
AN EFFICIENT PARALLEL IMPLEMENTATION of STRUCTURAL NETWORK

CLUSTERING in MASSIVELY PARALLEL GPU

by

Recep Avci

A project report presented to the Department of Computer Science

and the Graduate School of the University of Central Arkansas

in partial fulfillment of the requirements for the degree of

Master of Science

in

Applied Computing

Conway, Arkansas

May 2013

TO THE OFFICE OF GRADUATE STUDIES:

The members of the Committee approve the thesis of

Recep Avci presented on May 1, 2013

Sinan Kockara, Committee Chair

Chenyi Hu

Mark Smith

PERMISSION

Title: An Efficient Parallel Implementation of Structural Network Clustering in

Massively Parallel GPU

Department: Computer Science

Degree: Master of Science

In presenting this thesis in partial fulfillment of the requirements for a graduate degree

from the University of Central Arkansas, I agree that the Library of this University shall

make it freely available for inspection. I further agree that permission for extensive

copying for scholarly purposes may be granted by the professor who supervised my thesis

work, or, in the professor’s absence, by the Chair of the Department or the Dean of the

Graduate School. It is understood that due recognition shall be given to me and to the

University of Central Arkansas in any scholarly use which may be made of any material in

my thesis.

Recep Avci

Date

iv

ACKNOWLEDGEMENTS

 I would like to express my sincere gratitude to my advisor, Dr. Sinan Kockara, for

the guidance and leadership he provided throughout work for master’s degree. I also want

to thank my dear friend, Thomas Ryan Stovall, for his great contributions to this project.

 I thank the committee members, Dr. Chenyi Hu and Dr. Mark Smith, for their

support.

Recep Avci

The University of Central Arkansas

May 2013

v

ABSTRACT

In many fields, complex networks are commonly used to represent relationships among

sets of entities in real systems. Community in a network can be considered as a summary

of the whole network; thus, it is a very important field. For instance, communities in a

citation network might represent related papers on a single topic whereas communities on

the web might represent pages of related topics. New community detection or clustering

algorithms have brought us significant advances to discover hidden knowledge, to

summarize the network, and to find relationships. Detecting communities in real systems

has a great importance in different fields such as sociology, biology and computer science.

The Structural Clustering Algorithm for Networks (SCAN) is a fast and efficient

clustering technique for finding hidden communities and isolating hub and outlier nodes

within a network. However, for very large networks, it still takes considerable amount of

time. With the introduction of the Compute Unified Device Architecture (CUDA) by

Nvidia, the scientific community has seen an explosion in applications employing

graphical processing unit acceleration. In this project, we present a CUDA-based parallel

algorithm, where SCAN's computation steps are carefully redesigned. We discuss

transforming SCAN into a series of highly regular and independent operations suitable for

acceleration via CUDA. Now, a large network or a batch of disjoint networks can be

offloaded to graphics processors for quick and equivalent structural clustering. The

experimental results indicate that our parallel structural network clustering algorithm

generates exactly equivalent results to SCAN. Moreover, it is considerably faster than

SCAN. Depending on the dataset, this speedup can be up to 254-fold.

vi

Table of Contents

Abstract….…..………………………………………………………………..…………..v

Table of Contents .. vi

List of Tables ... viii

List of Figures ... ix

Chapter 1: Introduction .. 1

1.1 The concept of Network .. 1

1.2 Community Detection in Networks ... 4

1.3 Network Topologies .. 6

1.3.1 Point-to-Point ... 6

1.3.2 Ring.. 7

1.3.3 Tree .. 8

1.3.4 Bus ... 9

1.3.5 Star ... 9

1.3.6 Mesh .. 10

Chapter 2: Review of Literature .. 12

2.1 Min-Max Cut and Normalized Cut ... 12

2.2 Modularity Based Algorithms ... 13

2.3 Hierarchical Clustering in Networks ... 14

2.4 Structural Clustering ... 16

Chapter 3: Parallel Computing .. 19

3.1 The Concept of Parallel Processing .. 19

3.2 History ... 19

3.3 Parallel Processing Models ... 21

3.3.1 Single Instruction Single Data (SISD) ... 22

vii

3.3.2 Single Instruction Multiple Data (SIMD) .. 23

3.3.3 Multiple Instruction Single Data (MISD) .. 24

3.3.4 Multiple Instruction Multiple Data (MIMD) ... 25

3.4 Synchronization in Parallel Processing ... 26

3.5 GPU-Based Parallel Computing .. 27

3.5.1 General Purpose Computing in GPU as a Co-Processor ... 27

3.5.2 The Evolution of GPUs.. 28

3.5.3 The Architecture in CUDA .. 31

3.5.3 CUDA Memory Hierarchy .. 34

Chapter 4: Parallel Structural Network Clustering .. 38

4.1 Identifying Structurally Similar Epsilon Neighbors .. 41

4.2 Computing Structurally Connected Components .. 44

4.2.1 Linking ... 45

4.2.2 Graph Contraction ... 48

4.3 Clustering .. 49

4.4 Classifying Non-Members .. 51

Chapter 5: Results ... 55

5.1 Equivalence to SCAN ... 56

5.2 Performance .. 57

Chapter 6: Conclusion .. 64

References .. 65

viii

List of Tables

Table 1: Speedup rates for the graphs ... 59

Table 2: Speedup rates with pre-computed similarity ... 63

ix

List of Figures

Figure 1: A simple network with10 nodes. .. 2

Figure 2: Zachary karate network. .. 5

Figure 3: A simple point-to-point network .. 7

Figure 4: A simple ring network .. 7

Figure 5: A simple tree network .. 8

Figure 6: A simple bus network ... 9

Figure 7: A simple star network .. 10

Figure 8: A simple mesh network .. 11

Figure 9: Single Instruction Single Data (SISD) ... 22

Figure 10: Single Instruction Multiple Data ... 23

Figure 11: Multiple Instruction Single Data ... 24

Figure 12: Multiple Instruction Multiple Data .. 25

Figure 13: GPU architecture and Graphics pipeline stages ... 29

Figure 14: GPU performance chart over CPU ... 30

Figure 15: The architecture of streaming multiprocessors and streaming processors. 31

Figure 16: CUDA Architecture ... 32

Figure 17: Warp scheduling. ... 33

Figure 18: CUDA Memory Hierarchy ... 35

Figure 19: Forming directed arc list A .. 39

Figure 20: Computing structural similarity... 41

Figure 21: Forming epsilon-neighborhoods .. 44

Figure 22: Computing connected components .. 46

x

Figure 23: Clustering .. 51

Figure 24: Identifying non-members ... 53

Figure 25: Equivalence of parallel structural algorithm to SCAN .. 56

Figure 26: The bar graph and table of the results for the R-MAT and SSCA2 networks with a fixed

average of degree of 6.. 58

Figure 27: The bar graph and table of the results for the R-MAT and SSCA#2 networks with a

fixed numbers of vertices of 32768. ... 60

Figure 28: The bar graph and table of the results for the R-MAT and SSCA2 networks with a fixed

average of degree of 6.. 61

Figure 29: The bar graph and table of the results for the R-MAT and SSCA2 networks with a fixed

numbers of vertices of 32,768. ... 62

xi

List of Algorithms

Algorithm 1: Parallel structural network clustering ... 40

Algorithm 2: Computing Structural Similarity .. 43

Algorithm 3: Structural Connected Component Labeling ... 45

Algorithm 4: Linking .. 47

Algorithm 5: Graph Contraction ... 49

Algorithm 6: Clustering ... 43

Algorithm 7: Classifying non-members ... 43

1

Chapter 1: Introduction

1.1 The concept of Network

 With the advances in computer technology, the world evolved to a new globalized

system. From technology to economy, this new world system is more dynamic and

interactive such that entities in the world such as people and/or organizations are no

longer as isolated as they used to be [1]. In the past, entities had a natural border which

determined the degree of their isolation [2]. For example, a person who lives in a small

village in Africa had to be content with the people who live in the same territory.

However, in the new globalized system, an entity can easily interact with any other entity

in the world which leads to broader and more complex interaction systems. These

interaction systems are considered as networks in which entities are known as the nodes

of networks. The connections between the nodes represent the relationships of these

nodes.

 Although the concept of network evokes computer systems, it is also used to

express the interaction of the entities in real life or in any field. In the real world, a node

in a network can be a person, an organization, a country, or a group while connections

can be expressed as friendship, alliance, collaboration, or business partnership [3]. For

instance, the social interactions of employees in a company form an internal network

which may represent the company’s informal structure [4]. This structure may provide

certain dynamics of employees’ interactions. For instance, consultations between the

employees form an advice network in the company. When an advice exchange between

two employees occurs in the company a connection of the advice network is formed [5].

2

 In various fields, the network concept is used to interpret and solve many research

problems either as a core or supportive idea [3], [6]. Graph theory in mathematics and

computer science is a well-known field about network studies [7], [8]. In addition, some

studies about the social networks in sociology [9] and some studies about complex

structures in physics are examples of studies which deal with networks [10]. Generally,

social scientists focus on the relationships in social networks while mathematicians and

computer scientists develop methods to obtain and analyze knowledge about the structure

of the relationships within the networks.

 In graph theory, all networks can be represented as graphs and are denoted as

G{V, E} where the graph G exists from two sets, V and E. V stands for the set of vertices

(nodes) and E stands for the set of edges between the vertices. Figure 1 illustrates a

simple network (graph).

Figure 1: A simple network with10 nodes.

 The edges between the vertices in a graph represent the interaction of the nodes in

a network. These interactions can be one-way or two-way. We can easily understand this

on Twitter which is a popular social network on the Internet. For instance, if two people

follow each other on Twitter, this is an example for two-way interactions. In this case,

3

we say there is a directed edge between the vertices. Directed edges are also known as

arcs. On the other hand, if a person follows another person without being followed by

that person, this represents a one way interaction but the edges are still considered as

directed edges. The graphs with directed edges are called directed graphs. Graphs are

not always supposed to have a direction between their edges. For example, an employee

network in a company has undirected edges since the relationships between the

employees do not have a direction. The edges in this kind of networks are called

undirected edges and the graphs with undirected edges are called undirected graphs.

 In graph theory, the number of connections that a vertex has is called a degree.

The degree distribution within a network gives us information about the complexity of a

network. If we divide the total number of degrees in a network by the total number of

vertices, we find the average degree in a network.

 Graph theory also tells us that the vertices in the networks can be connected to

other vertices in more than one way. In other words, in a complex graph, there can be

multiple edges between two vertices. Multiple connections between vertices can be

understood when we think about real-world relationships. We are connected to other

people in many ways. For instance, a person can be a co-worker of his/her spouse. In

such a case, two people are connected with each other through two ways. Therefore,

when we consider a real-world network, we cannot assume that the nodes have only a

single interaction. Such an assumption causes misinterpretations on a network when we

attempt to discover hidden knowledge or to detect communities within networks. Now,

we will explain the community detection concept in networks in the next section.

4

1.2 Community Detection in Networks

 The network concept, more specifically the concept of social network, has gained

importance after the Internet was used in daily life. After social networks on the Internet

became popular, they have partially revealed the relationships between people. Thus, we

have had some ideas about the interactions of human beings up to one degree. However,

they have also built complicated and discrete networks. These networks include hidden

knowledge from personal information to community facts. Network clustering is one of

the most common ways to detect communities within a network.

 Network clustering is partitioning a network into sub-networks in which nodes

have denser connections or common structures. Network clustering has other names like

graph partitioning [11], community structure analysis [12], and community detection.

Basically, clustering in networks is to classify nodes into different categories. We will

call these categories as clusters throughout this thesis.

 Community detection via network clustering reveals the bonds between the

people who form the network. A well-known community detection study was conducted

on a karate club by W. W. Zachary [13] in 1977. In this study, Zachary attempted to

predict the split of the members of a karate club. In this karate club, there occurred a

conflict between the karate instructor and the club president. The instructor demanded a

raise for the lessons but the club president thought the price should not be changed and

also the club administrators should give such a decision. Somehow this conflict brought

up some ideological debates and, the debates polarized the club members. The problem

was finalized when the club president fired the instructor. Then the instructor opened his

own club and some of the members decided to join the new club. Zachary predicted

5

members’ decisions based on their relationships with only one error. Figure 2 shows how

two groups were shaped after the split [14].

Figure 2: Zachary karate network. The nodes with darker color belong to one group; the

ones with white color belong to the other group.

 Zachary, in his study, revealed that the interactions between the nodes form

invisible small communities. Only community detection methods can discover these

hidden communities. Since the sizes of networks are very large in the new world systems,

discovering knowledge is no longer as easy as it used to be and therefore, very deep and

detailed studies or newly developed methods are required to obtain this hidden

knowledge.

 In this project, we have worked on developing a knowledge discovery method in

large-scale networks, which is explained in Chapter 4. First, we will introduce the most

common network topologies in the remainder of this chapter.

6

1.3 Network Topologies

 Networks are very complicated and intricate systems. For real-world networks, it

is almost impossible to classify them in terms of their structures. However, in graph

theory, mathematicians and computer scientists define several network topologies

according the layout of the interactions or relationships. These topologies are

point-to-point, ring, tree, bus, star and fully connected [15]. Although these topologies

are used to specify the shape or structure of computer networks, they are also used for

real-world networks and help us to understand their structures as well.

 Network topologies do not always indicate physical connection between the nodes

in networks. They also indicate the interaction of the members in a social network.

Understanding these topologies is essential to discover hidden knowledge within a

network. For instance, most of the clustering algorithms created for networks use some

parameters. To know what type of structure a network has may give a clue to determine

the optimum parameters.

 Social networks are usually more complicated than a specific example. Therefore,

the network samples provided below should be considered as a part of a social network

which is revealed based on a simple rule or relationship. We will now explain the most

common network topologies listed above in the following subsections.

 1.3.1 Point-to-Point

 The simplest form of a network is point-to-point connections which is also known

as linear networks. This kind of network has two end-points and the nodes between these

end-points are connected to two other nodes. Figure 3 shows a sample of point-to-point

networks.

7

Figure 3: A simple point-to-point network

 A simple example of a linear network can be seen in a family tree. Consider a

woman in a family tree; she is connected to her mother and also her daughter. In the

same fashion, her mother is also connected her mother and her daughter, etc. Thus, a

point-to-point network is formed based on the connections of women in a family tree. In

real life, these women have other interactions. This one-to-one network is not the only

network in which they are connected. As stated before, we should consider this simple

network as a part of more complicated networks.

 1.3.2 Ring

 A network with a ring topology is similar to linear networks except no end-points

are present. In linear networks the end-point nodes are connected to only one node. On

the other hand, in the ring topology, each node is connected to two other nodes such that

there is no end-point. Figure 4 illustrates a simple ring network.

Figure 4: A simple ring network

8

 A simple ring network can be seen in one of the popular social networks, Twitter,

on the Internet. On Twitter, people can follow other people’s tweets (statements with a

maximum 140 characters) from all over the world. It is likely that, these followings can

build a ring topology. In other words, a person follows another person and, that person

follows another. After a number of followings the first person is followed by a person in

the network, thus a ring network is formed.

 1.3.3 Tree

 The tree network is also known as hierarchical topology. In this topology, the

nodes in a network are connected to higher level and/or lower level nodes. These

relationships are also designated as parent/child relationships. A node can be connected

to a parent node and multiple child nodes. A simple network sample is shown in Figure 5.

 In real life, there are several samples of this kind of topology. A family tree or

the hierarchical layout of a company’s employees forms a tree network. From the highest

level employee to the lowest level employee(s), there are interactions which form the tree

network. In the same fashion, families throughout history build a tree network.

Figure 5: A simple tree network

9

 1.3.4 Bus

 In the bus topology, the nodes are connected to each other via a certain

relationship. In other words, there is a specific bond between the nodes. In this topology,

every node is connected to all other nodes via a common relationship. Figure 6 illustrates

a simple example of the Bus topology.

Figure 6: A simple bus network

 This kind of topology is not common in real-world networks. Board members of

a company or an organization can serve as a sample for this network. In such examples,

all board members are connected to each other due to the positions they have in the board.

In other words, the board represents the special relationships between the nodes

(members).

 1.3.5 Star

 The star topology has a common point between the nodes similar to the bus

topology. While in the bus topology the relationship was the common point of the nodes,

in the star topology a single node is the common point. In other words, all nodes in the

star topology are connected to one central node. Moreover, there are no connections

between these nodes. Figure 7 shows the layout of a star topology.

10

Figure 7: A simple star network

 In real life, we can see networks which have star topology. Twitter again can be a

good example of this kind of topology. For instance, the people who follow a certain

famous person are members (nodes) of a star network. Although they do not follow each

other, the person they follow is the central node in the network and forms a common

relationship between the people in the network.

 1.3.6 Fully Connected

 In the fully connected topology all nodes are connected to each other. This kind

of topology provides direct interaction between the nodes in the network. A node can be

connected to infinitely many nodes at the same time. There is no specific limitation for

the connections. Figure 8 shows a mesh topology with 6 nodes. Networks with this

topology are also known as mesh networks. Of all topologies, this topology can grow

most easily. The most complicated networks consist of mesh topologies. This is also one

of the most common networks in the real world.

11

Figure 8: A simple mesh network

 Any small community can be an example of this topology. In small communities,

people usually have interactions with every member in the community. Therefore, their

interactions build a mesh network.

 These network topologies exist in community networks but they are usually

hidden. The community detection introduced in the previous section is the one of the

ways to reveal these hidden networks. The next section introduces the literature related to

community detection methods.

12

Chapter 2: Review of Literature

 Networks are high dimensional data structures. Network clustering methods target

to group the nodes of these high dimensional structures into clusters. The problem of

obtaining accurate clusters has been studied for years in many fields particularly in

computer science, graph theory, and physics. Basic community detection in networks

involves properly arranging a network structure by visual inspection. Such a method is

intuitive and can only handle small networks. Hence, several network clustering

algorithms have been proposed. Although these methods share some common points

they are principally not the same. We will now introduce some of the common methods

for network clustering (community detection).

2.1 Min-Max Cut and Normalized Cut

 The min-max cut method [11] basically aims to split the network into two

sub-networks. A cut is the total weight of edges that are removed to group the vertices

into two clusters. The idea of min-max cut method is to decrease the number of

connections between two clusters and increasing the number of connections within the

clusters.

 One of the weaknesses of min-max cut method is that there are some constraints

to discover the edges removed. For instance, the size of the cluster must be similar to

each other. However, this is not always true in networks, especially in social networks.

There are some small groups in social networks as well as larger groups. To eliminate

this problem, a new method, normalized cut [16], was introduced. The normalize cut

method determines edges removed by normalizing the total number of connections

between each cluster to the rest of the network.

13

 Both methods split the network into two clusters. To obtain more than two

clusters, the same methods can be applied to the obtained sub-networks. However, there

is no measurement to identify if a network is split to optimum clusters.

2.2 Modularity Based Algorithms

 Newman and Girvan [17] are leading pioneers who tackled the automatic

community detection problem. They suggested using modularity to qualify the intensity

of community structure. Their approach has been used for different applications including

community structure validation and as a main function for optimization algorithms to

detect communities. Thus, modularity rapidly becomes an effective method in the

discovery of community structure [18]. In addition, extended work with Newman et al.

and others has proven that clustering with maximizing modularity often yields promising

community structure in real networks [19], [20].

 Modularity is a metric introduced by Newman [17] and used for determining how

good a network is partitioned. Modularity is denoted Q and calculated by the following

formula.

 ∑ [

 (

)

]

 (1)

 where L is the number of edges in the graph, lc is the number of edges between

vertices within clusters c, and dc is the sum of the degrees of the vertices in clusters c.

 When the modularity gives the value 0, either all vertices in the network are

grouped into one cluster or all vertices are clustered at random. Therefore, when

modularity value is close to zero we understand that a poor clustering occurred in the

network. In addition to check the quality of clusters obtained, modularity can be used for

14

optimization to find better quality clusters within a network. The studies proposed for the

optimization [21] and [22] adapted the Newman’s approach. Recently Newman

introduced spectral optimization of modularity [23] for the optimization purpose.

2.3 Hierarchical Clustering in Networks

 Hierarchical clustering is one of the most common and widely used community

detection methods. It addition to group the vertices into clusters; it also gives some

information about the hierarchical structure of a network. The hierarchical clustering is

based on the metrics called similarity which is calculated for the each vertex pair in the

network.

 There are two kinds of hierarchical clustering: agglomerative and divisive.

Agglomerative method is a bottom-up approach. The method assumes that each vertex

owns its cluster. Then checking similarity values vertices are connected to each other

based on their similarity values. After the each iteration, the clusters expand and the

similarity values decrease for the next iteration. Thus all vertices are unified as a single

cluster. Each level in the hierarchical tree can be considered as a cluster.

 In the literature one can find different ways to form clusters in agglomerative

clustering like single linkage and complete linkage. In the single linkage method, a

vertex is added to the cluster if the similarity between it and the node at the end is greater

or equal to current similarity in the iteration. In other words, similarity values between

newly added vertex and other vertices are not taken into consideration. In contrast to

single linkage, complete linkage requires vertices being a maximal clique. A clique is a

set of vertices connected to the all vertices in the set. Only the vertices in the maximal

clique can form a cluster in this approach.

15

 The second approach in hierarchical clustering is the divisive method in which all

clusters are the members of a single cluster in the beginning. Then this big cluster is

divided into smaller groups at the each iteration by removing the edge which has the

smallest similarity. However, it does not mean that the each iteration splits the network

since there can be multiple reachable paths between vertices. Girvan and Newman’s

approach [24] is one of the examples of this kind. Their algorithm assumes that members

in the same community should be more firmly connected rather than randomly. To split a

given graph into communities hierarchically, edges consisting of the largest betweenness

[25] which is the number of shortest paths passing through an edge are eliminated one

after another.

 Pons and Latapy [26] proposed the Walktrap algorithm for automatic community

detection. Their algorithm adopted the idea of a random walk through a network for

community detection. The main idea of this approach was that the densely connected

portion of a community would tend to trap random walkers. Instead using modularity the

authors introduced a similarity measure based on short walks and used it for community

detection via hierarchical clustering.

 Orman et al. [27] compared different community detection algorithms (Label

Propagation, Eigenvector, Walktrap, etc.) with networks generated with a model from

Lancichinetti et al. [28]. Normalized mutual information measure was used to access the

performance of those algorithms. Walktrap has been one of the best algorithms to

generate excellent results by successfully identifying communities even for high mixing

coefficient values [27].

16

2.4 Structural Clustering

 In 2007, a structural network clustering algorithm for networks strongly

influenced by DBSCAN (density-based spatial clustering of applications with noise) [29],

was introduced as an alternative to the Girvan-Newman based modularity algorithms [17].

Rather than using betweenness to partition the given network into clusters, SCAN uses

the notion of structural similarity to agglomerate nodes into clusters. Structural

clustering is the process of grouping members of a network into communities (clusters)

based on the density of relationships (edges) among the members. The process results in

a disjoint set of sub-networks which represent the hidden communities within the

network.

 SCAN uses the notion of structural similarity to agglomerate nodes into clusters

[30]. Consider a few quantitative properties of any node in a network. The vertex

structure (2) of an arbitrary node u, Γ(u), from a graph is given as the set of u and the

nodes adjacent to u. Two nodes u and v have a structural similarity, σ(u,v), (3) based on

the number of nodes common to the vertex structures of both nodes. These properties are

summarized as follows:

Γ() { () } { } (2)

 ()
 Γ() Γ()

√ Γ() Γ()
 (3)

 () { () } (4)

 () () (5)

 The SCAN algorithm has two parameters. The first, ϵ, is the threshold structural

similarity value for adjacent nodes to be considered ϵ-neighbors (4). The second, µ, is

17

the minimum number of ϵ-neighbors a node must have to be considered a core node (5).

For SCAN, nodes in a cluster must be a core node or an epsilon neighbor of a core node.

When µ equals to 2, this is equivalent to the restriction that all proper clusters must

contain at least one core node. We strongly believe that µ must be set to 2 because if it is

set a greater value, none of the networks with point-to-point or ring topology can be

identified as clusters.

 Structural clustering begins with an arbitrarily chosen node v from the network.

Structural similarity is calculated for each edge with v as an endpoint. If the node v has

less than µ neighbors, then another node is selected. Otherwise, the node v is identified

as a core node and a unique cluster identifier is generated. That cluster identifier is then

assigned to v and the epsilon neighbors of v. This process continues until each node is

visited. After structural clustering is complete, some nodes remain without membership

in a cluster. Some nodes do not share enough relationships with any particular cluster

and so do not merit being assigned to a cluster. If such a node bridges two or more

clusters, it is then classified as a hub [31]. Otherwise, it is classified as an outlier and

may be regarded as a noise. For instance in Figure 1, the node 4 is a hub while the nodes

8 and 9 are outliers.

 Unfortunately, computation of SCAN for very large networks takes a large

amount of time. In SCAN, many set intersection operations must be performed. Also, all

nodes must be visited during graph traversal. To reduce the computation time, we

introduced a GPU-based algorithm in which the necessary computations are completed

by using the massively multithreaded GPU architecture. We redesigned and parallelized

SCAN as a series of highly regular and independent operations in order to benefit from

18

computational power provided by GPUs. With that, a large network or batch of disjoint

networks can be offloaded to the graphics processor for quick and computationally

efficient structural clustering. Before introducing our redesigned structural clustering

algorithm, we will provide necessary background on general purpose computing on GPU

paradigm in Chapter 3. In the first subsections of Chapter 3, we will present parallel

computing concepts to better understand GPU paradigm.

19

Chapter 3: Parallel Computing

3.1 The Concept of Parallel Processing

Computer technology improves rapidly as a new development is released every

day. However, demands from computer technology grow faster than itself, which likely

triggers the developments. For instance, as computers began to be used in various areas,

the amount of data obtained increased making personal computers unable to cope with

them. This need has brought up the idea of parallel computing through parallel

processing.

Parallel processing is executing multiple tasks concurrently on multiple

processing units. A parallel application/program includes multiple active processes or

threads working simultaneously to solve a problem. By increasing the number of

processing units in a computer or system and providing a communication methodology

between these processing units, executions can be done more efficiently in parallel.

3.2 History

The first applications of parallel computing started in 1950s. In 1960s and 1970s,

with the introduction of supercomputers, parallel computing became more efficient and

applicable in broader fields. The first supercomputer models use multiprocessors with a

shared memory [32]. These multiprocessors work on shared data in the same architecture

side by side. In the 1980s Caltech Concurrent Computation project introduced a new

supercomputer built of 64 Intel 8086/8087 processors, which proved that significantly

efficient performance is possible via parallel computing [33]. This system is known as

the first massively parallel processors (MPPs) and was followed by several architectures.

MPPs reached their peak point with the ASCI Red supercomputer by enabling over one

20

trillion floating point operations per second in 1997 [33]. After this breaking point,

MPPs have grown in size and power.

In the late 1980s, clusters began to be used in parallel computing field. A cluster

is a parallel computing architecture which consists of large number of computers

connected by a network. The clusters competed with MPPs for a while and, they

eventually replaced most of MPPs. Today, clusters are the most common architecture

used in scientific computing. Since a cluster is a collection of computers, any person can

build a cluster and use it for parallel computing with a significantly lower cost comparing

to supercomputers.

MPPs and clusters provided relatively stable architectures in parallel computing

up to the mid 2000s. Depending on the needs and the type of applications, parallel

computing architectures have evolved to purpose-specific architectures. These

architectures provide a solution to the specific problem which needs computation

efficiency. For example, Anton [34] is a purpose-specific supercomputer which is used

for the simulations of molecular-biological systems. On the other hand, the cost of these

systems does not allow them be used more widely. Therefore, this problem forced

manufacturers and users to build new architectures with lower costs.

The latest trend in parallel computing is the use of multi-core processors on a

single computer. This trend can be classified into two categories. The first trend is to use

the multi-cores on the Central Processing Unit (CPU). Most of the latest personal

computers or laptops have multi-core processors like dual-core or quad-core. These

multi-core processors enable users to use these multi-cores for parallel computing. The

second trend is to use graphic processing units (GPU) for computation. GPUs also have

21

multiple cores as CPUs do. However, the ones in GPU have much more computation

power. For instance, a recent Nvidia Fermi GPU can have as many as 512 cores. These

cores stay idle if the GPU does not execute any graphical process. New architectures

developed by the GPU manufacturers like Nvidia enable users to use GPUs also for

scientific computation purposes. Tasks of a computation can be parallelized and

concurrently run on the cores of GPU. Before introducing GPU-based parallel

processing, we will introduce parallel processing models in the next section.

3.3 Parallel Processing Models

Processors are the main component of parallel computing. Multiple processors

can be used in a computation concurrently by using parallelisms. Several classifications

for the parallelisms can be found in the literature [35], [36], [37]. However, in general

we can talk about two fundamental parallelisms in the models. The first one is task

parallelism and the second one is data parallelism.

Some applications created in the task parallelism can be rewritten in the other way,

and vice versa. However, this is not always applicable. In general, the best performance

is obtained by using one of the parallel architectures considering both the structure of the

application and the data set. For instance, the studies [38] and [39], are two samples

which work more efficiently in the task parallelism. GPUs, on the other hand, may

provide better results in data parallelism. Nevertheless, it is not easy to classify an

application solely into one of two parallelisms. Sometimes using both parallelisms in the

same application may provide the best output.

22

Based on the parallelism used, we can categorize computing systems in four

groups: single instruction single data (SISD), single instruction multiple data (SIMD),

multiple instructions single data (MISD) and multiple instructions single data (MIMD).

 3.3.1 Single Instruction Single Data (SISD)

A single instruction single data model is a system with a single processor. This

system works on a single data for a single instruction. Since the system executes the

instructions sequentially, we cannot talk about any parallelism in this system. Most of

the conventional computers have this system. Figure 9 illustrates the schema of its

execution.

Figure 9: Single Instruction Single Data (SISD)

In this system, all instructions for the processes and all the data must be kept in

the computer’s memory. The performance of the execution is determined by the

computer’s specifications. Regular PCs, Macintosh, and Workstations are common

examples for this system.

23

 3.3.2 Single Instruction Multiple Data (SIMD)

Single instruction multiple data (SIMD) computing systems include only data

parallelism. One of the examples of data parallelism can be seen in vector operations like

element-wise summation or dot product between two vectors. SIMD systems execute the

same instruction of the application on different parts of the data to be processed. Figure

10 shows how SIMD models work.

Figure 10: Single Instruction Multiple Data

This model is suitable for the scientific computing which involves a multitude of

vector and matrix operations. The data is partitioned and each processing element gets a

well organized portion of the data. For n processors, n different data vectors are created.

Then every processor executes the same instruction on the vector they get. In this model,

the way of partitioning the data plays a crucial role. This partitioning affects the

performance of parallel tasks.

24

 3.3.3 Multiple Instruction Single Data (MISD)

In the multiple instruction single data (MISD) model, the process of an

application is divided into sub-processes which can run separately. This type of

parallelism enables users to run different parts of the same application concurrently.

Figure 11 illustrates the systematic of MISD models.

Figure 11: Multiple Instruction Single Data

The primary issue in this type is that these sub-processes must be independent

from each other. In other words, one sub-process should not require any output of the

other sub-processes during the execution. Each sub-process is a separate procedure in

this type of parallelism. Once the application is divided into sub-processes, they are

executed on the processing units for the same data. In this model, the data is used as a

whole.

25

 3.3.4 Multiple Instruction Multiple Data (MIMD)

A multiple instruction multiple data (MIMD) system uses both data and task

parallelism in the same structure. This model can execute multiple instructions of an

application on multiple data. A web server working with multi-threads is an example of

this task. On such a web server, each request from same client or different clients is

executed in parallel. Figure 12 shows the structure of MIMD models.

Figure 12: Multiple Instruction Multiple Data

MIMD models are categorized into two main subgroups as shared memory

MIMDs and distributed memory MIMDs based on how processing units interact with the

memory. In the shared memory models, there is a global memory and, all processing

elements access this global memory. A communication between processing units is

required for the synchronization of tasks. This communication is provided by the shared

memory. After a processing unit has completed a task, the global memory is updated and

the other processing units can reach modified data in the global memory.

26

In the distributed MIMDs each processing unit has its own memory instead of

having a global memory. The processor units reach their own memory units and execute

the task assigned on the data which is stored in their memory. Once a processing unit

completes its job the distributed memory for that processing unit is updated. The

processing units work asynchronously. If synchronization is needed between the

processing units, communication is handled by an interconnection network. MIMD

models are also called massively parallel processing (MPP) systems.

The shared memory systems are easy to program but they are not as extendable as

distributed memory systems. Moreover, distributed memory systems can be scaled more

easily than shared memory systems.

3.4 Synchronization in Parallel Processing

When multiple processes run concurrently, none can know what the other

processes do and what their results are. Therefore, a communication is required whenever

a process needs to reach outputs of other processes. Communication and synchronization

between the tasks run by the different processes are one of the most challenging parts of

parallelisms. Message passing is one of the paradigms used in the parallel systems for

the communication and synchronization. Several message passing systems have been

implemented around 1990s [40] e.g. Mercury/Centaur, VERTEX, The reactive Kernel,

etc. Because all these message passing systems were machine-specific, it was difficult to

use by a wide range of users on different machines.

Several standards were established in order to overcome portability and scalability

difficulties. Thus, parallel programs can be implemented in a more practical, portable

and efficient way so that they can be used widely. Message passing interface (MPI)

27

which was introduced in the mid 1990s standardized several programming interfaces into

a single standard for massively parallel processors (MPPs) and clusters [40]. MPI

provides an application programming interface for the users. Moreover, communication

is more efficient in MPI enabling communication without copying from memory to

memory in distributed memory systems.

In late 1990s, OpenMP and pthreads emerged for the multiprocessors with a

shared memory for the standardization purpose [41]. OpenMP works as a fork-join

model for parallel implementations. In other words, OpenMP distributes the application

as multiple tasks. After they are run on the data their outputs are joined. OpenMP

controls the synchronization of the distributed tasks.

 When Nvidia introduced its GPU-based parallel architecture so called compute

unified device architecture (CUDA), new standards were created to make computations

in parallel on the GPU. The sequential codes written in various programming languages

can be executed in parallel by using these CUDA standards and run on CUDA enabled

GPUs concurrently. In the next section, we will explain the GPU-based parallel

computing and the CUDA architecture.

3.5 GPU-Based Parallel Computing

 3.5.1 General Purpose Computing in GPU as a Co-Processor

 Co-processing units have long been used to supplement the functionality of the

central processing unit (CPU). Math co-processors were introduced in the 1970s to add

scientific computing capabilities to word processing computers. The latest improvements

in computer hardware and graphical processing unit (GPU) make possible general

purpose computations on the GPU with low cost and high-speed performance. Today,

28

GPUs provide the most computational power for the price. With Nvidia’s CUDA

enabled graphics cards and a proper CUDA adaptation, scientific and general purpose

applications are able to harness that computational power. In the last few years, CUDA

has accelerated many non-graphical applications and scientific research, with up to a few

hundred times speed-up over sequential CPU execution [42], [43], [44].

 Nvidia’s CUDA-enabled GPUs can accelerate general purpose computing,

however, mapping computation of a sequential application to the GPU architecture is

non-trivial. Enabling GPUs for general purpose computing often requires careful

redesign and realization of independent tasks within the sequential algorithm. One of the

most difficult challenges is often utilizing high bandwidth and managing hierarchical

memory. To overcome this challenge, CUDA developer must have sufficient knowledge

on hardware architecture of the CUDA enabled GPUs. Before giving the details of

memory hierarchy and CUDA enabled GPU hardware, we will first introduce the

evolution of GPU in next section.

 3.5.2 The Evolution of GPUs

 In GPU’s graphics pipeline, there are phases for different tasks. The pipeline

receives data which represents one, two, or three dimensions as input and after processing

in its phases it results as a two dimensional image. The GPU’s pipeline has two type

processors called vertex and fragment processors. The structure of a complete system

consists of two segments e.g. central processing unit (CPU) and the GPU. Any graphical

application program or any other general purpose program is incorporated into the CPU.

Figure 13 illustrates the primitive visualization throughout this architecture’s processing

pipeline as an example.

29

Figure 13: GPU architecture and Graphics pipeline stages

 In this pipeline model, each phase receives its input from the previous phase.

After processing the input, they send it to the next phase. There is a graphics memory for

the access of individual stages to store intermediate computed data. For instance, in

Figure 13 we see how a triangle with different colors is created via the phases in the

pipeline. In the first step, three vertices of the triangle are created by vertex processors.

Then rasterization and texturing are handled by fragment processors. As it is seen in

Figure 13, vertex processors work significantly less than fragment processors in such a

task. Since they are purpose-specific processors, they wait idle till the fragment

processors are done with their jobs, which causes inefficiencies in tasks.

30

 In mid 2000s, Nvidia introduced its unified architecture, CUDA, with more

general purpose processors. These processors are unified processors that could perform

vertex, geometry, pixel, and general computing operations. In other words, vertex and

fragment processors were replaced by more efficient processors. Thus none of the

processors stay idle while other processors are loaded with heavy work. The unified

architecture brought high computation efficiency to graphical applications.

 In addition to the graphical tasks, these processors can be used for parallel

computing via single instruction multiple thread (SIMT) programming model. Now,

CUDA-enabled GPUs are streaming processor units that allow parallel processing at an

unprecedented efficiency. Figure 14 illustrates the performance of GPUs comparing to

CPU.

Figure 14: GPU performance chart over CPU

31

 3.5.3 Architecture in CUDA

 CUDA is a parallel computing environment introduced by Nvidia which utilizes

the processing units on GPU. Nvidia introduced specific protocols to be able to use cores

on GPU for computing. These protocols define the ways for CPU to use GPU in

computations. In CUDA architecture, CPU is called host while the GPU is named device.

 A CUDA graphics card includes a streaming processing array (SPA) which is

composed of a set of streaming multiprocessors (SM) with each multiprocessor

composed of a set of streaming processors (SP) called CUDA cores. Figure 15 illustrates

the architecture of Nvidia G80 graphics card series. In the figure, the part in red-dashed

frame is SPA in which 16 SMs exist. The part with pink color in Figure 15 shows one of

these 16 SMs. In each SM, there are 8 SPs which is illustrated with light blue color. So,

there are 128 processors in Nvidia G80 graphics cards which can run concurrently.

Figure 15: The architecture of streaming multiprocessors and streaming processors.

SM

SPA

SP

32

 The architecture in GPU provides three main computation components. The first

component is called a grid where is handled by a single GPU. Grids can be one or two

dimensional. These grids consist of the other component, blocks. Every block in a grid

has the same size and dimensions. Blocks include the threads and can have one, two or

three dimensions based on the threads’ architecture. Figure 16 illustrates a simple layout

of the architecture.

Figure 16: CUDA Architecture

 Each block in the grid can have up to 512 threads. The blocks are handled by a

single multiprocessor on the GPU. Today, GPUs can have up to 120 multiprocessors.

Similarly, threads in blocks are handled by a single processor in the multiprocessors

33

which handle the blocks. A multiprocessor has 8 single processors (core). Therefore a

GPU can have totally the number of multiprocessors times 8 cores.

 The blocks which are processed concurrently are called active blocks [45]. The

threads on these active blocks execute the instructions. The active blocks consist of a set

of warps, where a warp is a set of 32 threads executing in single instruction multiple data

(SIMD) parallel. The warps always have the same number of threads during the

execution. Figure 17 illustrates warps which work within a streaming multiprocessor.

Figure 17: Warp scheduling. Threads are grouped as warps and all threads in a

warp execute the same instruction on different data set. Once all threads in the warp

complete their jobs, the warp gets a new instruction.

34

 Warps are the most important part of CUDA performance. Once a task is assigned

to warps, the data to be processed are stored local memory of warps and then no time is

spent for the data transfer. Parallel threads work very fast and process the data very fast.

The job assignments to the threads are done rapidly via warps, and thus threads do not

waste time for waiting a new job assignment. Each thread in a warp executes the same

instruction for different data sets. Once all threads complete their jobs, the warp gets a

new instruction and thus threads keep working without wasting any time. Nvidia still

hides most of the details about CUDA’s execution methods, and therefore, we have

limited knowledge about what is happening background.

 During an execution, CUDA allows at most 8 active blocks or 24 active warps at

the same time per multiprocessor (SM). Since each warp has 32 threads, this means that

a maximum 768 threads can work concurrently on a multiprocessor. Depending on the

number of multiprocessors the total active thread number can reach up to 23,040 in a

graphics card like the GTX 285. Nevertheless, the physical limitations do not allow

having that many efficient concurrent executions. Now, we will explain CUDA memory

hierarchy which is very essential to improve the computation performance.

 3.5.3 CUDA Memory Hierarchy

 Each multiprocessor on CUDA cards has a programmable cache (shared memory)

and a set of registers. Also, multiprocessors may access off-chip global GPU memory as

a dynamic/static access. However, the high latency of global memory penalizes random

access. Therefore, coalesced memory access (retrieving an entire block from memory) is

strongly encouraged. In addition to global memory, there are also constant memory and

texture memory in the architecture. Figure 18 illustrates a schema of a grid in CUDA.

35

Figure 18: CUDA Memory Hierarchy

 Global and constant memories enable the host to write and read by calling

functions. The data which will be processed is generally passed to global memory by the

host. Global memory is a part of device memory, and access to global memory by

threads is handled by memory transactions. These memory transactions are limited to 32,

64 or 128 byte. In other words, only 32, 64 or 128 byte segments of the memory can be

used by memory transactions. When an execution is handled by a warp, global memory

allows threads in the warp do these transactions. The biggest problem in global memory

is the traffic congestion when all threads attempt to access it.

36

 The constant memory allows only read operations. Constant memory has higher

bandwidth then global memory [45]. Therefore accessing to constant memory is faster

than accessing global memory and can be done in a highly parallel way. Constant

variables and kernel arguments are stored in constant memory.

 The last memory exists in the device is texture memory. It is a memory with a

hardware-managed cache. It has two dimensional spatial access patterns and only allows

read operations.

 In addition to device memories, there are some memories in each block too.

Shared memories exist in blocks so that the threads within blocks can communicate and

be synchronized. Accessing shared memory by threads is rapid. Shared memories are

very helpful for threads to work coherently by sharing their results from an execution.

Each thread in a block has registers allocated for itself. In contrast to shared memories,

each thread can only access its registers. Registers generally store the data which is

private to threads and used frequently. The data stored in shared memories and registers

can be accessed in a highly efficient and parallel means.

 3.5.3 CUDA Programming Model

 Concurrent thread execution is handled by CUDA via kernels. A kernel is a

subroutine executed by each thread in a thread batch. Threads executing the kernel are

arranged primarily into a grid of thread blocks. Threads within the same block are

executed on the same multiprocessor. Hence, the threads may share data and be

synchronized. Threads of the same warp are de facto synchronized. That is, conditional

branches are taken by all threads of the warp, and threads not needing to take that branch

37

become idle until the branch completes. Therefore, the parallel algorithm must be

carefully designed to minimize inefficient conditional branching.

 In CUDA programming the data and kernels are passed by the host. These

kernels are executed on threads using the data stored in the global memory. Depending

on the kernel the output is either saved in shared memory or passed back to global

memory. The execution on GPU cores continues till all kernels are executed by parallel

threads.

 Nvidia develops standard template libraries for the libraries implemented in

different programming languages. For instance, the Thrust template library [46] is a

parallel implementation of the C++ Standard Template Library for CUDA enabled GPUs.

The library uses parallel primitives like parallel prefix sum and split to provide the

template framework. Our implementation of parallel structural network clustering

algorithm also uses the Thrust library extensively since procedures such as sorting can

greatly increase coalesced memory access. Sorting in our algorithm is performed using

radix sort from the Thrust library. Thrust partition is used for stream compaction which

groups important elements of an array.

 In this section we introduced GPU evolution, CUDA architecture, and

programming model which was base for our parallel structural clustering algorithm. In

the following chapter we will introduce our algorithm.

38

Chapter 4: Parallel Structural Network Clustering

 The goal of constructing any GPU-based algorithm is to offload data parallel and

computationally intensive pieces of the algorithm to the GPU. For our GPU-based

parallel structural network clustering, the network is copied to the GPU device memory

as an array of integer pairs, E, representing edges of the network. Figure 19 illustrates E

for the sample network given in Figure 1. Once that dataset and the algorithm parameters

have been sent to the GPU a series of computations are performed on the device leaving

the CPU only necessary for global thread synchronization. The result is an array of

integer pairs describing each nodes cluster membership or non-member classification

which is fetched from GPU device memory. Algorithm 1 illustrates our implementation

and its functions. Our algorithm consists of four main components. These are

computation of structurally similar ϵ-neighbors, structurally connected components,

clustering, and classifying non-members respectively.

 Our algorithm begins once the edge list E has been copied from CPU (host)

memory to GPU (device) memory. As seen from Algorithm 1, in order to create an

adjacency list for each node, the undirected edge list E of length m is translated into the

directed arc list A of length 2m. This is also illustrated in Figure 19. To create the array

A, each parallel thread reverses a pair from E and inserts the pair into E'. Next, E and E'

are joined together and copied to array A. For easy indexing of the adjacency list for

each node, A is sorted using Thrust's parallel GPU sort. For instance, in Figure 19 we

can see that the first two pairs of the Array A are displayed in a darker color. The second

component of these two pairs forms the adjacency list of node 0 in the network from

Figure 1. For computational efficiency, A is stored both as an array of integer pairs for

39

sorting using the Thrust library, then as a pair of integer arrays for calculating set

intersections. This concludes the first for loop and sort from Algorithm 1.

Figure 19: Forming directed arc list A, which provides the adjacency list for each node

in graph G. Darker and lighter colors are used to clearly display adjacencies of each

node.

 In the next section, we discuss the second for loop of Algorithm 1 which

identifies the ϵ-neighbor pairs from the edge list E. Then we will discuss computing

structurally connected components followed by an explanation of clustering. Finally, the

process of classifying nodes which belong to no cluster as hubs or outliers will be

presented.

40

Algorithm 1: Parallel Structural Network Clustering

41

4.1 Identifying Structurally Similar Epsilon Neighbors

 Computing structural similarity requires a set intersection for each pair of nodes

connected by an edge. Set intersection operations are critical for finding ϵ-neighbors.

Consider the set of nodes adjacent to node 3 and the set of nodes adjacent to node 5 in

Figure 1. The intersection set of the two sets of adjacent nodes provides the set of nodes

adjacent to both 3 and 5; which is simply {4}.

Figure 20: Consider reference nodes and adjacent nodes of A as two separate integer

arrays. The boundaries for each node’s adjacency list are computed using the reference

node array. Here, structural similarity is computed for the edge (0, 2). Notice that Thread

1 reports a match for sets A and B, but all other threads in the warp report no match

 The adjacency list for each node is extracted from the arc list A. Considering the

arc list A is stored as a pair of integer arrays, the first array gives the reference node and

the second array gives the adjacent nodes. Hence, the first and the last occurrence of

42

each node in the reference nodes (see Figure 20) is recorded to give the corresponding

starting and ending index positions for that node’s adjacency list. These starting and

ending indexes are used to calculate the structural similarity (σ) between the nodes. The

following formulation shows how our clustering algorithm calculates the structural

similarity for two nodes u and v:

𝑎𝑑𝑗() { () ∊ 𝐴} (6)

σ()
 + 𝑎𝑑𝑗()⋂𝑎𝑑𝑗()

√(+ 𝑎𝑑𝑗()) (+ 𝑎𝑑𝑗())
 (7)

where adj(u) is the adjacency list of the node u. Algorithm 2 shows the steps for

determining the ϵ-neighborhoods of the nodes.

Once the adjacency list is created for every node, structural similarity of each pair

is computed. Each warp fetches 32 integer pairs from edge list E. To avoid branching

we let all threads in the warp compute the set intersections for each pair before advancing

to the next pair. Threads in the warp work together to perform a set intersection by

merging sorted lists. Each thread in a CUDA kernel is given a unique thread identifier tid.

The position in the warp, pos is tid mod 32. In Algorithm 2, the count variable is the

number of the adjacent nodes that two different nodes share. The index of the element

fetched by each thread from SetA is tid/8 and from SetB is tid mod 8. Each thread adds 1

to the variable count if its element from SetA matches the element from SetB. Then, if

elements remain in SetA or SetB, the indices are advanced appropriately. Finally, the

count has been computed for each of 32 pairs (due to the warp size) and in parallel each

pair's count value is normalized by the geometric product of two values that are equal to

the sizes of the nodes' adjacency lists.

43

Algorithm 2: Computing Structural Similarity

Based on the values calculated by each thread, E is compacted to the pairs which

have a structural similarity value greater than ϵ. As illustrated in Figure 21, compaction

happens at the pairs where their structural similarity is greater than ϵ. When this is the

case neighborhood array’s corresponding element becomes 1 (see Figure 21-b). Then

this compacted E is concatenated with the reversed pairs of compacted E, which forms

the list of ϵ-neighborhood of the nodes, N. Before continuing the connected component

parts, N is sorted (see Figure 21-d).

44

Figure 21: Edges in E with structural similarity > epsilon, are copied to a new edge list.

That edge list unified with its inverse edge list forms the list of epsilon neighbor pairs N.

N is sorted for computing connected components among epsilon neighbors.

4.2 Computing Structurally Connected Components

 Clustering in SCAN is efficiently executed on the CPU as a breadth first graph

traversal. However, breadth first search requires much conditional branching and

sequential computation, so it is inefficiently executed on massively multithreaded SIMD

graphics cards.

 Breadth first search algorithms do exist for CUDA [47], [48], but there may

actually be many small sub-graphs to be constructed in this step. Also, some CUDA

implementations exist for connected component labeling [49], [50], [51], [52]; however,

connected components in [49] can fail to converge. So, we provide a simple version for

finding connected components adapted from [49], [53].

45

Algorithm 3: Structurally Connected Component Labeling

 The connected components algorithm (see Algorithm 3) consists of two main

parts. The first is called linking and the second is called graph contraction.

 4.2.1 Linking

 The first function of connected components algorithm is the linking phase which

uses the sorted ϵ-neighbor list to assign a cluster label (parent) to nodes of a cluster (see

Algorithm 4).

 The ϵ-neighbor list is sorted so that each node can claim either itself or a neighbor

as its parent without generating pointer cycles. Each node in the original graph is

initialized as having no parent. Then, on the every iteration each node is assigned a

parent from the set of itself and its ϵ-neighbors. On odd iterations the minimum node

identifier is chosen as the parent. On even iterations the maximum node identifier is

chosen as the parent. Alternating the direction that each node seeks a parent typically

allows Linking after r steps rather than d steps, where d is the maximum shortest path

between two nodes (or diameter) and r is approximately d/2.

46

Figure 22: Computing connected components among epsilon neighbor pairs result in a

set of candidate clusters.

 As seen in Figure 22, the first pair of the node 1 (see N in Figure 22-a) is (1, 0),

the second pair is (1, 2) and the third and the last pair is (1, 3). Considering the color

differences of N in Figure 22-a, the darker colors represent the pairs which will be

processed. For instance, on the first iteration the pair (1, 0) is handled and, since this is

an odd iteration, the value min{1, 0} is 0. Therefore, 0 is assigned as the parent of the

node 1. Similarly, the first ϵ-neighbor pair for node 2 is (2, 0) and therefore, 0 is assigned

as the parent of the node 2.

47

Algorithm 4: Linking

 At the end of the each iteration, the nodes in the list of ϵ-neighbors are replaced by

their parent. For instance, in Figure 22-c the node 2 has changed to its parent which is 0.

48

In the same fashion, the node 3 is replaced by its parent, node 1. As illustrated in Figure

22-c, after all replacements are made N is updated using Thrust partition to effectively

remove pairs containing identical nodes. N is then sorted (see Figure 22-d). We can see

that the remaining pairs are (0, 1) and (1, 0). Since this is the second iteration and it is an

even iteration, the maximum value of the pairs (in this case 1) is assigned as the parent of

nodes 0 and 1. The updated parent list can be seen in Figure 22-e. Notice that after

linking is done, the parent of the nodes 0, 1, and 3 is the node 1 while the parent of the

node 2 is 0. Linking terminates once N is empty.

 The second critical part of connected component algorithm is graph contraction

which will be presented next.

 4.2.2 Graph Contraction

 This phase is to guarantee that all nodes in the same connected component have

the same parent and is accomplished using the method of pointer doubling. Pointer

doubling is a method where each node's parent is replaced by the parent of the node's

parent and results in all nodes of a tree having the same parent.

 As seen from Algorithm 5, each thread k fetches the parent of node k as x. If x is

not null, then the thread fetches the parent of x as y. If x and y are different, then y is

stored as x, the parent of node k. This continues for each thread until x equals to y. For

example, in Figure 22-e, the parent of node 2 is 0 after the linking is done. In graph

contraction the appropriate thread traverses the hierarchy of parents for node 2 to the top

level parent. First it checks the parent of the node 2 which is 0. Then it checks the parent

of 0 which is 1. Since the parent of node 1 is itself, node 1 is a top level parent, and the

49

thread ends the traversal. The parent of 2 is now updated as 1. Thus, the thread has

completed graph contraction for node 2.

Algorithm 5: Graph Contraction

 Graph contraction concludes with a disjoint set of structurally connected

components, however, the components must be verified as clusters in the next step of our

algorithm, called clustering.

4.3 Clustering

 Not all structurally connected components are considered proper clusters. In our

algorithm, µ is set at µ=2, and so a proper cluster is a structurally connected component

containing at least one core node. In the clustering process components which do not

50

contain a core node are removed from the set of structurally connected components.

Before clustering, the number of ϵ-neighbors is counted for each node to determine which

nodes are cores (see Algorithm 1). Nodes with at least µ ϵ-neighbors are cores. As

illustrated in Algorithm 6, thread k fetches whether the node k is a core node or not. If

node k is a core, then x, the parent id of node k, is stored in array clusters[x]. Next, each

node's parent id x is replaced by clusters[x]. Hence, the parent ids of nodes which are not

members of proper clusters become null. Finally, each node's parent id becomes its

cluster id.

Algorithm 6: Clustering involves removing false clusters from the candidate clusters.

 Figure 22 shows that after the connected component part is executed the nodes 8

and 9 are assigned to a parent id of 8 (see parent in Figure 22-f). Although nodes 8 and 9

51

form a structurally connected component neither node is a core. Therefore, they cannot

represent a cluster. After the clustering part is completed we can see that we have only

two clusters e.g. clusters 1 and 5 (see parent in Figure 23-b). Nodes with a null parent are

considered non-members. The next step after clustering is classifying non-members as

either hubs or outliers.

Figure 23: Nodes in graph G with µ or more entries in ϵ-neighbor pairs list N

are considered core nodes. The parent nodes of cores are promoted to cluster

representatives. Values of cluster representatives are then gathered into parent

by parent keys.

4.4 Classifying Non-Members

 The final step of our algorithm is to classify the nodes in the network which

remain without a parent after the algorithm has performed clustering. How these

non-member nodes are further classified as hubs or outliers is illustrated in Algorithm 7.

52

Algorithm 7: Nodes not belonging to a cluster are classified as either hub or outlier

node.

 Classifying non-members begins with removing the adjacency lists of cluster

members from arc list A, the set of adjacency lists. This is implemented using the

parallel partition function provided by the Thrust library to move the adjacency lists of

interest to the beginning of A. Then, for each non-member reference node in A (see

darker color nodes in Figure 24-a), the adjacent node's id is replaced by the cluster id of

that adjacent node. Next, pairs in A which have null cluster id in the adjacency node

position are removed from A. Finally, each cluster id in the adjacency node position s of

53

A is compared to the cluster id at (s-1). If the two are different and the reference nodes at

s and s-1 are the same, then the cluster id of that reference node is changed to identify the

node as a hub.

Figure 24: Pairs in arc list A with non-members as the reference node has the

adjacent node replaced by the parent of the adjacent node. Non-member

reference nodes with more than one adjacent cluster are identified as a hub

node. Otherwise, the non-member node is an outlier.

 For example, the adjacent nodes of the node 4 are 3 and 5. The cluster ids of the

nodes 3 and 5 are 1 and 5 respectively. In other words, the adjacent clusters of the node 4

are 1 and 5. Since the node 4 has two different cluster ids, it is considered as a hub.

Once this step is complete, all non-members which are not hub nodes are considered to

be outlier nodes e.g. the nodes 8 and 9.

54

 Our algorithm has now identified each node’s cluster membership or non-member

classification, but the resulting array parent must be further processed for the output to be

presentable (see Algorithm 1). If node u belongs to a cluster the cluster identifier is given

as parent[u]. Otherwise, parent[u] is null for outliers and non-null for hub nodes. In

parallel, each thread k inserts the integer pair (k, parent[k]) into the array clusterID at

position k. Then, clusterID is sorted by the parent component and transferred to host

memory. When that is accomplished the clustering algorithm is finalized.

55

Chapter 5: Results

 Implementation of the parallel algorithm was written in C++ for CUDA and

executed on the commodity graphics processor Geforce GTX 460. The results of our

parallel algorithm are compared with SCAN’s results. The sequential version is

performed on the Intel Core i5 processor. We first tested our parallel algorithm over real

world data which was also used in original SCAN paper e.g. NCAA and political books.

In order to display exact equivalence of results generated from both SCAN and our

algorithm we generated bitmap images of the adjacency matrix of two real datasets sorted

by cluster id and vertex id.

 To test the performance we have generated random networks using the GTgraph

graph generator suite [54]. GTgraph is a synthetic network generator introduced by

Bader et al. and is capable of generating networks with different characteristics. In our

experiments we have used SSCA#2 networks and RMAT networks.

 RMAT networks have a large number of vertices. They also have a small degree

for the most of the vertices while a few vertices have a large degree. This model is the

closest representation of the large real-world-networks like social networks. SSCA#2

graphs are made of random sized cliques of vertices with a hierarchical distribution of

edges between cliques based on a distance metric. A clique is defined as a maximal set of

vertices where each pair of vertices is connected by directed edges in one or both

directions.

56

5.1 Equivalence to SCAN

 We use two real world networks to compare the clustering of SCAN and our

parallel version. For each cluster found in the network, the members are sorted by a node

identifier and given the least node identifier in the cluster as their cluster identifier. Next,

the set of nodes is sorted by cluster identifier. Then, the sorted list of hub nodes is

appended followed by the sorted list of outlier nodes. Using this ordering, the adjacency

matrix for each graph is built and printed as a black and white bitmap. Each pixel at row

i, column j in the bitmap represents a link from the node in the list of nodes at position i

to the node at position j. These bitmaps are given in Figure 25.

Figure 25: Bitmap representations of the adjacency matrix for two real world

data sets. (a) Adjacency matrix of Political Books clustered by SCAN. (b)

Political Books clustered by the parallel version. (c) NCAA teams clustered by

SCAN. (d) NCAA teams clustered by the parallel version. Bitmaps for Political

Books clustering has been scaled up to fit.

57

 The first real world network is a set of 105 books about U.S. politics. The nodes

represent political books sold through Amazon.com. The edges represent the books

frequently bought by the same buyers. Clustering this network with SCAN using ϵ = 0.4

and µ = 2 produces three clusters. Naturally, these clusters are sets of liberal,

conservative, and neutral biased books. As illustrated by the adjacency matrix bitmaps in

Figure 25, computing this clustering with our algorithm using the same parameters

produces the exact same results.

 The other real world network is a football game schedule of the National

Collegiate Athletic Association (NCAA). The 323 nodes in the network represent teams

that play in the NCAA or against those teams. Each edge represents a game scheduled.

For instance, for the parameters (ϵ = 0.5, µ = 2), SCAN produces 29 dense clusters,

possibly representing sub-conferences. Using those same parameters, our parallel version

again produces the exact same clustering as SCAN.

5.2 Performance

 Clustering of any kind generally involves two basic tasks: computing similarity

metric and generating clusters based on that metric. We discuss the performance of both

tasks computed together. In addition, we also show the performance of our algorithm

supposing the similarity has been pre-computed. As illustrated in Figure 26, we have

generated 10 SSCA#2 networks and 10 RMAT networks. In both groups the number of

vertices of the networks starts from 1024 and increases as the power of two.

58

Figure 26: The bar graph and table of the results for the R-MAT and SSCA2

networks with a fixed average of degree of 6.

 Figure 26 shows the results for the networks tested on both the SCAN and our

algorithm. The computation time includes the process of calculating the structural

similarity values. For each network, it can be seen that the parallel version we

implemented has a much lower computation time. For instance, the computation time of

the SCAN for 1024 edges is 46 milliseconds while the computation time of the parallel

version is only 3.3 milliseconds for the RMAT network. In other words, our algorithm is

nearly 14 times faster than the SCAN for 1024 vertices. We observe almost the same

speedup for the SSCA#2 network. As the number of vertices increases the parallel

version is getting significantly faster than the SCAN. For the RMAT network with

524,288 vertices, the computation time of the SCAN is 16,273 milliseconds while it is

only 109.1 milliseconds for the parallel version. Our algorithm is 149 times faster than

59

the SCAN for the RMAT network with 524,288 vertices. Table 1 shows the speedup ratio

of the computation times of both the SCAN and the parallel version.

Average Degree 6 32,768 Nodes

Nodes RMAT SSCA#2 Degree RMAT SSCA#2

1024

2048

4096

8192

16384

32768

65536

131072

262144

524288

13.8

13.3

28.3

31.3

38.3

50.5

77.8

88.7

111.1

149.2

10.6

13.1

17.1

16.1

23.9

31.9

54.0

59.7

74.1

87.6

10

20

30

40

50

60

70

80

90

100

115.3

151.3

173.6

185.9

196.6

198.6

214.2

219.6

235.0

239.2

79.5

114.2

158.1

173.4

201.8

218.5

224.7

235.0

250.5

254.2

Table 1: Speedup rates for the graphs with a constant average node degree (Left), and

for the graphs with a constant number of nodes but varying average node degree (Right).

 The performance results imply that the speedup of the parallel version will be

much higher for the networks that have much higher number of vertices. Since the serial

version of SCAN does not work for larger networks (e.g. larger than 524,288) we did

compare our algorithm and SCAN up to these number of nodes. However; with the 1GB

of memory available on the Geforce GTX 460, our algorithm can run e.g. on up to

16,000,000 edges. If greater memory capacity GPUs or multiple GPUs are used for the

computation, the parallel algorithm is easily scalable.

60

 In a network or graph, degree is defined as the ratio of the number of the vertices

divided by the number of the directed edges. In the previous experiments, we have used

networks that have an average degree of 6. In this experiment set, we have used a fixed

number of vertices (32,768) with 10 different degrees ranging from 10 to 100.

Figure 27: The bar graph and table of the results for the R-MAT and SSCA#2

networks with a fixed numbers of vertices of 32768.

 Figure 27 shows the results of both the parallel version and the SCAN. The

computation time of the SCAN for the degree of 10 is 5,807 milliseconds while the

computation time of our algorithm is only 50.3 milliseconds for the RMAT network.

Thus, our implementation is approximately 115 times faster than the SCAN for 32,768

vertices with the degree of 10. For the RMAT network of 32,768 vertices with the degree

of 100, the computation time of the SCAN is 360,634 milliseconds while it is only

61

1,507.9 milliseconds for the parallel version. Hence, our algorithm is 239 times faster

than the SCAN for the RMAT network for 32,768 vertices with the degree of 100 and

even greater for SSCA#2 networks with the same dimensions.

Figure 28: The bar graph and table of the results for the R-MAT and SSCA2

networks with a fixed average of degree of 6. The computation times do not

include the process of calculating the structural similarity.

 When the computation of the structural similarity is not included in the

computation time our algorithm is still significantly faster than the SCAN. For 1,024

vertices with the average degree of 6, the parallel version is 2.2 times faster than the

SCAN for RMAT networks and 1.9 times faster for SSCA#2 networks. As the number

of vertices increase, the speedup rate reaches almost 65 times for the RMAT networks

and 28 times for SSCA#2 networks. When the number of the vertices is set at 32,768, the

62

speedup rate is 17.5 for RMAT networks with the degree 10 and 46.6 for the degree 100.

For SSCA#2 networks, the speedup rate is 22.1 for the degree 10 and 45.7 for the degree

100.

Figure 29: The bar graph and table of the results for the R-MAT and SSCA2

networks with a fixed numbers of vertices of 32,768. The computation times do

not include the process of calculating the structural similarity.

 When the number of vertices is fixed to the 32,768 as shown in Figure 29, the

speedup ratio is approximately 17 times for the degree of 10 and it is almost 47 times for

the average degree of 100. Table 2 shows all the speedup rates for RMAT and SSCA2

networks when the pre-computed similarity values are used by our algorithm.

63

Average Degree 6 32,768 Nodes

Nodes RMAT SSCA#2 Degree RMAT SSCA#2

1024

2048

4096

8192

16384

32768

65536

131072

262144

524288

2.2

4.5

8.7

9.0

13.3

17.3

24.4

37.2

49.6

64.6

1.9

3.5

5.3

5.4

7.9

9.7

16.0

16.8

24.1

28.0

10

20

30

40

50

60

70

80

90

100

17.5

24.3

28.4

30.9

32.0

37.5

41.8

43.5

44.8

46.6

22.1

29.7

34.8

38.2

39.5

40.4

41.7

41.7

43.6

45.7

Table 2: Speedup rates with pre-computed similarity for the graphs with a

constant average node degree (Left), and for the graphs with a constant number

of nodes but varying average node degree (Right).

 Table 2 shows that even though we use pre-computed structural similarities, our

algorithm is still significantly faster than SCAN. Since we could not test SCAN for much

larger networks, we only have outcomes for the networks with 524288 nodes. However,

the increase in the speedup rates proves that as the size of networks increase we get much

better results comparing to SCAN.

64

Chapter 6: Conclusion

 In this study, we have introduced a parallel structural network clustering

algorithm which is a GPU-based parallel version for SCAN network clustering algorithm.

We have outlined the tasks of redesigning and parallelizing an optimized sequential

algorithm designed for execution on the CPU into a massively parallel algorithm greatly

accelerated by the GPU using C for CUDA. The performance of the GPU accelerated

structural clustering can be more than 250 times faster than a CPU implementation. The

results also indicate that this speedup becomes greater for networks with larger numbers

of edges. Moreover, the parallel version we implemented is scalable it works for very

large networks if the number of GPUs is increased.

 Our implementation is generic enough to be executed on any CUDA enabled

GPU with compute capability of 2.0 or greater. With small changes to the parameters of

the kernel calls, GPUs with at least 1GB of device memory can structurally cluster

networks several times larger than those documented in the performance analysis of this

thesis. However, the current implementation requires that for each step the necessary

data structures exist entirely in device memory. Hence, our parallel version is limited by

the amount of device memory available on the GPU. However, if multiple GPUs are

included in the system this problem will be solved since our algorithm is scalable.

65

References

[1] P. F. Drucker, "The post-capitalist society," HarperBusiness, 1993.

[2] R. G. Hariis, "The knowledge-based economy: intellectual origins and new economic

perspectives," International Journal of Management Reviews, vol. 3, pp. 21-40, 2001.

[3] S. Wasserman and K. Faust, Social network analysis, Cambridge, MA: Cambridge University

Press, 1994.

[4] P. J. Hinds and S. Kiesler, "Communication across boundaries: Work, structure, and use of

communication technologies in a large organization.," Organization Science, vol. 6 (4), pp.

373-393, 1995.

[5] E. Lazega, The Collegial Phenomenon: The Social Mechanisms of Cooperation Among Peers

in a Corporate Law Partnership., Oxford University Press: Oxford, UK, 2001.

[6] D. J. Watts, "The "new" science of networks," Annual Review of Sociology, vol. 30, pp. 243-

270, 2004.

[7] B. Bollobas, Modern Graph Theory, New York, NY: Springer, 1998.

[8] J. Leskovec, J. Kleinberg and C. Faloutsos, "Graphs over time: Densification laws, shrinking

diameters and possible explanations.," Proceedings of the 11th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining..

[9] L. C. Freeman, The Development of Social Network Analysis: A Study in the Sociology of

Science, North Charleston, SC: BookSurge, 2004.

[10] M. E. J. Newman, "The structure and function of complex networks," SIAM Review, vol. 45,

pp. 167-256, 2003.

[11] C. Ding, X. He, H. Zha, M. Gu and H. Simon, "A min-max cut algorithm for graph partitioning

and data clustering," Proc. of ICDM, 2001.

[12] M. E. J. Newman, "Fast algorithm for detecting community structure in networks," Phys.

Rev. E 69, 066133, 2004.

[13] W. W. Zachary, "An information flow model for conflict and fission in small groups," Journal

of Anthropological Research 33, pp. 452-473, 1977.

[14] Science Direct, [Online]. Available:

66

http://www.sciencedirect.com/science/article/pii/S0167865509003043. [Accessed 2012].

[15] B. Bisci, Network design basics for cabling professionals., McGraw-Hill Professional.

[16] J. Shi and J. Malik, "Normalized cuts and image segmentation," IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 22, 2000.

[17] M. E. J. Newman and M. Girvan, "Finding and evaluating community structure in networks,"

Phys. Rev. , 2004.

[18] M. E. J. Newman, "Modularity and community structure in networks," Proc. Natl. Acad. Sci.

USA in press, 2006.

[19] J. Duch and A. Arenas, "Community detection in complex networks using extremal

optimization," Physical Review, vol. 72, 2005.

[20] A. Clauset, " Finding local community structure in networks," Physical Review E, vol. 72,

2005.

[21] A. Clauset, M. E. J. Newman and C. Moore, "Finding community in very large networks,"

Physical Review E 70, 2004.

[22] R. Guimera and L. A. N. Amaral, "Functional cartography of complex metabolic networks,"

Nature, vol. 433, pp. 895-900, 2005.

[23] M. E. J. Newman, "Finding community structure in networks using eigenvectors of

matrices," Phys. Rev. E 74, 036104, 2006.

[24] M. Girvan and M. E. J. Newman, "Community structure in social and biological networks,"

Proc. Natl. Acad. Sci. USA 99, pp. 7821-7826, 2002.

[25] M. E. J. Newman, Networks: an introduction, Oxford, UK: Oxford University Press, 2010.

[26] P. Pons and M. Latapy, "Computing Communities in Large Networks Using Random Walks,"

ISCIS, pp. 284-293, 2005.

[27] G. K. Orman and V. Labatut, "A comparison of community detection algorithms on artificial

networks," J. Gama et al., LNAI 5808 Berlin Heidelberg, Springer-Verlag, p. 242–256, 2009.

[28] A. Lancichinetti, S. Fortunato and F. Radicchi, "Benchmark graphs for testing community

detection algorithms," Phys. Rev. E Stat. Nonlin Soft. Matter Phys. 78, 46110 , 2008.

[29] M. Ester, H. P. Kriegel, J. Sander and X. Xu, "A density-based algorithm for discovering

67

clusters in large spatial databases with noise," In Proc. 2nd Int. Conf. on Knowledge

Discovery and Data Mining (KDD'96) , pp. 291-316, 1996.

[30] X. Xu, N. Yuruk, Z. Feng and T. A. J. Schweiger, "SCAN: Structural clustering algorithm for

networks," Proc. of SIGKDD, pp. 824-833, 2007.

[31] D. J. Watts and S. H. Strogatz, "Collective dynamics of 'small-world' networks," Nature, vol.

393, pp. 440-442, 1998.

[32] J. Dongarra and T. Haigh, "Biographies," IEEE Annals of the History of Computing, vol. 30,

pp. 74-81, 2008.

[33] A. Grama, G. Karypsis, A. Gupta and V. Kumar, Introduction to Parallel Computing: Design

and Analysis of Algorithms, Addison-Wesley, 2003.

[34] D. E. Shaw, R. O. Dror, J. K. Salmon, J. P. Grossman, K. M. Mackenzie, J. A. Bank and C.

Young, "Millisecond-scale molecular dynamics simulations on anton," SC ’09: Proceedings of

the Conference on High Performance Computing Networking, Storage and Analysis, pp. 1-

11, 2009.

[35] R. Duncan, "A survey of parallel computer architectures," Computer, vol. 23, pp. 5-16, 1990.

[36] J. L. Hennessy and D. A. Patterson, Computer Architecture, Fourth Edition: A Quantitative

Approach, San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2006.

[37] L. R. Scott, T. Clark and B. Bagheri, Scientific Parallel Computing, Princeton, NJ, USA:

Princeton University Press, 2005.

[38] J. Feo, D. Harper, S. Kahan and P. Konecny, "Eldorado," CF ’05: Proceedings of the 2nd

conference on Computing frontiers, pp. 28-34, 2005.

[39] P. Kongetira, K. Aingaran and K. Olukotun, "Niagara: A 32-way multithreaded sparc

processor," IEEE Micro, vol. 25, pp. 21-29, 2005.

[40] "Other Message PAssing Systems," [Online]. Available:

http://www.netlib.org/utk/lsi/pcwLSI/text/node70.html.

[41] M. Forum, "MPI: A Message-Passing Interface Standard. Version 2.2," [Online]. Available:

http://www.mpi-forum.org. [Accessed March 2012].

[42] OpenMP, "OpenMP Application Program Interface," [Online]. Available:

http://www.openmp.org/mp-documents/spec30.pdf. [Accessed 2012].

68

[43] J. Nickolls and W. J. Dally, "The gpu computing era," IEEE Micro, vol. 30(2), 2010.

[44] M. S. Friedrichs, P. Eastman, V. Vaidyanathan, M. Houston, S. Legrand, A. L. Beberg, D. L.

Ensign, C. M. Bruns and V. S. Pande, "Accelerating molecular dynamic simulation on

graphics processing units," J Comput. Chem., 2009.

[45] P. Harish and P. J. Narayanan, "Accelerating large graph algorithms on the gpu using cuda,"

In HiPC, 2007.

[46] NVIDIA, "CUDA programming guide," [Online]. Available:

http://developer.download.nvidia.com/compute/cuda.

[47] NVIDIA, "Cuda Thrust Library," [Online]. Available:

www.nvidia.com/content/GTC2010/pdfs/2219_GTC2010.pdf.

[48] K. A. Hawick, A. Leist and D. P. Playne, "Parallel graph component labelling with GPUs and

CUDA," In Parallel Computing 36, pp. 655-679, 2010.

[49] R. Niewiadomski, J. Amaral and R. Holte, "A parallel external-memory frontier breadth-first

traversal algorithm for clusters of work-stations," In IEEE ICPP, 2006.

[50] J. Soman, K. Kothapalli and P. J. Narayanan, "Some GPU algorithms for graph connected

components and spanning tree," Parallel Processing Letters 20(4), pp. 325-339, 2010.

[51] K. Wu, E. Otoo and K. Suzuki, "Optimizing two-pass connected-component labeling

algorithms," Pattern Analysis Applications 12(2) 117135, 2009.

[52] D. S. Hirschberg, A. K. Chandra and D. V. Sarwate, "Computing connected components in

parallel computers," Communications of the ACM 22, 8, pp. 461-464, 1979.

[53] O. Kalentev, A. Rai, S. Kemmitz and R. Schneider, "Connected component labeling on a 2D

grid using CUDA".

[54] V. Vineet, P. Harish, S. Patidar and P. J. Narayanan, "Fast minimum spanning tree for large

graphs on the GPU," In HPG 09: Proceedings of the Conference on High Performance

Graphics, pp. 167-171, 2009.

[55] D. A. Bader and K. Madduri, "GTgraph: A synthetic graph generator suite," 2006. [Online].

Available: http://www.cc.gatech.edu/kamesh/gtgraph.

