735 ± 643 

  .250  10961 ± 322   .250  25234 ± 1234 

  .375  15998 ± 422   .375  34962 ± 1252 

  .500  21217 ± 537   .500  47425 ± 3080 

 2 .125  434 ± 11  2 .125  847 ± 28 

  .250  814 ± 30   .250  1597 ± 28 

  .375  1205 ± 50   .375  2326 ± 47 

  .500  1584 ± 103   .500  3098 ± 51 

 4 .125  47 ± 6  4 .125  83 ± 5 

  .250  79 ± 8   .250  145 ± 7 

  .375  116 ± 8   .375  201 ± 6 

  .500  156 ± 19   .500  263 ± 9 

Lenna 1 .125 1657 ± 206 5969 ± 186 Motocross 1 .125 2217 ± 408 9903 ± 69 

  .250  11428 ± 344   .250  19446 ± 116 

  .375  17533 ± 605   .375  29122 ± 311 

  .500  23258 ± 581   .500  38910 ± 204 

 2 .125  488 ± 74  2 .125  742 ± 28 

  .250  836 ± 22   .250  1399 ± 27 

  .375  1272 ± 112   .375  2053 ± 27 

  .500  1626 ± 67   .500  2740 ± 53 

 4 .125  45 ± 5  4 .125  72 ± 5 

  .250  89 ± 18   .250  132 ± 9 

  .375  126 ± 17   .375  179 ± 11 

  .500  150 ± 10   .500  238 ± 14 

Peppers 1 .125 1598 ± 169 5722 ± 410 Parrots 1 .125 2270 ± 279 11954 ± 163 

  .250  10489 ± 272   .250  23661 ± 284 

  .375  16254 ± 1060   .375  35184 ± 312 

  .500  20026 ± 154   .500  46758 ± 468 

 2 .125  411 ± 17  2 .125  872 ± 29 

  .250  881 ± 164   .250  1642 ± 32 

  .375  1109 ± 21   .375  2431 ± 47 

  .500  1461 ± 21   .500  3202 ± 49 

 4 .125  46 ± 3  4 .125  79 ± 3 

  .250  76 ± 6   .250  150 ± 7 

  .375  118 ± 11   .375  207 ± 7 

  .500  146 ± 9   .500  272 ± 12 

Fish 1 .125 396 ± 66 381 ± 78 Pills 1 .125 2492 ± 267 13048 ± 115 

  .250  628 ± 24   .250  25680 ± 71 

  .375  971 ± 67   .375  38374 ± 190 

  .500  1189 ± 36   .500  51088 ± 259 

 2 .125  31 ± 5  2 .125  950 ± 23 

  .250  63 ± 11   .250  1805 ± 21 

  .375  92 ± 7   .375  2649 ± 31 

  .500  127 ± 14   .500  3484 ± 45 

 4 .125  4 ± 3  4 .125  88 ± 4 

  .250  6 ± 2   .250  157 ± 9 

  .375  8 ± 4   .375  225 ± 8 

  .500  13 ± 4   .500  286 ± 8 
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Table 16 

Time, 256 Colors 

IMG DF CF KM CM IMG DF CF KM CM 

Baboon 1 .125 3152 ± 184 6252 ± 326 Goldhill 1 .125 4240 ± 315 11930 ± 129 

  .250  11285 ± 223   .250  23373 ± 301 

  .375  15921 ± 322   .375  34662 ± 411 

  .500  22468 ± 433   .500  45838 ± 343 

 2 .125  522 ± 42  2 .125  942 ± 15 

  .250  898 ± 19   .250  1766 ± 31 

  .375  1334 ± 46   .375  2599 ± 64 

  .500  1796 ± 115   .500  3374 ± 37 

 4 .125  58 ± 7  4 .125  104 ± 5 

  .250  105 ± 8   .250  175 ± 5 

  .375  152 ± 9   .375  248 ± 9 

  .500  190 ± 14   .500  326 ± 14 

Lenna 1 .125 3026 ± 208 6118 ± 49 Motocross 1 .125 4236 ± 505 10146 ± 85 

  .250  11749 ± 76   .250  19765 ± 159 

  .375  19255 ± 1268   .375  29367 ± 217 

  .500  26009 ± 404   .500  39146 ± 497 

 2 .125  575 ± 27  2 .125  830 ± 15 

  .250  1047 ± 22   .250  1553 ± 43 

  .375  1511 ± 48   .375  2207 ± 33 

  .500  2137 ± 207   .500  2909 ± 46 

 4 .125  70 ± 16  4 .125  92 ± 4 

  .250  111 ± 8   .250  162 ± 6 

  .375  158 ± 15   .375  219 ± 9 

  .500  205 ± 8   .500  294 ± 17 

Peppers 1 .125 2929 ± 227 5570 ± 58 Parrots 1 .125 4026 ± 379 12389 ± 115 

  .250  10691 ± 127   .250  24471 ± 261 

  .375  15789 ± 212   .375  36392 ± 364 

  .500  20985 ± 284   .500  48088 ± 329 

 2 .125  490 ± 9  2 .125  975 ± 13 

  .250  890 ± 18   .250  1809 ± 28 

  .375  1277 ± 32   .375  2645 ± 78 

  .500  1673 ± 35   .500  3484 ± 75 

 4 .125  58 ± 5  4 .125  105 ± 5 

  .250  98 ± 6   .250  174 ± 7 

  .375  146 ± 13   .375  253 ± 14 

  .500  186 ± 5   .500  329 ± 10 

Fish 1 .125 681 ± 64 406 ± 11 Pills 1 .125 4606 ± 348 13482 ± 113 

  .250  755 ± 25   .250  26472 ± 141 

  .375  1049 ± 33   .375  39570 ± 207 

  .500  1554 ± 261   .500  52404 ± 347 

 2 .125  52 ± 13  2 .125  1046 ± 16 

  .250  84 ± 7   .250  1989 ± 29 

  .375  118 ± 5   .375  2870 ± 36 

  .500  158 ± 17   .500  3830 ± 55 

 4 .125  6 ± 3  4 .125  108 ± 5 

  .250  10 ± 4   .250  199 ± 10 

  .375  15 ± 3   .375  276 ± 11 

  .500  18 ± 5   .500  364 ± 15 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

In this thesis, coremeans was introduced as a fast and effective quantization 

method. First, a data subsampling procedure was introduced as means of data reduction. 

Then, an effective initialization method, k-means++ was presented with the objective of 

selecting better initial centers. Finally, the coreset construction algorithm was outlined as 

the main performance enhancing component of coremeans. The proposed method was 

implemented and a comprehensive experiment conducted on a diverse set of test images 

commonly used in the color quantization literature. The experimental results 

demonstrated that the proposed method outperforms k-means in terms of speed, 

achieving speedups of up to 100 times when run with suitable parameter values. The 

proposed method gives comparable-quality results to k-means. 

The proposed method was tested against k-means only as the former is a modified 

version of the latter. Additionally, Celebi et al. (2015) conducted extensive experiments 

where they compared the quality and speed of a large number of popular color 

quantization methods including popularity, median-cut, modified popularity, octree, 

variance-based method, greedy orthogonal bipartitioning method, center-cut, self-

organizing map, radius-weighted mean-cut, modified maximin, pairwise clustering, split 

and merge, Cheng & Yang, adaptive distributing units, and weighted sort-means. They 

found that k-means outperformed the rival methods by a large margin in nearly every 

case. The proposed coremeans method is significantly faster than k-means and the two 

methods give very similar results. This means that coremeans will also outperform the 

large number of color quantization methods tested by Celebi et al. (2015).  
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In the experiment conducted, only k-means++ was implemented as the 

initialization method. Numerous other initialization methods exist (Celebi et al., 2013), 

and using them in combination with coresets could provide some interesting results. 

Furthermore, a comparison between the results obtained by other quantization methods 

that use a coreset as a source could provide valuable insight into practical coreset use. 

Finally, acceleration of the proposed coremeans method could also be investigated, for 

example, using the recent approach proposed by Bachem et al. (2016).
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