
EFFECTIVE COLOR QUANTIZATION USING

CORESET SAMPLING

by

German Valenzuela

A thesis presented to the Department of Computer Science

and the Graduate School of University of Central Arkansas in partial

fulfillment of the requirements for the degree of

Master of Science

in

Applied Computing

Conway, Arkansas

December 2017

TO THE OFFICE OF GRADUATE STUDIES:

The members of the Committee approve the thesis of

German Valenzuela presented on November 30, 2017.

M. Emre Celebi, Ph. D., Committee Chairperson

Sinan Kockara, Ph.D.

Mahmut Karakaya, Ph.D.

PERMISSION

Title Effective Color Quantization Using Coreset Sampling

Department Computer Science

Degree Master of Science

In presenting this thesis/dissertation in partial fulfillment of the requirements for graduate

degree from the University of Central Arkansas, I agree that the Library of this

University shall make it freely available for inspections. I further agree that permission

for extensive copying for scholarly purposes may be granted by the professor who

supervised my thesis/dissertation work, or, in the professor’s absence, by the Chair of the

Department or the Dean of the Graduate School. It is understood that due recognition

shall be given to me and to the University of Central Arkansas in any scholarly use which

may be made of any material in my thesis/dissertation.

German Valenzuela

November 30, 2017

iv

© 2017 German Valenzuela

v

ACKNOWLEDGMENTS

I would first like to thank my thesis advisor Dr. Emre Celebi, professor and chair

of the Department of Computer Science at University of Central Arkansas. The door to

Prof. Celebi’s office was always open whenever I ran into a trouble spot or had a

question about my research or writing. He consistently allowed the project and this paper

to be my own work, but steered me in the right the direction whenever he thought I

needed it.

I would also like to acknowledge Dr. Sinan Kockara of the Department of

Computer Science at University of Central Arkansas as the second reader of this thesis. I

am gratefully indebted to him for his very valuable comments on this thesis and for his

support throughout my graduate studies.

Finally, I must express my very profound gratitude to my family and to my

spouse for providing me with unfailing support and continuous encouragement

throughout my years of study and through the process of researching and writing this

thesis. This accomplishment would not have been possible without them. Thank you.

German Valenzuela

vi

VITA

German Valenzuela was born in Cd. Juarez, Mexico. He attended elementary and

middle school in Mexico before immigrating to the United States. He completed his GED

in 2012, with a high score that awarded him the GED Achievement Scholarship at the

University of Arkansas Community College at Morrilton. He attended UACCM for a

year before transferring to the University of Central Arkansas. After the transfer, he

graduated from UCA with a Bachelor of Science in Computer Science with a minor in

Mathematics in April 2016.

vii

ABSTRACT

Color quantization is a technique to reduce the number of colors in a digital color image.

Although the hardware constrains that ensued the need for color quantization are

uncommon nowadays, color quantization remains an important image processing

technique. In this thesis, a novel, fast, and effective color quantization method based on

the k-means algorithm is introduced. The proposed method utilizes careful initialization,

data subsampling, and coreset construction to attain high quality and high speed

quantization. Tests on various well-known, publicly available images demonstrate that

the proposed method outperforms k-means in terms of speed while delivering nearly

identical results.

viii

TABLE OF CONTENTS

PERMISSION .. iii

ACKNOWLEDGMENTS ...v

VITA .. vi

ABSTRACT .. vii

TABLE OF CONTENTS ... viii

LIST OF TABLES ... ix

LIST OF FIGURES ...x

CHAPTER 1 INTRODUCTION ...1

CHAPTER 2 RELATED WORK ..3

CHAPTER 3 PROPOSED COLOR QUANTIZATION METHOD10

CHAPTER 4 EXPERIMENTAL RESULTS AND DISCUSSION15

CHAPTER 5 CONCLUSIONS AND FUTURE WORK ..40

REFERENCES ..42

ix

LIST OF TABLES

Table 1. The k-means++ algorithm ..11

Table 2. Coreset construction algorithm ..12

Table 3. The k-means algorithm ..13

Table 4. Image set ..17

Table 5. MAE, 32 Colors ...28

Table 6. MAE, 64 Colors ...29

Table 7. MAE, 128 Colors ...30

Table 8. MAE, 256 Colors ...31

Table 9. MSE, 32 Colors..32

Table 10. MSE, 64 Colors..33

Table 11. MSE, 128 Colors..34

Table 12. MSE, 256 Colors..35

Table 13. Time, 32 Colors ...36

Table 14. Time, 64 Colors ...37

Table 15. Time, 128 Colors ...38

Table 16. Time, 256 Colors ...39

x

LIST OF FIGURES

Figure 1. Experimental procedure flow chart. ...16

Figure 2. K-means vs. coremeans: CPU time for k = 256 and df = 1.21

Figure 3. K-means vs coremeans: CPU time for various cf and df values22

Figure 4. K-means vs coremeans: CPU time for k = 256 and df = 4.23

Figure 5. Pills input/output images, K = 32. ..24

Figure 6. Goldhill input/output images, K = 64. ..25

Figure 7. Motocross input/output images, K = 128. ..26

Figure 8. Baboon input/output images, K = 256. ...27

1

CHAPTER 1

INTRODUCTION

A true color image is generally comprised of pixels with three components: red,

green, and blue, each of which is typically represented by 1 byte. Thus, 3 bytes are

required to store each color pixel. This yields 224 (approximately 16.8 million) possible

color combinations. Color quantization is an image processing technique that reduces the

number of unique colors in a digital color image, thereby allowing true color images to be

stored and displayed using only a small number of colors. Color quantization was

originally used to satisfy display hardware constraints. Although 24-bit true-color

displays are common today, color quantization is still an important step in image

processing and computer graphics. Some of its uses include compression, segmentation,

text localization/detection, color texture analysis, watermarking, non-photorealistic

rendering, and content-based retrieval (Celebi, 2011).

Quantization Methods

Color quantization methods can be broadly classified in two categories according

to their initial palette selection scheme: image-independent and image-dependent. Image-

independent methods (Gentile, Allebach, & Walowit, 1990), such as uniform

quantization, achieve color quantization regardless of the original image’s color

distribution. These methods produce lower quality results. Nevertheless, they provide

results in real-time. Image-dependent methods obtain the reduced color palette by

analyzing the image itself. These methods produce high-quality results at the expense of

higher computational requirements (Berge & Berger, 2009). Image-dependent methods

can be categorized into preclustering (or hierarchical) and postclustering (or partitional)

2

approaches (Celebi, 2011). Preclustering methods are typically based on the statistical

analysis of the original image’s color distribution. Divisive preclustering procedures start

with one cluster that contains all n image pixels. This cluster is then repeatedly divided

until k clusters are obtained, where k is the target number of colors. In contrast,

agglomerative preclustering methods start with n clusters, each containing one pixel.

These are then combined repeatedly until k clusters remain. Postclustering algorithms

find all k clusters simultaneously as a partition of the data, without imposing a

hierarchical structure. These algorithms, although time consuming, produce better results

than preclustering approaches as they start with an initial color palette and then iteratively

improve it. In this thesis, we focus on postclustering methods.

Data Clustering as Means of Color Quantization

Since the color of a pixel is comprised of three components, red, green, and blue,

color quantization can be viewed as a clustering problem in three dimensions (Celebi,

2009). The task is to identify the clusters that are most representative of the colors in an

image. The color quantization process consists of two main steps that correspond to the

steps in partitional clustering. The first step is to choose a color palette (a.k.a.

initialization or seeding), with a smaller number of colors than that of the original image

– typically in the range of 8–256. The second step is to map each original image pixel to

one of the colors in the reduced palette which is achieved by clustering the pixel data.

3

CHAPTER 2

RELATED WORK

Color Quantization

Numerous color quantization techniques exist in the literature, such as popularity

(Heckbert, 1982), median-cut (Heckbert, 1982), modified popularity (Braudaway, 1987),

octree (Gervautz & Purgathofer, 1988), variance-based method (Wan, Prusinkiewicz, &

Wong, 1990), greedy orthogonal bipartitioning (Wu, 1991), center-cut (Joy & Xiang,

1993), self-organizing map (Dekker, 1994), radius-weighted mean-cut (Yang & Lin,

1996), modified maximin (Xiang, 1997), pairwise clustering (Velho, Gomez, & Sobreiro,

1997), split and merge (Brun, & Mokhtari, 2000), Cheng and Yang (Cheng & Yang,

2001), weighted sort-means (Celebi, 2009), modified weighted sort-means (Celebi,

2011), fuzzy c-means (Wen & Celebi, 2011), adaptive distributing units (Celebi, Hwang,

& Wen, 2014), and variance-cut (Celebi, Wen, & Hwang, 2015).

Heckbert (1982) proposed two color quantization methods – popularity and

median-cut. Popularity builds a 16 × 16 × 16 color histogram using 4 bits/channel

uniform quantization and then takes the k most frequent colors in the histogram as the

color palette. Median-cut starts by building a 32 × 32 × 32 color histogram using

uniform quantization. This histogram volume is then recursively split into smaller boxes

until 𝑘 boxes are obtained. At each step, the box that contains the greatest number of

colors is split along the longest axis at the median point, so that the resulting sub-boxes

each contain approximately the same number of colors. The centroids of the final k boxes

are taken as the color palette.

Braudaway (1987) introduced the modified popularity method. This method starts

4

by building a 2𝑅 × 2𝑅 × 2𝑅 color histogram using 𝑅 bits per channel uniform

quantization. It chooses the most frequent color as the first palette color 𝑐1 and then

reduces the frequency of each color 𝑐 by a factor of (1 − 𝑒𝛼‖𝑐−𝑐1‖2
), where 𝛼 is a user-

defined parameter. The remaining palette colors are chosen similarly.

Gervautz and Purgathofer (1988) proposed the octree method. This two-phase

method first builds an octree—a tree data structure in which each internal node has up to

eight children—that represents the color distribution of the input image. Then, starting

from the bottom of the tree, it merges the adjacent colors with the least number of pixels

to the closest cluster until k colors are obtained.

Wan, Prusinkiewicz, and Wong (1990) introduced the variance-based method.

This method is very similar to median-cut. At each step of this method, the box with the

greatest error is split along the axis with the least weighted sum of projected variances at

the point that minimizes the marginal error.

Wu (1991) proposed the greedy orthogonal bipartitioning procedure. It is

analogous to the variance-based method, except at each step, the box is split along the

axis that minimizes the sum of variances on both sides.

Joy and Xian (1993) presented the center-cut method. It is comparable to the

median-cut method, except at each step, the box with the greatest range on any coordinate

axis is split along its longest axis at the mean point cut.

Dekker (1994) proposed the self-organizing map scheme. It utilizes a one-

dimensional self-organizing map with k neurons. A random subset of n / f pixels (f is a

sampling factor greater than or equal to 1) is used in the training phase and the final

weights of the neurons are taken as the color palette.

5

Yang and Lin (1996) proposed the radius-weighted mean-cut method. This

method is nearly equivalent to the variance based method. The exception is that the box is

split along the vector from the origin to the radius-weighted mean (RWM) at the RWM

point.

Xiang (1997) introduced the modified maximin method. This method chooses the

first palette color 𝑐1 arbitrarily from the input image colors. The 𝑖-th color 𝑐𝑖 (𝑖 =

2, 3, … , 𝑘) is then chosen to be the color that has the greatest minimum weighted

Euclidean distance to the previously selected colors. The weights for the red, green, and

blue channels are taken as 0.5, 1.0, and 0.25 respectively. Each of these initial palette

colors is then recalculated as the mean of the colors assigned to it.

Velho, Gomez, and Sobreiro (1997) introduced pairwise clustering as an

adaptation of Ward’s agglomerative hierarchical clustering method (1963) to color

quantization. It builds a 2𝑅 × 2𝑅 × 2𝑅 color histogram and constructs a Q × Q joint

quantization error matrix where Q is the number of colors in the reduced color histogram.

The clustering procedure starts with Q singleton clusters, each of which contains one

image color. In each iteration, the pair of clusters with the least joint quantization error is

merged. This merging process is repeated until k clusters remain.

Brun and Mokhtari (2000) devised the split and merge method. This two-phase

method first partitions the color space uniformly into B partitions. This initial set of B

clusters is represented as an adjacency graph. Then, (B − k) merge operations are

performed to obtain the final k clusters. At each step of the second phase, the pair of

clusters with the least joint quantization error is merged.

Cheng and Yang (2001) developed their self-named method. This method is

6

equivalent to the variance based-method, with the exception that at each step the box is

split along a specially chosen line defined by the mean color and the color that is farthest

from it at the mean point.

Celebi (2009, 2011) introduced the weighted sort-means procedure. This method

is an efficient adaptation of the conventional k-means clustering algorithm to color

quantization. It involves data reduction, sample weighting, and accelerated nearest

neighbor search.

Wen and Celebi (2011) adapted the fuzzy c-means clustering algorithm (Bezdek,

1981) to color quantization. This algorithm is a modification of the (hard) c-means (or k-

means) algorithm in which points can belong to more than one cluster. Its goal is to

create optimal fuzzy C-partitions of the data set by minimizing the following objective

function 𝐽𝑚(𝑼, 𝑽) ∑ ∑ (𝑢𝑖𝑘)𝑚(𝑑𝑖𝑘)2𝐶
𝑖=1

𝑁
𝑘=1 , where N is the number of pixels, C is the

target number of clusters/colors, 1 ≤ 𝑚 < ∞ controls the degree of fuzziness, 𝑼 is the

fuzzy partition matrix, and 𝑽 is the prototype matrix.

Celebi, Hwang, and Wen (2014) proposed the adaptive distributing units (ADU)

color quantization method as an adaptation of Uchiyama and Arbib’s clustering algorithm

(1994). ADU is a competitive learning algorithm in which units compete to represent the

input point presented in each iteration. The winner is then rewarded by moving it closer

to the input point at a rate of γ (the learning rate). The procedure starts with a single unit

whose center is given by the centroid of the input points. New units are added by splitting

existing units that reach a user-defined number of wins until the number of units reaches

K.

Finally, Celebi, Wen, and Hwang (2015) proposed an effective color quantization

7

method based on divisive clustering named the variance-cut. This algorithm starts by

building a 32 × 32 × 32 color histogram using 5 bits per channel uniform quantization.

In each iteration, the partition with the greatest error is split along the coordinate axis

with the greatest variance at the mean point. After 𝑘 − 1 splits, the centroids of the

resulting 𝑘 subpartitions are taken as the color palette.

Many of the most recent color quantization methods are based on metaheuristics

(Blum & Roli, 2003) or a hybrid of a classical clustering algorithm (e.g., k-means and

fuzzy c-means) and metaheuristics. These methods formulate color quantization as a

global optimization problem and then attempt to solve it using a variety of nature-

inspired metaheuristics (simulated annealing, genetic algorithms, differential evolution,

etc.). These algorithms can be fairly effective, but this comes at the expense of a

significant computational burden (e.g., they can be orders of magnitude slower than k-

means). In the following, we briefly mention a few representative color quantization

methods based on metaheuristics.

Su and Hu (2013) proposed a hybrid method that combines k-means clustering

algorithm and self-adaptive hybrid differential evolution. Ozturk et al. (2014) proposed a

method based on the artificial bee colony algorithm. Schaefer and Nolle (2015) proposed

a method that minimizes the S-CIELAB image quality metric using the step width

adapting simulated annealing algorithm. Pérez-Delgado (2015) proposed a method based

on the ant-tree algorithm. El-Said (2015) proposed a hybrid method that combines the

fuzzy c-means clustering algorithm and the artificial fish swarm algorithm. Khaled et al.

(2016) proposed a hybrid method that combines k-means clustering algorithm and

harmony search algorithm. Finally, Hu et al. (2016) presented a method that minimizes

8

intracluster distance while maximizing intercluster separation. They tackled this

multiobjective optimization problem using a self-adaptive hybrid differential evolution

approach.

Coresets

Coresets are concise summaries of large data sets. Coreset construction and its

applications have been considered in many contexts including k-means, principal

component analysis and projective clustering (Feldman, Schmidt, & Sohler, 2013), real-

time data segmentation and summarization (Volkov, 2016), vector summarization applied

to network graphs (Feldman, Ozer, & Rus, 2017), and machine learning (Bachem et al.,

2017).

Feldman et al. (2013) proposed coreset construction algorithms that produce

coresets of constant size that is independent of the complete data set size 𝑛, and

dimensionality 𝑑. Particularly beneficial when 𝑑 ~ 𝑛, these coresets allow the handling of

k-means, principal component analysis, and projective clustering with update time and

memory that is polynomial in 𝑙𝑜𝑔 𝑛 and only linear in 𝑑.

Volkov (2016) developed a group of real-time data reduction algorithms for big

data streams through coreset construction. These coresets were then used to perform

effective analysis such as segmentation, summarization, classification, and prediction.

Volkov proposed a theoretical framework for the various coreset construction algorithms

that can handle boundless, real-time data streams, and is easily scalable and

parallelizable.

Feldman et al. (2017) presented coresets as a deterministic data summarization

algorithm that aims to approximate the mean 𝑝̅ of a complete set, by a weighted mean 𝑝

9

that is independent of both the size of the complete set and its dimensionality. The main

application of this algorithm is to build a sparse social graph from the GPS location data

of smart-phone users. This graph is then used to recognize and forecast various activities

such as meetings, friend groups, and gathering places.

Bachem et al. (2017) introduced a coreset construction algorithm based on

importance-weighted subsampling that is applicable to a variety of machine learning

problems such as maximum likelihood estimation of mixture models, Bayesian non-

parametric models, principal component analysis, regression, and general empirical risk

minimization.

The work presented in the next chapter builds on previous research and develops

a novel, fast, and effective color quantization method based on a recently proposed

coreset construction method. We propose an approach similar to weighted sort-means

(Celebi, 2011) in that it combines various performance enhancing techniques: data

reduction, effective initialization, and an efficient k-means clustering algorithm.

However, unlike the weighed sort-means method, a coreset will be constructed and the

data clustering algorithm will be executed on this reduced data set.

10

CHAPTER 3

PROPOSED COLOR QUANTIZATION METHOD

In this chapter, the implementation of the proposed color quantization method is

explained. First, a deterministic decimation method that reduces the size of the input

image is described. Then, a fast and effective cluster center initialization method is

introduced. Thereafter, coresets are introduced and a coreset construction algorithm is

presented as a means of further reducing computational time. Finally, the data clustering

algorithm is described.

Decimation

One of the simplest ways to improve the speed of the k-means algorithm is to

reduce the amount of data to be processed. Let f be the decimation factor desired. A

deterministic decimation method can be implemented in which only rows and columns

that are multiples of f, that is, rows/columns 0, f, 2f, …, will be sampled to form the initial

data set for clustering. Since color images contain many redundant colors especially

within small neighborhoods, this kind of subsampling is very effective in reducing the

computational time without degrading quantization quality in an appreciable manner.

Initialization

A common approach to determine the initial cluster centers is to select k points

uniformly at random from the complete data set and take these as the initial cluster

centers (Celebi et al., 2013).

According to Celebi et al. (2013), k-means is relatively sensitive to initialization.

Some of the negative effects of improper initialization include empty clusters, slower

convergence, and a higher probability of getting stuck at a bad local minima. Arthur and

11

Vassilvitskii (2007) proposed an adaptive initialization method to address these

drawbacks and improve the overall performance of k-means. This method, simply

referred to as k-means++, is described in Table 1.

Table 1

The k-means++ algorithm

Step Description

1a

1b
Take one center c1, chosen uniformly at random from X.

Take a new center 𝑐𝑖, choosing 𝑥 ∈ 𝑋 with probability
𝐷(𝑥)2

∑ 𝐷(𝑥)2
𝑥∈𝑋

1c Repeat Step 1b. until we have taken k centers altogether.

In this algorithm, the first center is chosen uniformly at random from the data set.

The remaining 𝑘 − 1 centers are then chosen with a probability proportional to the

squared Euclidean distance from the centers already chosen. This weighting is referred to

as simply “𝐷2 weighing”. This weighted sampling ensures that points that are well

separated are more likely to be selected as initial center centers.

Coreset Construction

Originally studied in computational geometry, coresets relied on computationally

expensive methods (Har-Peled, 2011). It is just recently that coresets have evolved to

utilize a sampling-based approach that allows practical construction for various

applications.

Although aimed toward machine learning problems, the theoretically-

comprehensive framework for coreset construction introduced by Bachem et al. (2017) is

applicable to general problem-solving. Given a data set and a particular problem, a

12

coreset of the former for the latter gives a solution that is provably competitive with the

solution found on the former. The coreset construction procedure, detailed in Table 2,

consists of two key steps. First, the importance of the different data points with regards to

the objective function and optimal solution is determined. Then, this importance

information is used to select a coreset by means of importance sampling.

Table 2

Coreset construction algorithm

Step Description

Require 𝑋, 𝑘, 𝐵, 𝑚

1

2

3

4

𝛼 ← 16(log 𝑘 + 2)

For each 𝑏𝑖 in 𝐵 do

𝐵𝑖 ← Set of points from 𝑋 closest to 𝑏𝑖 in terms of 𝑑. Ties

broken arbitrarily.

𝑐𝜙 ←
1

|𝑋|
∑ 𝑑(𝑥′, 𝐵)𝑥′∈ 𝑋

5

6

7

8

9

For each 𝑏𝑖 ∈ 𝐵 and 𝑥 ∈ 𝐵𝑖 do

𝑠(𝑥) ←
𝛼 𝑑(𝑥,𝐵)

𝑐𝜙
+

2𝛼 ∑ 𝑑(𝑥′,𝐵)𝑥′∈ 𝐵𝑖

|𝐵𝑖|𝑐𝜙
+

4|𝑋|

|𝐵𝑖|

For each 𝑥 ∈ 𝑋 do

𝑝(𝑥) ← 𝑠(𝑥) ∑ 𝑠(𝑥′)𝑥′∈ 𝑋 ⁄

𝐶 ←Sample 𝑚 weighted points from 𝑋 where each point 𝑥 has

weight
1

𝑚∙𝑝(𝑥)
 and is sampled with probability 𝑝(𝑥)

10 Return 𝐶

The algorithm first selects a set of k centers through 𝐷2 sampling, as detailed in

Table 1. This set is then used to compute the sensitivity 𝑠(𝑥) of each point x. Sensitivity

is the worst-case impact of each data point on the objective function. Finally, 𝑚 points

are sampled where each point is included in the coreset with probability proportional to

the normalized sensitivity 𝑝(𝑥). In this coreset, point x is assigned a weight of (𝑚 ∙

𝑝(𝑥))−1 where 𝑚 is the size of the coreset.

13

The research below proposes the use of the aforementioned algorithm to construct

such a summary data set and solve the color quantization problem on this smaller data

set. In this implementation, the coreset size 𝑚 is defined as 𝑚 = 𝑛 ∙ 𝑐𝑓; where n is the

size of original data set and 𝑐𝑓, or coreset fraction, is a number that satisfies 0 < 𝑐𝑓 ≤ 1.

Clustering

Perhaps, the most frequently used clustering method in color quantization is the

Lloyd’s algorithm (1982). Commonly referred to as k-means, Lloyd’s method starts with

a given integer value k, which denotes the number of clusters or colors in this context.

The algorithm then assigns each data point x, in the data set, to the closest cluster by

minimizing the Sum of Squared Error (SSE) defined as:

𝑆𝑆𝐸 = ∑ ∑ 𝑑(𝒙, 𝒙𝐶𝒊
)

2
𝑥∈𝐶𝑖

𝐾
𝑖=1 ,

where 𝒙𝐶𝒊
 denotes the centroid (or center of mass) of cluster Ci. To determine the closest

cluster, the Euclidean distance (d) between the point and each cluster’s centroid is

computed. K-means is illustrated in Table 3.

Table 3

The k-means algorithm

Step Description

1

2

3

Randomly choose an initial set of k centers 𝐶 = {𝑐1, 𝑐2, ⋯ , 𝑐𝑘}

For each 𝑖 ∈ {1, … , 𝑘}, set the cluster Ci to be the set of points in X
that are closer to ci than they are to cj for all j ≠ i
For each 𝑖 ∈ {1, … , 𝑘}, set ci to be the centroid of all points in

𝐶𝑖: 𝑐𝑖 =
1

|𝐶𝑖|
∑ 𝑥𝑥∈𝐶𝑖

4 Repeat Steps 2 and 3 until a user-defined termination criterion
is satisfied

The algorithm first selects a set of k centers uniformly at random, unless a

14

different initialization scheme is implemented. Then the squared Euclidean distance

between each point and each center is computed. Each point is assigned to the cluster to

which it is closest. At the end of each iteration, each new cluster centroid is computed to

be the centroid of all the points that belong to the cluster. This algorithm continues until

the relative improvement in the SSE drops below a user-defined threshold T, that is,

(𝑆𝑆𝐸𝑖−1 − 𝑆𝑆𝐸𝑖) 𝑆𝑆𝐸𝑖⁄ ≤ 𝑇, where 0 < 𝑇 < 1.

15

CHAPTER 4

EXPERIMENTAL RESULTS AND DISCUSSION

This chapter describes the experimental procedure followed and then presents a

discussion of the results. First, the input data sets for both the proposed and the

comparison algorithms are outlined and their use is explained. Then, a brief description

of the performance measures collected, and their significance, is presented. Thereafter,

the variables as well as the constant parameters utilized in the experiments are outlined.

Finally, the results of the experiment are discussed and the data gathered during the

experiment is presented in the form of tables and figures.

Experimental Setup

First, the program reads the original image data from a PPM file. PPM images are

amongst the simplest image file formats. The headers for such images contain a number

that identifies the image format, the image width and height, and the maximum

brightness value which determines the required number of bits-per-pixel for each

channel. The proposed algorithm was tested on 8 commonly used, publicly available

PPM images given in Table 4. The original image data set is then decimated, that is

subsampled as described in Chapter 2, so as to reduce the amount of data to be processed.

Then, the k-means++ algorithm is executed to select the initial set of centers. This

decimated set and initial center set are the basis for all the subsequent processing for both

k-means and the proposed algorithm. Hereinafter, the k-means method executed on the

full set will simply be referred to as k-means, whereas the k-means method run on the

coreset will be referred to as coremeans. The initial set of centers selected by k-means++

are then duplicated so that it can be used to initialize the coreset construction algorithm,

16

k-means, and coremeans. The coreset algorithm takes the decimated data set and the

initial set of centers and constructs the coreset. Once the coreset is constructed, k-means

is executed separately on the coreset and the full set. The input image is then quantized

by a mapping function that replaces the original colors with the colors represented by the

final centroids given by each execution. Next, the quantized images are compared to the

original image by means of the Mean Absolute Error and Mean Squared Error measures

described in the next section for each method (k-means and coremeans). The two

quantized images are then written to separate PPM files. The previously mentioned steps

are illustrated in Figure 1.

Figure 1. Experimental procedure flow chart.

17

Table 4

Image set

Image File Name Size

Number of

Colors

Baboon 512 × 512 230,427

Lenna 512 × 512 148,279

Peppers 512 × 512 183,525

Fish 300 × 200 63,558

18

Goldhill 720 × 576 30,966

Motocross 768 × 512 63,558

Parrots 768 × 512 72,079

Pills 800 × 519 206,609

19

Performance Measures

Mean Absolute Error

The Mean Absolute Error (MAE) is a dimensioned measure of average model

performance error. This measure is said to be “dimensioned” in that it expresses average

model-prediction error in the units of the variable of interest. MAE is computed as

follows:

𝑀𝐴𝐸(𝑋, 𝑋̂) =
1

𝐻𝑊
∑ ∑|𝑋(ℎ, 𝑤) − 𝑋̂(ℎ, 𝑤)|

𝑊

𝑤=1

𝐻

ℎ=1

where X and X̂ denote, respectively, the H × W original and quantized images in the RGB

color space (Celebi, 2011).

Mean Squared Error

One of the simplest and most extensively used image quality metrics is the Mean

Squared Error (MSE). It is computed by averaging the squared intensity differences of

corresponding pixels from two images. This quality measure is appealing because it is

simple to calculate, has clear physical meaning, and is mathematically convenient in the

context of optimization (Wang, Bovik, Sherikh, & Simoncelli, 2004). MSE is computed

as follows:

𝑀𝑆𝐸(𝑋, 𝑋̂) =
1

𝐻𝑊
∑ ∑‖𝑋(ℎ, 𝑤) − 𝑋̂(ℎ, 𝑤)‖

2
𝑊

𝑤=1

𝐻

ℎ=1

where X and X̂ denote, respectively, the H × W original and quantized images in the RGB

color space (Celebi, 2011).

Time

The computational efficiency of an algorithm was measured by the CPU time it

20

uses. The data type struct timeval, which is part of the GNU C Library, was used to

represent the elapsed time between the start of the considered functions and their end.

Time measurements were computed using the getrusage function, which is able to

measure CPU time to an accuracy of a microsecond. Time measurements were converted

to milliseconds for display purposes. For the full set, initial center selection through k-

means++, and k-means running times were added. For the coreset, initial center selection

through k-means++, coreset construction, and k-means running times were considered.

Experimental Parameters

The variable parameters for k-means and coremeans were the following: desired

number of colors, 𝑘 = {32, 64, 128, 256}; decimation factor, 𝑑𝑓 = {1, 2, 4}; and coreset

fraction, 𝑐𝑓 = {0.125, 0.250, 0.375, 0.500}. The constant parameters used throughout all

the test runs were as follows: the maximum number of k-means iterations per run, 𝐼 =

 50; number of runs, 𝑅 = 10; and threshold for k-means convergence, 𝑇 = 10−3.

Each time the program was executed, MAE, MSE, and total running time for each

method were collected. This data was used to calculate the mean and standard deviation

for the collected performance measures for each image. The program was implemented in

the C++ programming language, compiled with the GNU g++ compiler version 5.4.0,

and executed on a 3.40GHz Intel Core i7-6700 CPU.

Discussion

The statistics based on the experimental results are given in Tables 5-16. Tables

5-8 contain MAE, Tables 9-12 present MSE, and Tables 13-16 display CPU time, in

milliseconds, for each 𝑘 value tested. Only one result is provided for k-means as the

variable parameters do not influence the results of this algorithm. For coremeans, the best

21

results are displayed in bold. Based on the collected statistics, the following observations

can be made:

Coremeans performs significantly worse regarding CPU time in certain scenarios;

namely, when the decimation factor and the coreset fraction are close to 1. In such cases,

the extra steps performed to construct the coreset are detrimental as the resulting coreset

is nearly as large as the full set, see Figure 2.

Figure 2. K-means vs. coremeans: CPU time for k = 256 and df = 1.

The decimation factor and coreset fraction parameters influence the quantization

quality (as measured by MAE and MSE) in opposite ways in that the greater the former

the lower the quality, whereas the greater the latter the higher the quality. For the

proposed method to produce satisfactory results, the following must be true: 𝑑𝑓 ≥ 2 and

0 < 𝑐𝑓 ≤ 0.5. This effect is visualized in Figure 3.

0

5,000

10,000

15,000

20,000

25,000

0 . 1 2 5 0 . 2 5 0 0 . 3 7 5 0 . 5 0 0

C
P

U
 T

IM
E

(M
IL

LI
SE

C
O

N
D

S)

CORESET FRACTION

KM

CM

22

Figure 3. K-means vs coremeans: CPU time for various cf and df values

Clearly, the added burden of the coreset construction algorithm on CPU time can

only be offset when the coreset fraction is small and decimation factor is large. In such

scenarios, coremeans processing time diverges positively from k-means. In the

experimental scenario illustrated in Figure 4, coremeans completed approximately 48

times faster than k-means.

0

5,000

10,000

15,000

20,000

25,000

0 . 5 0 0 0 . 3 7 5 0 . 2 5 0 0 . 1 2 5 0 . 5 0 0 0 . 3 7 5 0 . 2 5 0 0 . 1 2 5 0 . 5 0 0 0 . 3 7 5 0 . 2 5 0 0 . 1 2 5

1 2 4

TI
M

E
(M

IL
LI

SE
C

O
N

D
S)

DECIMATION FACTOR/CORESET FRACTION

KM

CM

23

Figure 4. K-means vs coremeans: CPU time for k = 256 and df = 4.

Based on the data collected, and with respect to the error measures used, the

effectiveness of coremeans is very competitive with that of k-means. Although the

coreset quantized image’s MSE is oftentimes slightly higher than that of the k-means

quantized image, visually, the differences between the results obtained are virtually

indistinguishable.

Figures 5 to 8 illustrate some of the experimental results with various k values. It

is evident that although there is a slightly higher MAE and MSE for the coremeans-

quantized images, coremeans outperforms k-means with respect to CPU time in nearly all

presented scenarios and this time difference grows considerably as 𝑘 increases.

0

500

1,000

1,500

2,000

2,500

3,000

3,500

0 . 1 2 5 0 . 2 5 0 0 . 3 7 5 0 . 5 0 0

C
P

U
 T

IM
E

(M
IL

LI
SE

C
O

N
D

S)

CORESET FRACTION

KM

CM

24

(a) Kmeans output image

Time = 647

(b) Kmeans error image

MAE = 19

MSE = 203

(c) Original image

(d) Kmeans vs coremeans error image

(e) Coremeans output image

Time = 68

(f) Coremeans error image

MAE = 20

MSE = 208

Figure 5. Pills input/output images, K = 32.

25

(a) Kmeans output image

Time = 1454

(b) Kmeans error image

MAE = 12

MSE = 85

(c) Original image

(d) Kmeans vs coremeans error image

(e) Coremeans output image

Time = 74

(f) Coremeans error image

MAE = 13

MSE = 91

Figure 6. Goldhill input/output images, K = 64.

26

(a) Kmeans output image

Time = 2285

(b) Kmeans error image

MAE = 10

MSE = 63

(c) Original image

(d) Kmeans vs coremeans error image

(e) Coremeans output image

Time = 72

(f) Coremeans error image

MAE = 11

MSE = 70

Figure 7. Motocross input/output images, K = 128.

27

(a) Kmeans output image

Time = 3152

(b) Kmeans error image

MAE = 14

MSE = 97

(c) Original image

(d) Kmeans vs coremeans error image

(e) Coremeans output image

Time = 58

(f) Coremeans error image

MAE = 15

MSE = 114

Figure 8. Baboon input/output images, K = 256.

28

Table 5

MAE, 32 Colors

IMG DF CF KM CM IMG DF CF KM CM

Baboon 1 .125 27 ± 0 27 ± 0 Goldhill 1 .125 16 ± 0 16 ± 0

 .250 27 ± 0 .250 16 ± 0

 .375 27 ± 0 .375 16 ± 0

 .500 27 ± 0 .500 16 ± 0

 2 .125 27 ± 0 2 .125 16 ± 0

 .250 27 ± 0 .250 16 ± 0

 .375 27 ± 0 .375 16 ± 0

 .500 27 ± 0 .500 16 ± 0

 4 .125 27 ± 0 4 .125 16 ± 0

 .250 27 ± 0 .250 16 ± 0

 .375 27 ± 0 .375 16 ± 0

 .500 27 ± 0 .500 16 ± 0

Lenna 1 .125 15 ± 0 15 ± 0 Motocross 1 .125 18 ± 0 18 ± 0

 .250 15 ± 0 .250 18 ± 0

 .375 15 ± 0 .375 18 ± 0

 .500 15 ± 0 .500 18 ± 0

 2 .125 15 ± 0 2 .125 18 ± 0

 .250 15 ± 0 .250 18 ± 0

 .375 15 ± 0 .375 18 ± 0

 .500 15 ± 0 .500 18 ± 0

 4 .125 15 ± 0 4 .125 18 ± 0

 .250 15 ± 0 .250 18 ± 0

 .375 15 ± 0 .375 18 ± 0

 .500 15 ± 0 .500 18 ± 0

Peppers 1 .125 20 ± 0 20 ± 0 Parrots 1 .125 20 ± 0 20 ± 0

 .250 20 ± 0 .250 20 ± 0

 .375 20 ± 0 .375 20 ± 0

 .500 20 ± 0 .500 20 ± 0

 2 .125 20 ± 0 2 .125 20 ± 0

 .250 20 ± 0 .250 20 ± 0

 .375 20 ± 0 .375 20 ± 0

 .500 20 ± 0 .500 20 ± 0

 4 .125 21 ± 0 4 .125 20 ± 0

 .250 21 ± 0 .250 21 ± 0

 .375 20 ± 0 .375 20 ± 0

 .500 20 ± 0 .500 20 ± 0

Fish 1 .125 15 ± 0 16 ± 0 Pills 1 .125 19 ± 0 19 ± 0

 .250 16 ± 0 .250 19 ± 0

 .375 16 ± 0 .375 19 ± 0

 .500 16 ± 0 .500 19 ± 0

 2 .125 16 ± 0 2 .125 19 ± 0

 .250 16 ± 0 .250 19 ± 0

 .375 16 ± 0 .375 19 ± 0

 .500 16 ± 0 .500 19 ± 0

 4 .125 17 ± 0 4 .125 20 ± 0

 .250 16 ± 0 .250 20 ± 0

 .375 16 ± 0 .375 19 ± 0

 .500 16 ± 0 .500 19 ± 0

29

Table 6

MAE, 64 Colors

IMG DF CF KM CM IMG DF CF KM CM

Baboon 1 .125 21 ± 0 21 ± 0 Goldhill 1 .125 12 ± 0 12 ± 0

 .250 21 ± 0 .250 12 ± 0

 .375 21 ± 0 .375 12 ± 0

 .500 21 ± 0 .500 12 ± 0

 2 .125 22 ± 0 2 .125 12 ± 0

 .250 21 ± 0 .250 12 ± 0

 .375 21 ± 0 .375 12 ± 0

 .500 21 ± 0 .500 12 ± 0

 4 .125 22 ± 0 4 .125 13 ± 0

 .250 22 ± 0 .250 12 ± 0

 .375 22 ± 0 .375 12 ± 0

 .500 22 ± 0 .500 12 ± 0

Lenna 1 .125 12 ± 0 12 ± 0 Motocross 1 .125 13 ± 0 13 ± 0

 .250 12 ± 0 .250 13 ± 0

 .375 12 ± 0 .375 13 ± 0

 .500 12 ± 0 .500 13 ± 0

 2 .125 12 ± 0 2 .125 13 ± 0

 .250 12 ± 0 .250 13 ± 0

 .375 12 ± 0 .375 13 ± 0

 .500 12 ± 0 .500 13 ± 0

 4 .125 12 ± 0 4 .125 14 ± 0

 .250 12 ± 0 .250 14 ± 0

 .375 12 ± 0 .375 13 ± 0

 .500 12 ± 0 .500 14 ± 0

Peppers 1 .125 16 ± 0 16 ± 0 Parrots 1 .125 15 ± 0 15 ± 0

 .250 16 ± 0 .250 15 ± 0

 .375 16 ± 0 .375 15 ± 0

 .500 16 ± 0 .500 15 ± 0

 2 .125 16 ± 0 2 .125 15 ± 0

 .250 16 ± 0 .250 15 ± 0

 .375 16 ± 0 .375 15 ± 0

 .500 16 ± 0 .500 15 ± 0

 4 .125 16 ± 0 4 .125 15 ± 0

 .250 16 ± 0 .250 15 ± 0

 .375 16 ± 0 .375 15 ± 0

 .500 16 ± 0 .500 15 ± 0

Fish 1 .125 12 ± 0 12 ± 0 Pills 1 .125 14 ± 0 14 ± 0

 .250 12 ± 0 .250 14 ± 0

 .375 12 ± 0 .375 14 ± 0

 .500 12 ± 0 .500 14 ± 0

 2 .125 12 ± 0 2 .125 14 ± 0

 .250 12 ± 0 .250 14 ± 0

 .375 12 ± 0 .375 14 ± 0

 .500 12 ± 0 .500 14 ± 0

 4 .125 13 ± 0 4 .125 15 ± 0

 .250 13 ± 0 .250 15 ± 0

 .375 13 ± 0 .375 14 ± 0

 .500 13 ± 0 .500 14 ± 0

30

Table 7

MAE, 128 Colors

IMG DF CF KM CM IMG DF CF KM CM

Baboon 1 .125 17 ± 0 17 ± 0 Goldhill 1 .125 10 ± 0 10 ± 0

 .250 17 ± 0 .250 10 ± 0

 .375 17 ± 0 .375 10 ± 0

 .500 17 ± 0 .500 10 ± 0

 2 .125 17 ± 0 2 .125 10 ± 0

 .250 17 ± 0 .250 10 ± 0

 .375 17 ± 0 .375 10 ± 0

 .500 17 ± 0 .500 10 ± 0

 4 .125 18 ± 0 4 .125 10 ± 0

 .250 18 ± 0 .250 10 ± 0

 .375 18 ± 0 .375 10 ± 0

 .500 18 ± 0 .500 10 ± 0

Lenna 1 .125 9 ± 0 9 ± 0 Motocross 1 .125 10 ± 0 10 ± 0

 .250 9 ± 0 .250 10 ± 0

 .375 9 ± 0 .375 10 ± 0

 .500 9 ± 0 .500 10 ± 0

 2 .125 9 ± 0 2 .125 10 ± 0

 .250 9 ± 0 .250 10 ± 0

 .375 9 ± 0 .375 10 ± 0

 .500 9 ± 0 .500 10 ± 0

 4 .125 10 ± 0 4 .125 11 ± 0

 .250 10 ± 0 .250 10 ± 0

 .375 10 ± 0 .375 10 ± 0

 .500 9 ± 0 .500 10 ± 0

Peppers 1 .125 12 ± 0 12 ± 0 Parrots 1 .125 11 ± 0 11 ± 0

 .250 12 ± 0 .250 11 ± 0

 .375 12 ± 0 .375 11 ± 0

 .500 12 ± 0 .500 11 ± 0

 2 .125 13 ± 0 2 .125 12 ± 0

 .250 12 ± 0 .250 12 ± 0

 .375 12 ± 0 .375 11 ± 0

 .500 12 ± 0 .500 11 ± 0

 4 .125 13 ± 0 4 .125 12 ± 0

 .250 13 ± 0 .250 12 ± 0

 .375 13 ± 0 .375 12 ± 0

 .500 13 ± 0 .500 12 ± 0

Fish 1 .125 9 ± 0 10 ± 0 Pills 1 .125 11 ± 0 11 ± 0

 .250 9 ± 0 .250 11 ± 0

 .375 9 ± 0 .375 11 ± 0

 .500 9 ± 0 .500 11 ± 0

 2 .125 10 ± 0 2 .125 11 ± 0

 .250 10 ± 0 .250 11 ± 0

 .375 10 ± 0 .375 11 ± 0

 .500 10 ± 0 .500 11 ± 0

 4 .125 11 ± 0 4 .125 11 ± 0

 .250 10 ± 0 .250 11 ± 0

 .375 10 ± 0 .375 11 ± 0

 .500 10 ± 0 .500 11 ± 0

31

Table 8

MAE, 256 Colors

IMG DF CF KM CM IMG DF CF KM CM

Baboon 1 .125 14 ± 0 14 ± 0 Goldhill 1 .125 8 ± 0 8 ± 0

 .250 14 ± 0 .250 8 ± 0

 .375 14 ± 0 .375 8 ± 0

 .500 14 ± 0 .500 8 ± 0

 2 .125 14 ± 0 2 .125 8 ± 0

 .250 14 ± 0 .250 8 ± 0

 .375 14 ± 0 .375 8 ± 0

 .500 14 ± 0 .500 8 ± 0

 4 .125 15 ± 0 4 .125 8 ± 0

 .250 14 ± 0 .250 8 ± 0

 .375 14 ± 0 .375 8 ± 0

 .500 14 ± 0 .500 8 ± 0

Lenna 1 .125 7 ± 0 8 ± 0 Motocross 1 .125 8 ± 0 8 ± 0

 .250 7 ± 0 .250 8 ± 0

 .375 7 ± 0 .375 8 ± 0

 .500 7 ± 0 .500 8 ± 0

 2 .125 8 ± 0 2 .125 8 ± 0

 .250 8 ± 0 .250 8 ± 0

 .375 8 ± 0 .375 8 ± 0

 .500 8 ± 0 .500 8 ± 0

 4 .125 8 ± 0 4 .125 8 ± 0

 .250 8 ± 0 .250 8 ± 0

 .375 8 ± 0 .375 8 ± 0

 .500 8 ± 0 .500 8 ± 0

Peppers 1 .125 10 ± 0 10 ± 0 Parrots 1 .125 8 ± 0 9 ± 0

 .250 10 ± 0 .250 8 ± 0

 .375 10 ± 0 .375 8 ± 0

 .500 10 ± 0 .500 8 ± 0

 2 .125 10 ± 0 2 .125 9 ± 0

 .250 10 ± 0 .250 9 ± 0

 .375 10 ± 0 .375 9 ± 0

 .500 10 ± 0 .500 9 ± 0

 4 .125 11 ± 0 4 .125 9 ± 0

 .250 10 ± 0 .250 9 ± 0

 .375 10 ± 0 .375 9 ± 0

 .500 10 ± 0 .500 9 ± 0

Fish 1 .125 7 ± 0 8 ± 0 Pills 1 .125 8 ± 0 9 ± 0

 .250 7 ± 0 .250 9 ± 0

 .375 7 ± 0 .375 9 ± 0

 .500 7 ± 0 .500 9 ± 0

 2 .125 8 ± 0 2 .125 9 ± 0

 .250 8 ± 0 .250 9 ± 0

 .375 8 ± 0 .375 9 ± 0

 .500 8 ± 0 .500 9 ± 0

 4 .125 9 ± 0 4 .125 9 ± 0

 .250 8 ± 0 .250 9 ± 0

 .375 8 ± 0 .375 9 ± 0

 .500 8 ± 0 .500 9 ± 0

32

Table 9

MSE, 32 Colors

IMG DF CF KM CM IMG DF CF KM CM

Baboon 1 .125 378 ± 2 379 ± 3 Goldhill 1 .125 145 ± 2 146 ± 2

 .250 382 ± 5 .250 146 ± 3

 .375 379 ± 3 .375 145 ± 1

 .500 381 ± 4 .500 146 ± 2

 2 .125 385 ± 3 2 .125 147 ± 2

 .250 382 ± 5 .250 146 ± 2

 .375 382 ± 3 .375 146 ± 2

 .500 383 ± 3 .500 146 ± 1

 4 .125 398 ± 5 4 .125 151 ± 3

 .250 395 ± 5 .250 149 ± 3

 .375 390 ± 6 .375 148 ± 1

 .500 385 ± 3 .500 149 ± 3

Lenna 1 .125 120 ± 1 120 ± 1 Motocross 1 .125 194 ± 5 195 ± 6

 .250 121 ± 2 .250 194 ± 4

 .375 120 ± 1 .375 192 ± 3

 .500 120 ± 1 .500 195 ± 4

 2 .125 122 ± 1 2 .125 196 ± 2

 .250 122 ± 1 .250 198 ± 5

 .375 121 ± 2 .375 197 ± 5

 .500 121 ± 1 .500 194 ± 3

 4 .125 125 ± 1 4 .125 203 ± 6

 .250 124 ± 3 .250 199 ± 5

 .375 123 ± 2 .375 197 ± 6

 .500 123 ± 2 .500 199 ± 5

Peppers 1 .125 233 ± 4 234 ± 4 Parrots 1 .125 238 ± 4 239 ± 4

 .250 233 ± 3 .250 239 ± 5

 .375 234 ± 3 .375 239 ± 5

 .500 234 ± 2 .500 238 ± 6

 2 .125 235 ± 4 2 .125 242 ± 5

 .250 234 ± 3 .250 242 ± 5

 .375 233 ± 3 .375 241 ± 3

 .500 232 ± 3 .500 244 ± 6

 4 .125 244 ± 6 4 .125 247 ± 5

 .250 240 ± 4 .250 246 ± 6

 .375 235 ± 4 .375 246 ± 6

 .500 236 ± 2 .500 244 ± 7

Fish 1 .125 141 ± 2 143 ± 2 Pills 1 .125 203 ± 4 203 ± 3

 .250 142 ± 2 .250 204 ± 4

 .375 142 ± 4 .375 202 ± 2

 .500 142 ± 3 .500 206 ± 4

 2 .125 151 ± 3 2 .125 203 ± 2

 .250 147 ± 3 .250 205 ± 3

 .375 146 ± 3 .375 205 ± 6

 .500 144 ± 3 .500 205 ± 3

 4 .125 161 ± 5 4 .125 208 ± 4

 .250 153 ± 3 .250 208 ± 6

 .375 152 ± 5 .375 206 ± 3

 .500 148 ± 2 .500 206 ± 3

33

Table 10

MSE, 64 Colors

IMG DF CF KM CM IMG DF CF KM CM

Baboon 1 .125 238 ± 1 240 ± 1 Goldhill 1 .125 85 ± 1 86 ± 1

 .250 239 ± 2 .250 85 ± 1

 .375 239 ± 1 .375 85 ± 1

 .500 239 ± 1 .500 85 ± 0

 2 .125 245 ± 1 2 .125 87 ± 1

 .250 243 ± 1 .250 86 ± 1

 .375 242 ± 1 .375 86 ± 1

 .500 242 ± 2 .500 85 ± 0

 4 .125 258 ± 3 4 .125 91 ± 1

 .250 251 ± 1 .250 88 ± 1

 .375 248 ± 3 .375 89 ± 1

 .500 248 ± 1 .500 89 ± 1

Lenna 1 .125 73 ± 1 73 ± 1 Motocross 1 .125 109 ± 1 109 ± 1

 .250 73 ± 0 .250 110 ± 2

 .375 73 ± 1 .375 109 ± 1

 .500 73 ± 1 .500 109 ± 1

 2 .125 75 ± 1 2 .125 112 ± 2

 .250 74 ± 1 .250 112 ± 1

 .375 74 ± 1 .375 111 ± 2

 .500 74 ± 1 .500 111 ± 2

 4 .125 79 ± 1 4 .125 117 ± 3

 .250 77 ± 1 .250 115 ± 2

 .375 76 ± 1 .375 112 ± 1

 .500 76 ± 1 .500 113 ± 1

Peppers 1 .125 137 ± 3 138 ± 3 Parrots 1 .125 128 ± 1 129 ± 1

 .250 138 ± 4 .250 128 ± 1

 .375 136 ± 1 .375 129 ± 2

 .500 136 ± 3 .500 128 ± 1

 2 .125 139 ± 3 2 .125 136 ± 3

 .250 138 ± 2 .250 136 ± 2

 .375 137 ± 1 .375 134 ± 1

 .500 137 ± 1 .500 136 ± 2

 4 .125 146 ± 2 4 .125 140 ± 3

 .250 144 ± 2 .250 139 ± 3

 .375 143 ± 1 .375 138 ± 2

 .500 141 ± 2 .500 137 ± 2

Fish 1 .125 85 ± 1 87 ± 1 Pills 1 .125 114 ± 1 114 ± 1

 .250 86 ± 1 .250 114 ± 1

 .375 86 ± 1 .375 115 ± 2

 .500 85 ± 1 .500 113 ± 1

 2 .125 92 ± 1 2 .125 115 ± 1

 .250 90 ± 2 .250 115 ± 1

 .375 88 ± 1 .375 115 ± 1

 .500 87 ± 1 .500 114 ± 1

 4 .125 102 ± 2 4 .125 121 ± 2

 .250 96 ± 1 .250 117 ± 1

 .375 96 ± 2 .375 116 ± 1

 .500 94 ± 1 .500 117 ± 2

34

Table 11

MSE, 128 Colors

IMG DF CF KM CM IMG DF CF KM CM

Baboon 1 .125 152 ± 1 155 ± 1 Goldhill 1 .125 53 ± 0 53 ± 0

 .250 154 ± 0 .250 53 ± 0

 .375 153 ± 1 .375 53 ± 0

 .500 153 ± 1 .500 53 ± 0

 2 .125 160 ± 1 2 .125 55 ± 0

 .250 158 ± 1 .250 54 ± 1

 .375 157 ± 1 .375 54 ± 0

 .500 157 ± 1 .500 54 ± 0

 4 .125 172 ± 3 4 .125 58 ± 1

 .250 167 ± 1 .250 56 ± 0

 .375 164 ± 1 .375 56 ± 1

 .500 162 ± 1 .500 55 ± 1

Lenna 1 .125 47 ± 0 47 ± 0 Motocross 1 .125 63 ± 1 63 ± 1

 .250 47 ± 0 .250 63 ± 1

 .375 47 ± 0 .375 63 ± 0

 .500 47 ± 0 .500 63 ± 0

 2 .125 49 ± 0 2 .125 66 ± 1

 .250 48 ± 0 .250 65 ± 0

 .375 48 ± 0 .375 65 ± 0

 .500 47 ± 0 .500 65 ± 1

 4 .125 52 ± 0 4 .125 70 ± 1

 .250 51 ± 0 .250 68 ± 1

 .375 50 ± 0 .375 67 ± 1

 .500 49 ± 0 .500 67 ± 1

Peppers 1 .125 84 ± 1 85 ± 1 Parrots 1 .125 73 ± 1 74 ± 1

 .250 85 ± 0 .250 73 ± 1

 .375 84 ± 0 .375 73 ± 1

 .500 84 ± 1 .500 73 ± 1

 2 .125 88 ± 1 2 .125 81 ± 1

 .250 87 ± 0 .250 81 ± 1

 .375 86 ± 1 .375 79 ± 1

 .500 86 ± 1 .500 79 ± 1

 4 .125 94 ± 1 4 .125 85 ± 2

 .250 92 ± 1 .250 82 ± 1

 .375 90 ± 1 .375 82 ± 2

 .500 89 ± 1 .500 81 ± 1

Fish 1 .125 52 ± 0 54 ± 0 Pills 1 .125 67 ± 0 67 ± 0

 .250 54 ± 1 .250 67 ± 0

 .375 53 ± 0 .375 67 ± 1

 .500 53 ± 0 .500 67 ± 1

 2 .125 59 ± 1 2 .125 69 ± 1

 .250 56 ± 1 .250 68 ± 1

 .375 56 ± 1 .375 68 ± 1

 .500 55 ± 1 .500 68 ± 1

 4 .125 70 ± 2 4 .125 73 ± 1

 .250 63 ± 1 .250 71 ± 1

 .375 62 ± 1 .375 70 ± 1

 .500 60 ± 1 .500 70 ± 0

35

Table 12

MSE, 256 Colors

IMG DF CF KM CM IMG DF CF KM CM

Baboon 1 .125 97 ± 0 100 ± 0 Goldhill 1 .125 34 ± 0 35 ± 0

 .250 99 ± 0 .250 34 ± 0

 .375 98 ± 0 .375 34 ± 0

 .500 98 ± 0 .500 34 ± 0

 2 .125 105 ± 1 2 .125 36 ± 0

 .250 103 ± 0 .250 36 ± 0

 .375 102 ± 0 .375 35 ± 0

 .500 101 ± 0 .500 35 ± 0

 4 .125 114 ± 1 4 .125 39 ± 0

 .250 109 ± 1 .250 38 ± 0

 .375 107 ± 0 .375 37 ± 0

 .500 107 ± 1 .500 37 ± 0

Lenna 1 .125 30 ± 0 31 ± 0 Motocross 1 .125 37 ± 0 38 ± 0

 .250 31 ± 0 .250 38 ± 0

 .375 31 ± 0 .375 38 ± 0

 .500 31 ± 0 .500 38 ± 0

 2 .125 33 ± 0 2 .125 40 ± 0

 .250 32 ± 0 .250 40 ± 0

 .375 31 ± 0 .375 39 ± 0

 .500 31 ± 0 .500 39 ± 0

 4 .125 35 ± 0 4 .125 44 ± 0

 .250 34 ± 0 .250 42 ± 0

 .375 33 ± 0 .375 42 ± 0

 .500 33 ± 0 .500 41 ± 0

Peppers 1 .125 54 ± 0 55 ± 0 Parrots 1 .125 42 ± 0 43 ± 0

 .250 55 ± 0 .250 43 ± 0

 .375 54 ± 0 .375 43 ± 0

 .500 54 ± 0 .500 43 ± 0

 2 .125 58 ± 0 2 .125 49 ± 0

 .250 57 ± 0 .250 49 ± 0

 .375 56 ± 0 .375 48 ± 1

 .500 56 ± 0 .500 48 ± 0

 4 .125 63 ± 1 4 .125 53 ± 1

 .250 61 ± 1 .250 51 ± 1

 .375 60 ± 0 .375 50 ± 0

 .500 59 ± 1 .500 49 ± 1

Fish 1 .125 32 ± 0 34 ± 0 Pills 1 .125 41 ± 0 42 ± 0

 .250 33 ± 0 .250 42 ± 0

 .375 33 ± 0 .375 42 ± 0

 .500 33 ± 0 .500 41 ± 0

 2 .125 38 ± 0 2 .125 44 ± 0

 .250 36 ± 0 .250 43 ± 0

 .375 35 ± 0 .375 42 ± 0

 .500 35 ± 0 .500 42 ± 0

 4 .125 52 ± 2 4 .125 47 ± 0

 .250 42 ± 1 .250 45 ± 0

 .375 40 ± 1 .375 45 ± 0

 .500 40 ± 0 .500 44 ± 0

36

Table 13

Time, 32 Colors

IMG DF CF KM CM IMG DF CF KM CM

Baboon 1 .125 443 ± 70 5538 ± 272 Goldhill 1 .125 738 ± 231 12125 ± 620

 .250 11106 ± 572 .250 25034 ± 998

 .375 15828 ± 364 .375 35611 ± 1588

 .500 21066 ± 1658 .500 47207 ± 3637

 2 .125 368 ± 19 2 .125 838 ± 46

 .250 696 ± 18 .250 1680 ± 254

 .375 1006 ± 14 .375 2325 ± 76

 .500 1370 ± 29 .500 3177 ± 143

 4 .125 27 ± 5 4 .125 63 ± 4

 .250 55 ± 4 .250 117 ± 9

 .375 87 ± 8 .375 192 ± 37

 .500 116 ± 8 .500 230 ± 30

Lenna 1 .125 477 ± 62 5640 ± 143 Motocross 1 .125 604 ± 106 9738 ± 206

 .250 11411 ± 253 .250 19341 ± 263

 .375 16548 ± 216 .375 28962 ± 405

 .500 22776 ± 692 .500 38490 ± 487

 2 .125 400 ± 53 2 .125 648 ± 13

 .250 841 ± 152 .250 1283 ± 28

 .375 1114 ± 55 .375 1894 ± 34

 .500 1499 ± 104 .500 2533 ± 65

 4 .125 31 ± 5 4 .125 53 ± 3

 .250 64 ± 18 .250 99 ± 5

 .375 90 ± 10 .375 146 ± 9

 .500 121 ± 25 .500 185 ± 6

Peppers 1 .125 474 ± 122 5782 ± 83 Parrots 1 .125 559 ± 124 11221 ± 205

 .250 10630 ± 666 .250 22553 ± 407

 .375 15028 ± 102 .375 33761 ± 643

 .500 20661 ± 968 .500 45225 ± 900

 2 .125 356 ± 12 2 .125 759 ± 18

 .250 684 ± 10 .250 1476 ± 24

 .375 1026 ± 60 .375 2215 ± 40

 .500 1327 ± 11 .500 2912 ± 53

 4 .125 28 ± 3 4 .125 61 ± 5

 .250 52 ± 6 .250 114 ± 3

 .375 88 ± 9 .375 163 ± 6

 .500 102 ± 10 .500 214 ± 12

Fish 1 .125 100 ± 18 311 ± 41 Pills 1 .125 647 ± 117 12416 ± 121

 .250 581 ± 55 .250 24800 ± 142

 .375 813 ± 23 .375 36970 ± 332

 .500 1064 ± 22 .500 49485 ± 232

 2 .125 26 ± 4 2 .125 825 ± 18

 .250 44 ± 3 .250 1634 ± 26

 .375 66 ± 4 .375 2413 ± 21

 .500 83 ± 5 .500 3201 ± 35

 4 .125 3 ± 3 4 .125 68 ± 4

 .250 4 ± 1 .250 122 ± 6

 .375 6 ± 2 .375 182 ± 11

 .500 6 ± 2 .500 233 ± 14

37

Table 14

Time, 64 Colors

IMG DF CF KM CM IMG DF CF KM CM

Baboon 1 .125 849 ± 100 5486 ± 376 Goldhill 1 .125 1454 ± 276 13048 ± 1162

 .250 10650 ± 342 .250 24050 ± 519

 .375 15764 ± 464 .375 36495 ± 1075

 .500 21522 ± 564 .500 49039 ± 2453

 2 .125 382 ± 16 2 .125 850 ± 67

 .250 754 ± 50 .250 1688 ± 86

 .375 1070 ± 22 .375 2432 ± 107

 .500 1436 ± 42 .500 3170 ± 192

 4 .125 34 ± 3 4 .125 74 ± 4

 .250 64 ± 4 .250 134 ± 8

 .375 95 ± 5 .375 190 ± 8

 .500 123 ± 9 .500 261 ± 21

Lenna 1 .125 884 ± 159 5720 ± 189 Motocross 1 .125 1094 ± 173 9710 ± 59

 .250 11795 ± 445 .250 19274 ± 145

 .375 17390 ± 535 .375 28926 ± 385

 .500 22569 ± 640 .500 38677 ± 397

 2 .125 427 ± 34 2 .125 676 ± 6

 .250 798 ± 27 .250 1314 ± 15

 .375 1148 ± 56 .375 1948 ± 22

 .500 1513 ± 28 .500 2589 ± 40

 4 .125 34 ± 5 4 .125 61 ± 3

 .250 71 ± 9 .250 111 ± 4

 .375 94 ± 7 .375 155 ± 5

 .500 120 ± 8 .500 207 ± 8

Peppers 1 .125 842 ± 139 5164 ± 45 Parrots 1 .125 1190 ± 316 11643 ± 83

 .250 10376 ± 358 .250 23062 ± 183

 .375 16934 ± 684 .375 34618 ± 529

 .500 21577 ± 573 .500 45950 ± 557

 2 .125 509 ± 107 2 .125 798 ± 12

 .250 759 ± 79 .250 1561 ± 26

 .375 1076 ± 49 .375 2294 ± 43

 .500 1418 ± 48 .500 3050 ± 63

 4 .125 36 ± 6 4 .125 68 ± 4

 .250 67 ± 5 .250 124 ± 6

 .375 93 ± 4 .375 181 ± 7

 .500 129 ± 10 .500 236 ± 9

Fish 1 .125 191 ± 29 317 ± 25 Pills 1 .125 1334 ± 169 12666 ± 81

 .250 582 ± 21 .250 25170 ± 112

 .375 862 ± 23 .375 37662 ± 103

 .500 1134 ± 28 .500 50288 ± 285

 2 .125 26 ± 3 2 .125 871 ± 12

 .250 51 ± 3 .250 1697 ± 20

 .375 75 ± 3 .375 2504 ± 35

 .500 98 ± 7 .500 3313 ± 32

 4 .125 3 ± 3 4 .125 74 ± 4

 .250 6 ± 2 .250 138 ± 6

 .375 8 ± 3 .375 196 ± 4

 .500 10 ± 3 .500 252 ± 8

38

Table 15

Time, 128 Colors

IMG DF CF KM CM IMG DF CF KM CM

Baboon 1 .125 1706 ± 252 5666 ± 158 Goldhill 1 .125 2285 ± 365 12735 ± 643

 .250 10961 ± 322 .250 25234 ± 1234

 .375 15998 ± 422 .375 34962 ± 1252

 .500 21217 ± 537 .500 47425 ± 3080

 2 .125 434 ± 11 2 .125 847 ± 28

 .250 814 ± 30 .250 1597 ± 28

 .375 1205 ± 50 .375 2326 ± 47

 .500 1584 ± 103 .500 3098 ± 51

 4 .125 47 ± 6 4 .125 83 ± 5

 .250 79 ± 8 .250 145 ± 7

 .375 116 ± 8 .375 201 ± 6

 .500 156 ± 19 .500 263 ± 9

Lenna 1 .125 1657 ± 206 5969 ± 186 Motocross 1 .125 2217 ± 408 9903 ± 69

 .250 11428 ± 344 .250 19446 ± 116

 .375 17533 ± 605 .375 29122 ± 311

 .500 23258 ± 581 .500 38910 ± 204

 2 .125 488 ± 74 2 .125 742 ± 28

 .250 836 ± 22 .250 1399 ± 27

 .375 1272 ± 112 .375 2053 ± 27

 .500 1626 ± 67 .500 2740 ± 53

 4 .125 45 ± 5 4 .125 72 ± 5

 .250 89 ± 18 .250 132 ± 9

 .375 126 ± 17 .375 179 ± 11

 .500 150 ± 10 .500 238 ± 14

Peppers 1 .125 1598 ± 169 5722 ± 410 Parrots 1 .125 2270 ± 279 11954 ± 163

 .250 10489 ± 272 .250 23661 ± 284

 .375 16254 ± 1060 .375 35184 ± 312

 .500 20026 ± 154 .500 46758 ± 468

 2 .125 411 ± 17 2 .125 872 ± 29

 .250 881 ± 164 .250 1642 ± 32

 .375 1109 ± 21 .375 2431 ± 47

 .500 1461 ± 21 .500 3202 ± 49

 4 .125 46 ± 3 4 .125 79 ± 3

 .250 76 ± 6 .250 150 ± 7

 .375 118 ± 11 .375 207 ± 7

 .500 146 ± 9 .500 272 ± 12

Fish 1 .125 396 ± 66 381 ± 78 Pills 1 .125 2492 ± 267 13048 ± 115

 .250 628 ± 24 .250 25680 ± 71

 .375 971 ± 67 .375 38374 ± 190

 .500 1189 ± 36 .500 51088 ± 259

 2 .125 31 ± 5 2 .125 950 ± 23

 .250 63 ± 11 .250 1805 ± 21

 .375 92 ± 7 .375 2649 ± 31

 .500 127 ± 14 .500 3484 ± 45

 4 .125 4 ± 3 4 .125 88 ± 4

 .250 6 ± 2 .250 157 ± 9

 .375 8 ± 4 .375 225 ± 8

 .500 13 ± 4 .500 286 ± 8

39

Table 16

Time, 256 Colors

IMG DF CF KM CM IMG DF CF KM CM

Baboon 1 .125 3152 ± 184 6252 ± 326 Goldhill 1 .125 4240 ± 315 11930 ± 129

 .250 11285 ± 223 .250 23373 ± 301

 .375 15921 ± 322 .375 34662 ± 411

 .500 22468 ± 433 .500 45838 ± 343

 2 .125 522 ± 42 2 .125 942 ± 15

 .250 898 ± 19 .250 1766 ± 31

 .375 1334 ± 46 .375 2599 ± 64

 .500 1796 ± 115 .500 3374 ± 37

 4 .125 58 ± 7 4 .125 104 ± 5

 .250 105 ± 8 .250 175 ± 5

 .375 152 ± 9 .375 248 ± 9

 .500 190 ± 14 .500 326 ± 14

Lenna 1 .125 3026 ± 208 6118 ± 49 Motocross 1 .125 4236 ± 505 10146 ± 85

 .250 11749 ± 76 .250 19765 ± 159

 .375 19255 ± 1268 .375 29367 ± 217

 .500 26009 ± 404 .500 39146 ± 497

 2 .125 575 ± 27 2 .125 830 ± 15

 .250 1047 ± 22 .250 1553 ± 43

 .375 1511 ± 48 .375 2207 ± 33

 .500 2137 ± 207 .500 2909 ± 46

 4 .125 70 ± 16 4 .125 92 ± 4

 .250 111 ± 8 .250 162 ± 6

 .375 158 ± 15 .375 219 ± 9

 .500 205 ± 8 .500 294 ± 17

Peppers 1 .125 2929 ± 227 5570 ± 58 Parrots 1 .125 4026 ± 379 12389 ± 115

 .250 10691 ± 127 .250 24471 ± 261

 .375 15789 ± 212 .375 36392 ± 364

 .500 20985 ± 284 .500 48088 ± 329

 2 .125 490 ± 9 2 .125 975 ± 13

 .250 890 ± 18 .250 1809 ± 28

 .375 1277 ± 32 .375 2645 ± 78

 .500 1673 ± 35 .500 3484 ± 75

 4 .125 58 ± 5 4 .125 105 ± 5

 .250 98 ± 6 .250 174 ± 7

 .375 146 ± 13 .375 253 ± 14

 .500 186 ± 5 .500 329 ± 10

Fish 1 .125 681 ± 64 406 ± 11 Pills 1 .125 4606 ± 348 13482 ± 113

 .250 755 ± 25 .250 26472 ± 141

 .375 1049 ± 33 .375 39570 ± 207

 .500 1554 ± 261 .500 52404 ± 347

 2 .125 52 ± 13 2 .125 1046 ± 16

 .250 84 ± 7 .250 1989 ± 29

 .375 118 ± 5 .375 2870 ± 36

 .500 158 ± 17 .500 3830 ± 55

 4 .125 6 ± 3 4 .125 108 ± 5

 .250 10 ± 4 .250 199 ± 10

 .375 15 ± 3 .375 276 ± 11

 .500 18 ± 5 .500 364 ± 15

40

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this thesis, coremeans was introduced as a fast and effective quantization

method. First, a data subsampling procedure was introduced as means of data reduction.

Then, an effective initialization method, k-means++ was presented with the objective of

selecting better initial centers. Finally, the coreset construction algorithm was outlined as

the main performance enhancing component of coremeans. The proposed method was

implemented and a comprehensive experiment conducted on a diverse set of test images

commonly used in the color quantization literature. The experimental results

demonstrated that the proposed method outperforms k-means in terms of speed,

achieving speedups of up to 100 times when run with suitable parameter values. The

proposed method gives comparable-quality results to k-means.

The proposed method was tested against k-means only as the former is a modified

version of the latter. Additionally, Celebi et al. (2015) conducted extensive experiments

where they compared the quality and speed of a large number of popular color

quantization methods including popularity, median-cut, modified popularity, octree,

variance-based method, greedy orthogonal bipartitioning method, center-cut, self-

organizing map, radius-weighted mean-cut, modified maximin, pairwise clustering, split

and merge, Cheng & Yang, adaptive distributing units, and weighted sort-means. They

found that k-means outperformed the rival methods by a large margin in nearly every

case. The proposed coremeans method is significantly faster than k-means and the two

methods give very similar results. This means that coremeans will also outperform the

large number of color quantization methods tested by Celebi et al. (2015).

41

In the experiment conducted, only k-means++ was implemented as the

initialization method. Numerous other initialization methods exist (Celebi et al., 2013),

and using them in combination with coresets could provide some interesting results.

Furthermore, a comparison between the results obtained by other quantization methods

that use a coreset as a source could provide valuable insight into practical coreset use.

Finally, acceleration of the proposed coremeans method could also be investigated, for

example, using the recent approach proposed by Bachem et al. (2016).

42

REFERENCES

Arthur, D. & Vassilvitskii, S. (2007). K-means++: The Advantages of Careful Seeding.

Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms,

1027–1035. doi: 10.1145/1283383.1283494

Bachem, O., Lucic, M., & Krause, A. (2017). Practical Coreset Construction for

Machine Learning. Retrieved October 27, 2017 from the arXiv website:

https://arxiv.org/abs/1703.06476

Bachem, O., Lucic, M., Hassan, S. H., & Krause, A. (2016). Fast and Provably Good

Seedings for k-Means. Proceedings of the 2016 Neural Information Processing

Systems Conference, 55–63. Retrieved October 27, 2017 from

https://papers.nips.cc/paper/6478-fast-and-provably-good-seedings-for-k-means

Bezdek, J. C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms.

New York, NY: Springer.

Blum, C., & Roli, A. (2003). Metaheuristics in Combinatorial Optimization: Overview

and Conceptual Comparison. ACM Computer Surveys, 35(3), 268–308. doi:

10.1145/937503.937505

Braudaway, G. W. (1987). Procedure for Optimum Choice of a Small Number of Colors

from a Large Color Palette for Color Imaging. Proceedings of the Electronic

Imaging Conference, 71–75.

Brun, L., & Mokhtari, M. (2000). Two High Speed Color Quantization Algorithms.

Proceedings of the 1st International Conference on Color in Graphics and Image

Processing, 116–121.

 Burge, M. J., & Burger, W. (2009). Principles of Digital Image Processing: Core

https://arxiv.org/abs/1703.06476

43

Algorithms. London, UK: Springer.

Celebi, M. E. (2009). Fast Color Quantization Using Weighted Sort-Means Clustering.

Journal of the Optical Society of America A, 26(11), 2434–2443. doi:

10.1364/JOSAA.26.002434

Celebi, M. E. (2011). Improving the Performance of K-Means for Color Quantization.

Image and Vision Computing, 29(1), 260–271. doi: 10.1016/j.imavis.2010.10.002

Celebi, M. E., Hwang, S., & Wen, Q. (2014). Color Quantization Using the Adaptive

Distributing Units Algorithm. Imaging Science Journal, 62(2), 80–91. doi:

10.1179/1743131X13Y.0000000059

Celebi, M. E., Kingravi, H., & Vela, P. A. (2013). A Comparative Study of Efficient

Initialization Methods for the K-Means Clustering Algorithm. Expert Systems

with Applications, 40(1), 200–210. doi: 10.1016/j.eswa.2012.07.021

Celebi, M. E., Wen, Q., & Hwang, S. (2015). An Effective Real-Time Color Quantization

Methods Based on Divisive Hierarchical Clustering. Journal of Real-Time Image

Processing, 10(2), 329–344. doi: 10.1007/s11554-012-0291-4

Cheng, S., & Yang, C. (2001). Fast and Novel Technique for Color Quantization Using

Reduction of Color Space Dimensionality. Pattern Recognition Letters, 22(8),

845–856. doi: 10.1016/S0167-8655(01)00025-3

Dekker, A. (1994). Kohonen Neural Networks for Optimal Colour Quantization.

Network: Computation in Neural Systems, 5(3), 351–367. doi: 10.1088/0954-

898X/5/3/003

El-Said, S. A. (2015). Image Quantization Using Improved Artificial Fish Swarm

Algorithm. Soft Computing, 19(9), 2667–2679. doi: 10.1007/s00500-014-1436-0

44

Feldman, D., Ozer, S., & Rus, D. (2017). Coresets for Vector Summarization with

Applications to Network Graphs. Proceedings of the 34th International

Conference on Machine Learning, 1117–1125.

Feldman, D., Schmidt, M., & Sohler, C. (2013). Turning Big Data into Tiny Data:

Constant-Size Coresets for K-Means, PCA and Projective Clustering.

Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms,

1434–1453. doi: 10.1137/1.9781611973105.103

Gentile, R. S., Allebach, J. P., & Walowit, E. (1990). Quantization of Color Images

Based on Uniform Color Spaces. Journal of Imaging Technology, 16(1), 11–21.

doi: 10.1145/965145.801294

Gervautz, M., & Purgathofer, W. (1988). A Simple Method for Color Quantization:

Octree Quantization. In N. Magnenat-Thalmann & D. Thalmann (Eds.), New

Trends in Computer Graphics (pp. 219–231). Berlin, Germany: Springer. doi:

10.1007/978-3-642-83492-9_20

Har-Peled, S. (2011). Geometric Approximation Algorithms. Providence, RI: American

Mathematical Society.

Heckbert, P. (1982). Color Image Quantization for Frame Buffer Display. Proceedings of

ACM SIGGRAPH Computer Graphics, 16(3), 297–307. doi:

10.1145/965145.801294

Hu, Z., Su, Q., & Xia, X. (2016). Multiobjective Image Color Quantization Algorithm

Based on Self-Adaptive Hybrid Differential Evolution.

Computational Intelligence and Neuroscience, 2016. doi: 10.1155/2016/2450431

Joy, G., & Xiang, Z. (1993). Center-Cut for Color Image Quantization. Visual

45

Computing, 10(1), 62–66. doi: 10.1007/BF01905532

Khaled, A., Abdel-Kader, R. F., &. Yasein, M. S. (2016). A Hybrid Color Image

Quantization Algorithm Based on k-Means and Harmony Search Algorithms.

Applied Artificial Intelligence, 30(4), 331-351. doi:

10.1080/08839514.2016.1169049

Lloyd, S. (1982). Least Squares Quantization in PCM. IEEE Transactions on Information

Theory, 28(2), 129–136. doi: 10.1109/TIT.1982.1056489

Ozturk, C., Hancer, E., & Karaboga, D. (2014). Color Image Quantization: A Short

Review and an Application with Artificial Bee Colony Algorithm. Informatica,

25(3), 485–503. doi: 10.15388/Informatica.2014.25

Pérez-Delgado, M. L. (2015). Colour Quantization with Ant-tree. Applied Soft

Computing, 36, 656–669. doi: 10.1016/j.asoc.2015.07.048

Schaefer, G., & Nolle, L. (2015). A Hybrid Color Quantization Algorithm Incorporating

a Human Visual Perception Model. Computational Intelligence, 31(4), 684-698.

doi: 10.1111/coin.12043

Su, Q., & Hu, Z. (2013). Color Image Quantization Algorithm Based on Self-Adaptive

Differential Evolution. Computational Intelligence and Neuroscience, 2013,

Article ID 231916, 8 pages. doi: 10.1155/2013/231916

Uchiyama, T., & Arbib, M. (1994). An Algorithm for Competitive Learning in Clustering

Problems. Pattern Recognition, 27(10), 1415–1421, doi: 10.1016/0031-

3203(94)90074-4

Velho, L., Gomez, J., & Sobreiro, M. V. R. (1997). Color Image Quantization by

Pairwise Clustering. Proceedings of the 10th Brazilian Symposium on Computer

46

Graphics and Image Processing, 203–210. doi: 10.1109/SIGRA.1997.625178

Volkov, M. (2016). Machine Learning and Coresets for Automated Real-Time Data

Segmentation and Summarization (Doctoral dissertation). Retrieved from

DSpace@MIT. (http://hdl.handle.net/1721.1/107865)

Wan, S. J., Prusinkiewicz P., & Wong, S. K. M. (1990). Variance-Based Color Image

Quantization for Frame Buffer Display. Color Research and Application, 15(1),

52–58. doi: 10.1002/col.5080150109

Wang, Z., Bovik, A. C., Sherikh, H. R., & Simoncelli, E. P. (2004). Image Quality

Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on

Image Processing, 13(4), 600–612. doi: 10.1109/TIP.2003.819861

Ward, J. (1963). Hierarchical Grouping to Optimize an Objective Function. Journal of

the American Statistical Association, 58(301), 236–244. doi:

10.1080/01621459.1963.10500845

Wen, Q., & Celebi, M. E. (2011). Hard versus Fuzzy C-Means Clustering for Color

Quantization. EURASIP Journal on Advances in Signal Processing, 2011, 118–

129. doi: 10.1186/1687-6180-2011-118

Wu, X. (1991). Efficient Statistical Computations for Optimal Color Quantization. In J.

Arvo (Ed.), Graphics Gems Volume II (pp. 126–133). San Diego, CA: Academic

Press.

Xiang, Z. (1997). Color Image Quantization by Minimizing the Maximum Intercluster

Distance. ACM Transactions on Graphics, 16(3), 260–276. doi:

0.1145/256157.256159

Yang, C. Y., & Lin, J. C. (1996). RWM-Cut for Color Image Quantization. Computers &

http://hdl.handle.net/1721.1/107865

47

Graphics, 20(4), 577–588. doi: 10.1109/ICDAR.1995.601984

