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ABSTRACT 

In many fields, complex networks are commonly used to represent relationships among 

sets of entities in real systems. Community in a network can be considered as a summary 

of the whole network; thus, it is a very important field. For instance, communities in a 

citation network might represent related papers on a single topic whereas communities on 

the web might represent pages of related topics. New community detection or clustering 

algorithms have brought us significant advances to discover hidden knowledge, to 

summarize the network, and to find relationships.  Detecting communities in real systems 

has a great importance in different fields such as sociology, biology and computer science.  

The Structural Clustering Algorithm for Networks (SCAN) is a fast and efficient 

clustering technique for finding hidden communities and isolating hub and outlier nodes 

within a network.  However, for very large networks, it still takes considerable amount of 

time.  With the introduction of the Compute Unified Device Architecture (CUDA) by 

Nvidia, the scientific community has seen an explosion in applications employing 

graphical processing unit acceleration.  In this project, we present a CUDA-based parallel 

algorithm, where SCAN's computation steps are carefully redesigned. We discuss 

transforming SCAN into a series of highly regular and independent operations suitable for 

acceleration via CUDA.  Now, a large network or a batch of disjoint networks can be 

offloaded to graphics processors for quick and equivalent structural clustering. The 

experimental results indicate that our parallel structural network clustering algorithm 

generates exactly equivalent results to SCAN.  Moreover, it is considerably faster than 

SCAN.  Depending on the dataset, this speedup can be up to 254-fold. 
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Chapter 1: Introduction 

1.1 The concept of Network 

 With the advances in computer technology, the world evolved to a new globalized 

system. From technology to economy, this new world system is more dynamic and 

interactive such that entities in the world such as people and/or organizations are no 

longer as isolated as they used to be [1].  In the past, entities had a natural border which 

determined the degree of their isolation [2].  For example, a person who lives in a small 

village in Africa had to be content with the people who live in the same territory.  

However, in the new globalized system, an entity can easily interact with any other entity 

in the world which leads to broader and more complex interaction systems. These 

interaction systems are considered as networks in which entities are known as the nodes 

of networks. The connections between the nodes represent the relationships of these 

nodes.   

 Although the concept of network evokes computer systems, it is also used to 

express the interaction of the entities in real life or in any field.  In the real world, a node 

in a network can be a person, an organization, a country, or a group while connections 

can be expressed as friendship, alliance, collaboration, or business partnership [3].  For 

instance, the social interactions of employees in a company form an internal network 

which may represent the company’s informal structure [4].  This structure may provide 

certain dynamics of employees’ interactions. For instance, consultations between the 

employees form an advice network in the company.  When an advice exchange between 

two employees occurs in the company a connection of the advice network is formed [5]. 
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 In various fields, the network concept is used to interpret and solve many research 

problems either as a core or supportive idea [3], [6].  Graph theory in mathematics and 

computer science is a well-known field about network studies [7], [8].  In addition, some 

studies about the social networks in sociology [9] and some studies about complex 

structures in physics are examples of studies which deal with networks [10].  Generally, 

social scientists focus on the relationships in social networks while mathematicians and 

computer scientists develop methods to obtain and analyze knowledge about the structure 

of the relationships within the networks. 

 In graph theory, all networks can be represented as graphs and are denoted as 

G{V, E} where the graph G  exists from two sets, V and E. V stands for the set of vertices 

(nodes) and E stands for the set of edges between the vertices. Figure 1 illustrates a 

simple network (graph). 

  

    

Figure 1: A simple network with10 nodes.  

 

 The edges between the vertices in a graph represent the interaction of the nodes in 

a network.  These interactions can be one-way or two-way. We can easily understand this 

on Twitter which is a popular social network on the Internet.  For instance, if two people 

follow each other on Twitter, this is an example for two-way interactions.  In this case, 
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we say there is a directed edge between the vertices.  Directed edges are also known as 

arcs.  On the other hand, if a person follows another person without being followed by 

that person, this represents a one way interaction but the edges are still considered as 

directed edges. The graphs with directed edges are called directed graphs.  Graphs are 

not always supposed to have a direction between their edges.  For example, an employee 

network in a company has undirected edges since the relationships between the 

employees do not have a direction.  The edges in this kind of networks are called 

undirected edges and the graphs with undirected edges are called undirected graphs.   

 In graph theory, the number of connections that a vertex has is called a degree.  

The degree distribution within a network gives us information about the complexity of a 

network.  If we divide the total number of degrees in a network by the total number of 

vertices, we find the average degree in a network.   

 Graph theory also tells us that the vertices in the networks can be connected to 

other vertices in more than one way.  In other words, in a complex graph, there can be 

multiple edges between two vertices.  Multiple connections between vertices can be 

understood when we think about real-world relationships.  We are connected to other 

people in many ways.  For instance, a person can be a co-worker of his/her spouse.  In 

such a case, two people are connected with each other through two ways. Therefore, 

when we consider a real-world network, we cannot assume that the nodes have only a 

single interaction.  Such an assumption causes misinterpretations on a network when we 

attempt to discover hidden knowledge or to detect communities within networks.  Now, 

we will explain the community detection concept in networks in the next section. 
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1.2 Community Detection in Networks 

 The network concept, more specifically the concept of social network, has gained 

importance after the Internet was used in daily life.  After social networks on the Internet 

became popular, they have partially revealed the relationships between people.  Thus, we 

have had some ideas about the interactions of human beings up to one degree.  However, 

they have also built complicated and discrete networks.  These networks include hidden 

knowledge from personal information to community facts.  Network clustering is one of 

the most common ways to detect communities within a network. 

 Network clustering is partitioning a network into sub-networks in which nodes 

have denser connections or common structures.  Network clustering has other names like 

graph partitioning [11], community structure analysis [12], and community detection.  

Basically, clustering in networks is to classify nodes into different categories.  We will 

call these categories as clusters throughout this thesis. 

 Community detection via network clustering reveals the bonds between the 

people who form the network.  A well-known community detection study was conducted 

on a karate club by W. W. Zachary [13] in 1977.  In this study, Zachary attempted to 

predict the split of the members of a karate club.  In this karate club, there occurred a 

conflict between the karate instructor and the club president.  The instructor demanded a 

raise for the lessons but the club president thought the price should not be changed and 

also the club administrators should give such a decision.  Somehow this conflict brought 

up some ideological debates and, the debates polarized the club members.  The problem 

was finalized when the club president fired the instructor.  Then the instructor opened his 

own club and some of the members decided to join the new club.  Zachary predicted 
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members’ decisions based on their relationships with only one error.  Figure 2 shows how 

two groups were shaped after the split [14].  

 

 

Figure 2: Zachary karate network. The nodes with darker color belong to one group; the 

ones with white color belong to the other group. 

 

 Zachary, in his study, revealed that the interactions between the nodes form 

invisible small communities.  Only community detection methods can discover these 

hidden communities.  Since the sizes of networks are very large in the new world systems, 

discovering knowledge is no longer as easy as it used to be and therefore, very deep and 

detailed studies or newly developed methods are required to obtain this hidden 

knowledge.   

 In this project, we have worked on developing a knowledge discovery method in 

large-scale networks, which is explained in Chapter 4.  First, we will introduce the most 

common network topologies in the remainder of this chapter. 
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1.3 Network Topologies 

 Networks are very complicated and intricate systems. For real-world networks, it 

is almost impossible to classify them in terms of their structures.  However, in graph 

theory, mathematicians and computer scientists define several network topologies 

according the layout of the interactions or relationships.  These topologies are 

point-to-point, ring, tree, bus, star and fully connected [15].  Although these topologies 

are used to specify the shape or structure of computer networks, they are also used for 

real-world networks and help us to understand their structures as well.   

 Network topologies do not always indicate physical connection between the nodes 

in networks.  They also indicate the interaction of the members in a social network.  

Understanding these topologies is essential to discover hidden knowledge within a 

network.  For instance, most of the clustering algorithms created for networks use some 

parameters.  To know what type of structure a network has may give a clue to determine 

the optimum parameters. 

 Social networks are usually more complicated than a specific example.  Therefore, 

the network samples provided below should be considered as a part of a social network 

which is revealed based on a simple rule or relationship.  We will now explain the most 

common network topologies listed above in the following subsections. 

 1.3.1 Point-to-Point 

 The simplest form of a network is point-to-point connections which is also known 

as linear networks.  This kind of network has two end-points and the nodes between these 

end-points are connected to two other nodes.  Figure 3 shows a sample of point-to-point 

networks.   
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Figure 3: A simple point-to-point network 

  

 A simple example of a linear network can be seen in a family tree.  Consider a 

woman in a family tree; she is connected to her mother and also her daughter.  In the 

same fashion, her mother is also connected her mother and her daughter, etc.  Thus, a 

point-to-point network is formed based on the connections of women in a family tree.  In 

real life, these women have other interactions.  This one-to-one network is not the only 

network in which they are connected.  As stated before, we should consider this simple 

network as a part of more complicated networks. 

 1.3.2 Ring 

 A network with a ring topology is similar to linear networks except no end-points 

are present.  In linear networks the end-point nodes are connected to only one node.  On 

the other hand, in the ring topology, each node is connected to two other nodes such that 

there is no end-point.  Figure 4 illustrates a simple ring network. 

 

 
Figure 4: A simple ring network 
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 A simple ring network can be seen in one of the popular social networks, Twitter, 

on the Internet.  On Twitter, people can follow other people’s tweets (statements with a 

maximum 140 characters) from all over the world.  It is likely that, these followings can 

build a ring topology.  In other words, a person follows another person and, that person 

follows another.   After a number of followings the first person is followed by a person in 

the network, thus a ring network is formed. 

 1.3.3 Tree 

 The tree network is also known as hierarchical topology.  In this topology, the 

nodes in a network are connected to higher level and/or lower level nodes.  These 

relationships are also designated as parent/child relationships.  A node can be connected 

to a parent node and multiple child nodes.  A simple network sample is shown in Figure 5. 

 In real life, there are several samples of this kind of topology.  A family tree or 

the hierarchical layout of a company’s employees forms a tree network.  From the highest 

level employee to the lowest level employee(s), there are interactions which form the tree 

network.  In the same fashion, families throughout history build a tree network.  

 

 
Figure 5: A simple tree network 
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 1.3.4 Bus 

 In the bus topology, the nodes are connected to each other via a certain 

relationship.  In other words, there is a specific bond between the nodes.  In this topology, 

every node is connected to all other nodes via a common relationship.  Figure 6 illustrates 

a simple example of the Bus topology. 

 

 
Figure 6: A simple bus network 

 

 This kind of topology is not common in real-world networks.  Board members of 

a company or an organization can serve as a sample for this network.  In such examples, 

all board members are connected to each other due to the positions they have in the board.  

In other words, the board represents the special relationships between the nodes 

(members). 

 1.3.5 Star 

 The star topology has a common point between the nodes similar to the bus 

topology.  While in the bus topology the relationship was the common point of the nodes, 

in the star topology a single node is the common point.  In other words, all nodes in the 

star topology are connected to one central node.  Moreover, there are no connections 

between these nodes.  Figure 7 shows the layout of a star topology. 
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Figure 7: A simple star network 

 

 In real life, we can see networks which have star topology.  Twitter again can be a 

good example of this kind of topology.  For instance, the people who follow a certain 

famous person are members (nodes) of a star network.  Although they do not follow each 

other, the person they follow is the central node in the network and forms a common 

relationship between the people in the network. 

 1.3.6 Fully Connected 

 In the fully connected topology all nodes are connected to each other.  This kind 

of topology provides direct interaction between the nodes in the network.  A node can be 

connected to infinitely many nodes at the same time.  There is no specific limitation for 

the connections.  Figure 8 shows a mesh topology with 6 nodes.  Networks with this 

topology are also known as mesh networks. Of all topologies, this topology can grow 

most easily.  The most complicated networks consist of mesh topologies.  This is also one 

of the most common networks in the real world.   
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Figure 8: A simple mesh network 

  

 Any small community can be an example of this topology.  In small communities, 

people usually have interactions with every member in the community.  Therefore, their 

interactions build a mesh network.  

 These network topologies exist in community networks but they are usually 

hidden. The community detection introduced in the previous section is the one of the 

ways to reveal these hidden networks. The next section introduces the literature related to 

community detection methods. 
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Chapter 2: Review of Literature 

 Networks are high dimensional data structures. Network clustering methods target 

to group the nodes of these high dimensional structures into clusters.  The problem of 

obtaining accurate clusters has been studied for years in many fields particularly in 

computer science, graph theory, and physics.  Basic community detection in networks 

involves properly arranging a network structure by visual inspection.  Such a method is 

intuitive and can only handle small networks. Hence, several network clustering 

algorithms have been proposed.  Although these methods share some common points 

they are principally not the same.  We will now introduce some of the common methods 

for network clustering (community detection). 

2.1 Min-Max Cut and Normalized Cut 

 The min-max cut method [11] basically aims to split the network into two 

sub-networks.  A cut is the total weight of edges that are removed to group the vertices 

into two clusters.  The idea of min-max cut method is to decrease the number of 

connections between two clusters and increasing the number of connections within the 

clusters.   

 One of the weaknesses of min-max cut method is that there are some constraints 

to discover the edges removed.  For instance, the size of the cluster must be similar to 

each other.  However, this is not always true in networks, especially in social networks.  

There are some small groups in social networks as well as larger groups.  To eliminate 

this problem, a new method, normalized cut [16], was introduced.  The normalize cut 

method determines edges removed by normalizing the total number of connections 

between each cluster to the rest of the network.  
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 Both methods split the network into two clusters.  To obtain more than two 

clusters, the same methods can be applied to the obtained sub-networks.  However, there 

is no measurement to identify if a network is split to optimum clusters.  

2.2 Modularity Based Algorithms 

 Newman and Girvan [17] are leading pioneers who tackled the automatic 

community detection problem.  They suggested using modularity to qualify the intensity 

of community structure. Their approach has been used for different applications including 

community structure validation and as a main function for optimization algorithms to 

detect communities.  Thus, modularity rapidly becomes an effective method in the 

discovery of community structure [18].  In addition, extended work with Newman et al. 

and others has proven that clustering with maximizing modularity often yields promising 

community structure in real networks [19], [20]. 

 Modularity is a metric introduced by Newman [17] and used for determining how 

good a network is partitioned.  Modularity is denoted Q and calculated by the following 

formula.   

  ∑ [
  

 
  (

  

  
)
 

]
 

   
                                            (1) 

 where L is the number of edges in the graph, lc is the number of edges between 

vertices within clusters c, and dc is the sum of the degrees of the vertices in clusters c. 

 When the modularity gives the value 0, either all vertices in the network are 

grouped into one cluster or all vertices are clustered at random. Therefore, when 

modularity value is close to zero we understand that a poor clustering occurred in the 

network.  In addition to check the quality of clusters obtained, modularity can be used for 
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optimization to find better quality clusters within a network.  The studies proposed for the 

optimization [21] and [22] adapted the Newman’s approach.  Recently Newman 

introduced spectral optimization of modularity [23] for the optimization purpose. 

2.3 Hierarchical Clustering in Networks 

 Hierarchical clustering is one of the most common and widely used community 

detection methods.  It addition to group the vertices into clusters; it also gives some 

information about the hierarchical structure of a network.  The hierarchical clustering is 

based on the metrics called similarity which is calculated for the each vertex pair in the 

network.   

 There are two kinds of hierarchical clustering: agglomerative and divisive.  

Agglomerative method is a bottom-up approach.  The method assumes that each vertex 

owns its cluster.  Then checking similarity values vertices are connected to each other 

based on their similarity values.  After the each iteration, the clusters expand and the 

similarity values decrease for the next iteration.  Thus all vertices are unified as a single 

cluster.  Each level in the hierarchical tree can be considered as a cluster.   

 In the literature one can find different ways to form clusters in agglomerative 

clustering like single linkage and complete linkage.  In the single linkage method, a 

vertex is added to the cluster if the similarity between it and the node at the end is greater 

or equal to current similarity in the iteration.  In other words, similarity values between 

newly added vertex and other vertices are not taken into consideration.  In contrast to 

single linkage, complete linkage requires vertices being a maximal clique.  A clique is a 

set of vertices connected to the all vertices in the set.  Only the vertices in the maximal 

clique can form a cluster in this approach. 
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 The second approach in hierarchical clustering is the divisive method in which all 

clusters are the members of a single cluster in the beginning.  Then this big cluster is 

divided into smaller groups at the each iteration by removing the edge which has the 

smallest similarity.  However, it does not mean that the each iteration splits the network 

since there can be multiple reachable paths between vertices.  Girvan and Newman’s 

approach [24] is one of the examples of this kind.  Their algorithm assumes that members 

in the same community should be more firmly connected rather than randomly.  To split a 

given graph into communities hierarchically, edges consisting of the largest betweenness 

[25] which is the number of shortest paths passing through an edge are eliminated one 

after another. 

 Pons and Latapy [26] proposed the Walktrap algorithm for automatic community 

detection.  Their algorithm adopted the idea of a random walk through a network for 

community detection.  The main idea of this approach was that the densely connected 

portion of a community would tend to trap random walkers.  Instead using modularity the 

authors introduced a similarity measure based on short walks and used it for community 

detection via hierarchical clustering.  

 Orman et al. [27] compared different community detection algorithms (Label 

Propagation, Eigenvector, Walktrap, etc.) with networks generated with a model from 

Lancichinetti et al. [28].  Normalized mutual information measure was used to access the 

performance of those algorithms. Walktrap has been one of the best algorithms to 

generate excellent results by successfully identifying communities even for high mixing 

coefficient values [27]. 
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2.4 Structural Clustering 

 In 2007, a structural network clustering algorithm for networks strongly 

influenced by DBSCAN (density-based spatial clustering of applications with noise) [29], 

was introduced as an alternative to the Girvan-Newman based modularity algorithms [17].  

Rather than using betweenness to partition the given network into clusters, SCAN uses 

the notion of structural similarity to agglomerate nodes into clusters.  Structural 

clustering is the process of grouping members of a network into communities (clusters) 

based on the density of relationships (edges) among the members.  The process results in 

a disjoint set of sub-networks which represent the hidden communities within the 

network.   

 SCAN uses the notion of structural similarity to agglomerate nodes into clusters 

[30]. Consider a few quantitative properties of any node in a network.  The vertex 

structure (2) of an arbitrary node u, Γ(u), from a graph is given as the set of u and the 

nodes adjacent to u.  Two nodes u and v have a structural similarity, σ(u,v), (3) based on 

the number of nodes common to the vertex structures of both nodes.  These properties are 

summarized as follows:  

Γ( )  {   (   )   }  { }                                             (2) 

 

 (   )    
 Γ( ) Γ( ) 

√ Γ( )   Γ( ) 
                                                 (3) 

 

  ( )  {    (   )   }                                                   (4) 

 

       ( )     ( )                                                    (5) 

  The SCAN algorithm has two parameters.  The first, ϵ, is the threshold structural 

similarity value for adjacent nodes to be considered ϵ-neighbors (4).  The second, µ, is 
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the minimum number of ϵ-neighbors a node must have to be considered a core node (5).  

For SCAN, nodes in a cluster must be a core node or an epsilon neighbor of a core node.  

When µ equals to 2, this is equivalent to the restriction that all proper clusters must 

contain at least one core node.  We strongly believe that µ must be set to 2 because if it is 

set a greater value, none of the networks with point-to-point or ring topology can be 

identified as clusters.  

 Structural clustering begins with an arbitrarily chosen node v from the network.  

Structural similarity is calculated for each edge with v as an endpoint.  If the node v has 

less than µ neighbors, then another node is selected.  Otherwise, the node v is identified 

as a core node and a unique cluster identifier is generated.  That cluster identifier is then 

assigned to v and the epsilon neighbors of v.  This process continues until each node is 

visited.  After structural clustering is complete, some nodes remain without membership 

in a cluster.  Some nodes do not share enough relationships with any particular cluster 

and so do not merit being assigned to a cluster.  If such a node bridges two or more 

clusters, it is then classified as a hub [31].  Otherwise, it is classified as an outlier and 

may be regarded as a noise.  For instance in Figure 1, the node 4 is a hub while the nodes 

8 and 9 are outliers. 

  Unfortunately, computation of SCAN for very large networks takes a large 

amount of time.  In SCAN, many set intersection operations must be performed.  Also, all 

nodes must be visited during graph traversal. To reduce the computation time, we 

introduced a GPU-based algorithm in which the necessary computations are completed 

by using the massively multithreaded GPU architecture. We redesigned and parallelized 

SCAN as a series of highly regular and independent operations in order to benefit from 
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computational power provided by GPUs.  With that, a large network or batch of disjoint 

networks can be offloaded to the graphics processor for quick and computationally 

efficient structural clustering.  Before introducing our redesigned structural clustering 

algorithm, we will provide necessary background on general purpose computing on GPU 

paradigm in Chapter 3. In the first subsections of Chapter 3, we will present parallel 

computing concepts to better understand GPU paradigm. 

 



 

19 
 

Chapter 3: Parallel Computing 

3.1 The Concept of Parallel Processing 

Computer technology improves rapidly as a new development is released every 

day.  However, demands from computer technology grow faster than itself, which likely 

triggers the developments.  For instance, as computers began to be used in various areas, 

the amount of data obtained increased making personal computers unable to cope with 

them.  This need has brought up the idea of parallel computing through parallel 

processing. 

Parallel processing is executing multiple tasks concurrently on multiple 

processing units.  A parallel application/program includes multiple active processes or 

threads working simultaneously to solve a problem.  By increasing the number of 

processing units in a computer or system and providing a communication methodology 

between these processing units, executions can be done more efficiently in parallel.  

3.2 History  

The first applications of parallel computing started in 1950s. In 1960s and 1970s, 

with the introduction of supercomputers, parallel computing became more efficient and 

applicable in broader fields.  The first supercomputer models use multiprocessors with a 

shared memory [32].  These multiprocessors work on shared data in the same architecture 

side by side.  In the 1980s Caltech Concurrent Computation project introduced a new 

supercomputer built of 64 Intel 8086/8087 processors, which proved that significantly 

efficient performance is possible via parallel computing [33].  This system is known as 

the first massively parallel processors (MPPs) and was followed by several architectures.  

MPPs reached their peak point with the ASCI Red supercomputer by enabling over one 
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trillion floating point operations per second in 1997 [33].  After this breaking point, 

MPPs have grown in size and power. 

In the late 1980s, clusters began to be used in parallel computing field.  A cluster 

is a parallel computing architecture which consists of large number of computers 

connected by a network.  The clusters competed with MPPs for a while and, they 

eventually replaced most of MPPs.  Today, clusters are the most common architecture 

used in scientific computing.  Since a cluster is a collection of computers, any person can 

build a cluster and use it for parallel computing with a significantly lower cost comparing 

to supercomputers. 

MPPs and clusters provided relatively stable architectures in parallel computing 

up to the mid 2000s.  Depending on the needs and the type of applications, parallel 

computing architectures have evolved to purpose-specific architectures. These 

architectures provide a solution to the specific problem which needs computation 

efficiency.  For example, Anton [34] is a purpose-specific supercomputer which is used 

for the simulations of molecular-biological systems.  On the other hand, the cost of these 

systems does not allow them be used more widely. Therefore, this problem forced 

manufacturers and users to build new architectures with lower costs. 

The latest trend in parallel computing is the use of multi-core processors on a 

single computer.  This trend can be classified into two categories. The first trend is to use 

the multi-cores on the Central Processing Unit (CPU).  Most of the latest personal 

computers or laptops have multi-core processors like dual-core or quad-core.  These 

multi-core processors enable users to use these multi-cores for parallel computing.  The 

second trend is to use graphic processing units (GPU) for computation.  GPUs also have 
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multiple cores as CPUs do. However, the ones in GPU have much more computation 

power. For instance, a recent Nvidia Fermi GPU can have as many as 512 cores.  These 

cores stay idle if the GPU does not execute any graphical process.  New architectures 

developed by the GPU manufacturers like Nvidia enable users to use GPUs also for 

scientific computation purposes.  Tasks of a computation can be parallelized and 

concurrently run on the cores of GPU.  Before introducing GPU-based parallel 

processing, we will introduce parallel processing models in the next section. 

3.3  Parallel Processing Models 

Processors are the main component of parallel computing.  Multiple processors 

can be used in a computation concurrently by using parallelisms.  Several classifications 

for the parallelisms can be found in the literature [35], [36], [37].  However, in general 

we can talk about two fundamental parallelisms in the models.  The first one is task 

parallelism and the second one is data parallelism.   

Some applications created in the task parallelism can be rewritten in the other way, 

and vice versa.  However, this is not always applicable.  In general, the best performance 

is obtained by using one of the parallel architectures considering both the structure of the 

application and the data set.  For instance, the studies [38] and [39], are two samples 

which work more efficiently in the task parallelism.  GPUs, on the other hand, may 

provide better results in data parallelism.  Nevertheless, it is not easy to classify an 

application solely into one of two parallelisms.  Sometimes using both parallelisms in the 

same application may provide the best output. 
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Based on the parallelism used, we can categorize computing systems in four 

groups: single instruction single data (SISD), single instruction multiple data (SIMD), 

multiple instructions single data (MISD) and multiple instructions single data (MIMD). 

 3.3.1 Single Instruction Single Data (SISD) 

A single instruction single data model is a system with a single processor.  This 

system works on a single data for a single instruction.  Since the system executes the 

instructions sequentially, we cannot talk about any parallelism in this system.  Most of 

the conventional computers have this system.  Figure 9 illustrates the schema of its 

execution. 

 

 
Figure 9: Single Instruction Single Data (SISD) 

 

In this system, all instructions for the processes and all the data must be kept in 

the computer’s memory.  The performance of the execution is determined by the 

computer’s specifications.  Regular PCs, Macintosh, and Workstations are common 

examples for this system. 
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 3.3.2 Single Instruction Multiple Data (SIMD) 

Single instruction multiple data (SIMD) computing systems include only data 

parallelism.  One of the examples of data parallelism can be seen in vector operations like 

element-wise summation or dot product between two vectors.  SIMD systems execute the 

same instruction of the application on different parts of the data to be processed.  Figure 

10 shows how SIMD models work. 

 

 
Figure 10: Single Instruction Multiple Data 

 

This model is suitable for the scientific computing which involves a multitude of 

vector and matrix operations.  The data is partitioned and each processing element gets a 

well organized portion of the data.  For n processors, n different data vectors are created.  

Then every processor executes the same instruction on the vector they get.  In this model, 

the way of partitioning the data plays a crucial role.  This partitioning affects the 

performance of parallel tasks.  
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 3.3.3 Multiple Instruction Single Data (MISD) 

In the multiple instruction single data (MISD) model, the process of an 

application is divided into sub-processes which can run separately.  This type of 

parallelism enables users to run different parts of the same application concurrently.  

Figure 11  illustrates the systematic of MISD models. 

 

 
Figure 11: Multiple Instruction Single Data 

 

The primary issue in this type is that these sub-processes must be independent 

from each other.  In other words, one sub-process should not require any output of the 

other sub-processes during the execution.  Each sub-process is a separate procedure in 

this type of parallelism.  Once the application is divided into sub-processes, they are 

executed on the processing units for the same data.  In this model, the data is used as a 

whole.   
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 3.3.4 Multiple Instruction Multiple Data (MIMD) 

A multiple instruction multiple data (MIMD) system uses both data and task 

parallelism in the same structure.  This model can execute multiple instructions of an 

application on multiple data.  A web server working with multi-threads is an example of 

this task.  On such a web server, each request from same client or different clients is 

executed in parallel.  Figure 12 shows the structure of MIMD models. 

 

 
Figure 12: Multiple Instruction Multiple Data 

 

MIMD models are categorized into two main subgroups as shared memory 

MIMDs and distributed memory MIMDs based on how processing units interact with the 

memory.  In the shared memory models, there is a global memory and, all processing 

elements access this global memory. A communication between processing units is 

required for the synchronization of tasks.  This communication is provided by the shared 

memory.  After a processing unit has completed a task, the global memory is updated and 

the other processing units can reach modified data in the global memory.   
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In the distributed MIMDs each processing unit has its own memory instead of 

having a global memory.  The processor units reach their own memory units and execute 

the task assigned on the data which is stored in their memory.  Once a processing unit 

completes its job the distributed memory for that processing unit is updated.  The 

processing units work asynchronously. If synchronization is needed between the 

processing units, communication is handled by an interconnection network.  MIMD 

models are also called massively parallel processing (MPP) systems.  

The shared memory systems are easy to program but they are not as extendable as 

distributed memory systems.  Moreover, distributed memory systems can be scaled more 

easily than shared memory systems.  

3.4  Synchronization in Parallel Processing 

When multiple processes run concurrently, none can know what the other 

processes do and what their results are. Therefore, a communication is required whenever 

a process needs to reach outputs of other processes.  Communication and synchronization 

between the tasks run by the different processes are one of the most challenging parts of 

parallelisms.  Message passing is one of the paradigms used in the parallel systems for 

the communication and synchronization.  Several message passing systems have been 

implemented around 1990s [40] e.g. Mercury/Centaur, VERTEX, The reactive Kernel, 

etc.  Because all these message passing systems were machine-specific, it was difficult to 

use by a wide range of users on different machines. 

Several standards were established in order to overcome portability and scalability 

difficulties.  Thus, parallel programs can be implemented in a more practical, portable 

and efficient way so that they can be used widely.  Message passing interface (MPI) 
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which was introduced in the mid 1990s standardized several programming interfaces into 

a single standard for massively parallel processors (MPPs) and clusters [40].  MPI 

provides an application programming interface for the users.  Moreover, communication 

is more efficient in MPI enabling communication without copying from memory to 

memory in distributed memory systems.     

In late 1990s, OpenMP and pthreads emerged for the multiprocessors with a 

shared memory for the standardization purpose [41].  OpenMP works as a fork-join 

model for parallel implementations.  In other words, OpenMP distributes the application 

as multiple tasks.  After they are run on the data their outputs are joined.  OpenMP 

controls the synchronization of the distributed tasks. 

 When Nvidia introduced its GPU-based parallel architecture so called compute 

unified device architecture (CUDA), new standards were created to make computations 

in parallel on the GPU.  The sequential codes written in various programming languages 

can be executed in parallel by using these CUDA standards and run on CUDA enabled 

GPUs concurrently.  In the next section, we will explain the GPU-based parallel 

computing and the CUDA architecture. 

3.5 GPU-Based Parallel Computing 

 3.5.1 General Purpose Computing in GPU as a Co-Processor 

 Co-processing units have long been used to supplement the functionality of the 

central processing unit (CPU).  Math co-processors were introduced in the 1970s to add 

scientific computing capabilities to word processing computers.  The latest improvements 

in computer hardware and graphical processing unit (GPU) make possible general 

purpose computations on the GPU with low cost and high-speed performance.  Today, 
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GPUs provide the most computational power for the price.  With Nvidia’s CUDA 

enabled graphics cards and a proper CUDA adaptation, scientific and general purpose 

applications are able to harness that computational power.  In the last few years, CUDA 

has accelerated many non-graphical applications and scientific research, with up to a few 

hundred times speed-up over sequential CPU execution [42], [43], [44]. 

 Nvidia’s CUDA-enabled GPUs can accelerate general purpose computing, 

however, mapping computation of a sequential application to the GPU architecture is 

non-trivial.  Enabling GPUs for general purpose computing often requires careful 

redesign and realization of independent tasks within the sequential algorithm.  One of the 

most difficult challenges is often utilizing high bandwidth and managing hierarchical 

memory. To overcome this challenge, CUDA developer must have sufficient knowledge 

on hardware architecture of the CUDA enabled GPUs.  Before giving the details of 

memory hierarchy and CUDA enabled GPU hardware, we will first introduce the 

evolution of GPU in next section. 

 3.5.2 The Evolution of GPUs 

 In GPU’s graphics pipeline, there are phases for different tasks. The pipeline 

receives data which represents one, two, or three dimensions as input and after processing 

in its phases it results as a two dimensional image.  The GPU’s pipeline has two type 

processors called vertex and fragment processors. The structure of a complete system 

consists of two segments e.g. central processing unit (CPU) and the GPU. Any graphical 

application program or any other general purpose program is incorporated into the CPU.  

Figure 13 illustrates the primitive visualization throughout this architecture’s processing 

pipeline as an example.  
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Figure 13: GPU architecture and Graphics pipeline stages 

  

 In this pipeline model, each phase receives its input from the previous phase.  

After processing the input, they send it to the next phase. There is a graphics memory for 

the access of individual stages to store intermediate computed data.  For instance, in 

Figure 13 we see how a triangle with different colors is created via the phases in the 

pipeline.  In the first step, three vertices of the triangle are created by vertex processors.  

Then rasterization and texturing are handled by fragment processors.  As it is seen in 

Figure 13, vertex processors work significantly less than fragment processors in such a 

task. Since they are purpose-specific processors, they wait idle till the fragment 

processors are done with their jobs, which causes inefficiencies in tasks.  
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 In mid 2000s, Nvidia introduced its unified architecture, CUDA, with more 

general purpose processors.  These processors are unified processors that could perform 

vertex, geometry, pixel, and general computing operations.  In other words, vertex and 

fragment processors were replaced by more efficient processors. Thus none of the 

processors stay idle while other processors are loaded with heavy work.  The unified 

architecture brought high computation efficiency to graphical applications. 

 In addition to the graphical tasks, these processors can be used for parallel 

computing via single instruction multiple thread (SIMT) programming model.  Now, 

CUDA-enabled GPUs are streaming processor units that allow parallel processing at an 

unprecedented efficiency.  Figure 14 illustrates the performance of GPUs comparing to 

CPU. 

 

 
Figure 14: GPU performance chart over CPU 
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 3.5.3 Architecture in CUDA 

 CUDA is a parallel computing environment introduced by Nvidia which utilizes 

the processing units on GPU.  Nvidia introduced specific protocols to be able to use cores 

on GPU for computing.  These protocols define the ways for CPU to use GPU in 

computations.  In CUDA architecture, CPU is called host while the GPU is named device. 

 A CUDA graphics card includes a streaming processing array (SPA) which is 

composed of a set of streaming multiprocessors (SM) with each multiprocessor 

composed of a set of streaming processors (SP) called CUDA cores.  Figure 15 illustrates 

the architecture of Nvidia G80 graphics card series.  In the figure, the part in red-dashed 

frame is SPA in which 16 SMs exist.  The part with pink color in Figure 15 shows one of 

these 16 SMs.  In each SM, there are 8 SPs which is illustrated with light blue color.  So, 

there are 128 processors in Nvidia G80 graphics cards which can run concurrently. 

 

 
Figure 15: The architecture of streaming multiprocessors and streaming processors. 
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 The architecture in GPU provides three main computation components.  The first 

component is called a grid where is handled by a single GPU.  Grids can be one or two 

dimensional. These grids consist of the other component, blocks.  Every block in a grid 

has the same size and dimensions.  Blocks include the threads and can have one, two or 

three dimensions based on the threads’ architecture.  Figure 16 illustrates a simple layout 

of the architecture.   

 
Figure 16: CUDA Architecture 

  

 Each block in the grid can have up to 512 threads.  The blocks are handled by a 

single multiprocessor on the GPU. Today, GPUs can have up to 120 multiprocessors. 

Similarly, threads in blocks are handled by a single processor in the multiprocessors 
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which handle the blocks. A multiprocessor has 8 single processors (core). Therefore a 

GPU can have totally the number of multiprocessors times 8 cores. 

 The blocks which are processed concurrently are called active blocks [45]. The 

threads on these active blocks execute the instructions.  The active blocks consist of a set 

of warps, where a warp is a set of 32 threads executing in single instruction multiple data 

(SIMD) parallel. The warps always have the same number of threads during the 

execution.  Figure 17 illustrates warps which work within a streaming multiprocessor. 

 

 
Figure 17: Warp scheduling. Threads are grouped as warps and all threads in a 

warp execute the same instruction on different data set. Once all threads in the warp 

complete their jobs, the warp gets a new instruction. 
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 Warps are the most important part of CUDA performance. Once a task is assigned 

to warps, the data to be processed are stored local memory of warps and then no time is 

spent for the data transfer.  Parallel threads work very fast and process the data very fast.  

The job assignments to the threads are done rapidly via warps, and thus threads do not 

waste time for waiting a new job assignment.  Each thread in a warp executes the same 

instruction for different data sets.  Once all threads complete their jobs, the warp gets a 

new instruction and thus threads keep working without wasting any time.  Nvidia still 

hides most of the details about CUDA’s execution methods, and therefore, we have 

limited knowledge about what is happening background. 

 During an execution, CUDA allows at most 8 active blocks or 24 active warps at 

the same time per multiprocessor (SM).  Since each warp has 32 threads, this means that 

a maximum 768 threads can work concurrently on a multiprocessor.  Depending on the 

number of multiprocessors the total active thread number can reach up to 23,040 in a 

graphics card like the GTX 285.  Nevertheless, the physical limitations do not allow 

having that many efficient concurrent executions.  Now, we will explain CUDA memory 

hierarchy which is very essential to improve the computation performance. 

 3.5.3 CUDA Memory Hierarchy 

 Each multiprocessor on CUDA cards has a programmable cache (shared memory) 

and a set of registers.  Also, multiprocessors may access off-chip global GPU memory as 

a dynamic/static access.  However, the high latency of global memory penalizes random 

access.  Therefore, coalesced memory access (retrieving an entire block from memory) is 

strongly encouraged.  In addition to global memory, there are also constant memory and 

texture memory in the architecture.  Figure 18 illustrates a schema of a grid in CUDA. 
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Figure 18: CUDA Memory Hierarchy 

  

 Global and constant memories enable the host to write and read by calling 

functions.  The data which will be processed is generally passed to global memory by the 

host.  Global memory is a part of device memory, and access to global memory by 

threads is handled by memory transactions.  These memory transactions are limited to 32, 

64 or 128 byte.  In other words, only 32, 64 or 128 byte segments of the memory can be 

used by memory transactions.  When an execution is handled by a warp, global memory 

allows threads in the warp do these transactions.  The biggest problem in global memory 

is the traffic congestion when all threads attempt to access it.  
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 The constant memory allows only read operations.  Constant memory has higher 

bandwidth then global memory [45].  Therefore accessing to constant memory is faster 

than accessing global memory and can be done in a highly parallel way.  Constant 

variables and kernel arguments are stored in constant memory.   

 The last memory exists in the device is texture memory. It is a memory with a 

hardware-managed cache.  It has two dimensional spatial access patterns and only allows 

read operations.   

 In addition to device memories, there are some memories in each block too.  

Shared memories exist in blocks so that the threads within blocks can communicate and 

be synchronized.  Accessing shared memory by threads is rapid.  Shared memories are 

very helpful for threads to work coherently by sharing their results from an execution.  

Each thread in a block has registers allocated for itself. In contrast to shared memories, 

each thread can only access its registers.  Registers generally store the data which is 

private to threads and used frequently.  The data stored in shared memories and registers 

can be accessed in a highly efficient and parallel means. 

 3.5.3 CUDA Programming Model 

 Concurrent thread execution is handled by CUDA via kernels.  A kernel is a 

subroutine executed by each thread in a thread batch.  Threads executing the kernel are 

arranged primarily into a grid of thread blocks.  Threads within the same block are 

executed on the same multiprocessor.  Hence, the threads may share data and be 

synchronized.  Threads of the same warp are de facto synchronized.  That is, conditional 

branches are taken by all threads of the warp, and threads not needing to take that branch 
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become idle until the branch completes.  Therefore, the parallel algorithm must be 

carefully designed to minimize inefficient conditional branching. 

 In CUDA programming the data and kernels are passed by the host.  These 

kernels are executed on threads using the data stored in the global memory.  Depending 

on the kernel the output is either saved in shared memory or passed back to global 

memory.  The execution on GPU cores continues till all kernels are executed by parallel 

threads.  

 Nvidia develops standard template libraries for the libraries implemented in 

different programming languages. For instance, the Thrust template library [46] is a 

parallel implementation of the C++ Standard Template Library for CUDA enabled GPUs.  

The library uses parallel primitives like parallel prefix sum and split to provide the 

template framework. Our implementation of parallel structural network clustering 

algorithm also uses the Thrust library extensively since procedures such as sorting can 

greatly increase coalesced memory access.  Sorting in our algorithm is performed using 

radix sort from the Thrust library.  Thrust partition is used for stream compaction which 

groups important elements of an array. 

 In this section we introduced GPU evolution, CUDA architecture, and 

programming model which was base for our parallel structural clustering algorithm. In 

the following chapter we will introduce our algorithm.  
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Chapter 4: Parallel Structural Network Clustering 

 The goal of constructing any GPU-based algorithm is to offload data parallel and 

computationally intensive pieces of the algorithm to the GPU.  For our GPU-based 

parallel structural network clustering, the network is copied to the GPU device memory 

as an array of integer pairs, E, representing edges of the network.  Figure 19 illustrates E 

for the sample network given in Figure 1. Once that dataset and the algorithm parameters 

have been sent to the GPU a series of computations are performed on the device leaving 

the CPU only necessary for global thread synchronization.  The result is an array of 

integer pairs describing each nodes cluster membership or non-member classification 

which is fetched from GPU device memory.  Algorithm 1 illustrates our implementation 

and its functions. Our algorithm consists of four main components.  These are 

computation of structurally similar ϵ-neighbors, structurally connected components, 

clustering, and classifying non-members respectively. 

 Our algorithm begins once the edge list E has been copied from CPU (host) 

memory to GPU (device) memory.  As seen from Algorithm 1, in order to create an 

adjacency list for each node, the undirected edge list E of length m is translated into the 

directed arc list A of length 2m.  This is also illustrated in Figure 19.  To create the array 

A, each parallel thread reverses a pair from E and inserts the pair into E'.  Next, E and E' 

are joined together and copied to array A.  For easy indexing of the adjacency list for 

each node, A is sorted using Thrust's parallel GPU sort.  For instance, in Figure 19 we 

can see that the first two pairs of the Array A are displayed in a darker color.  The second 

component of these two pairs forms the adjacency list of node 0 in the network from 

Figure 1.  For computational efficiency, A is stored both as an array of integer pairs for 
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sorting using the Thrust library, then as a pair of integer arrays for calculating set 

intersections.  This concludes the first for loop and sort from Algorithm 1. 

 

 
Figure 19: Forming directed arc list A, which provides the adjacency list for each node 

in graph G. Darker and lighter colors are used to clearly display adjacencies of each 

node. 

 

 In the next section, we discuss the second for loop of Algorithm 1 which 

identifies the ϵ-neighbor pairs from the edge list E.  Then we will discuss computing 

structurally connected components followed by an explanation of clustering.  Finally, the 

process of classifying nodes which belong to no cluster as hubs or outliers will be 

presented. 
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Algorithm 1: Parallel Structural Network Clustering 
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4.1 Identifying Structurally Similar Epsilon Neighbors 

  Computing structural similarity requires a set intersection for each pair of nodes 

connected by an edge. Set intersection operations are critical for finding ϵ-neighbors. 

Consider the set of nodes adjacent to node 3 and the set of nodes adjacent to node 5 in 

Figure 1.  The intersection set of the two sets of adjacent nodes provides the set of nodes 

adjacent to both 3 and 5; which is simply {4}. 

 

 
Figure 20: Consider reference nodes and adjacent nodes of A as two separate integer 

arrays. The boundaries for each node’s adjacency list are computed using the reference 

node array. Here, structural similarity is computed for the edge (0, 2). Notice that Thread 

1 reports a match for sets A and B, but all other threads in the warp report no match 

 

  The adjacency list for each node is extracted from the arc list A.  Considering the 

arc list A is stored as a pair of integer arrays, the first array gives the reference node and 

the second array gives the adjacent nodes.  Hence, the first and the last occurrence of 
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each node in the reference nodes (see Figure 20) is recorded to give the corresponding 

starting and ending index positions for that node’s adjacency list.  These starting and 

ending indexes are used to calculate the structural similarity (σ) between the nodes.  The 

following formulation shows how our clustering algorithm calculates the structural 

similarity for two nodes u and v: 

𝑎𝑑𝑗( )  {  (   ) ∊ 𝐴}                                                             (6) 
 

σ(   )   
 + 𝑎𝑑𝑗( )⋂𝑎𝑑𝑗( ) 

√( + 𝑎𝑑𝑗( ) ) ( + 𝑎𝑑𝑗( ) )
                                    (7) 

 

where adj(u) is the adjacency list of the node u. Algorithm 2 shows the steps for 

determining the ϵ-neighborhoods of the nodes. 

Once the adjacency list is created for every node, structural similarity of each pair 

is computed.  Each warp fetches 32 integer pairs from edge list E.  To avoid branching 

we let all threads in the warp compute the set intersections for each pair before advancing 

to the next pair.  Threads in the warp work together to perform a set intersection by 

merging sorted lists.  Each thread in a CUDA kernel is given a unique thread identifier tid.  

The position in the warp, pos is tid mod 32.  In Algorithm 2, the count variable is the 

number of the adjacent nodes that two different nodes share.  The index of the element 

fetched by each thread from SetA is tid/8 and from SetB is tid mod 8.  Each thread adds 1 

to the variable count if its element from SetA matches the element from SetB.  Then, if 

elements remain in SetA or SetB, the indices are advanced appropriately.  Finally, the 

count has been computed for each of 32 pairs (due to the warp size) and in parallel each 

pair's count value is normalized by the geometric product of two values that are equal to 

the sizes of the nodes' adjacency lists. 
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Algorithm 2: Computing Structural Similarity 

 

Based on the values calculated by each thread, E is compacted to the pairs which 

have a structural similarity value greater than ϵ.  As illustrated in Figure 21, compaction 

happens at the pairs where their structural similarity is greater than ϵ.  When this is the 

case neighborhood array’s corresponding element becomes 1 (see Figure 21-b).  Then 

this compacted E is concatenated with the reversed pairs of compacted E, which forms 

the list of ϵ-neighborhood of the nodes, N.  Before continuing the connected component 

parts, N is sorted (see Figure 21-d).   
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Figure 21: Edges in E with structural similarity > epsilon, are copied to a new edge list. 

That edge list unified with its inverse edge list forms the list of epsilon neighbor pairs N. 

N is sorted for computing connected components among epsilon neighbors. 

 

4.2 Computing Structurally Connected Components 

  Clustering in SCAN is efficiently executed on the CPU as a breadth first graph 

traversal.  However, breadth first search requires much conditional branching and 

sequential computation, so it is inefficiently executed on massively multithreaded SIMD 

graphics cards. 

 Breadth first search algorithms do exist for CUDA [47], [48], but there may 

actually be many small sub-graphs to be constructed in this step.  Also, some CUDA 

implementations exist for connected component labeling [49], [50], [51], [52]; however, 

connected components in [49] can fail to converge.  So, we provide a simple version for 

finding connected components adapted from [49], [53]. 
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Algorithm 3: Structurally Connected Component Labeling 

 

  The connected components algorithm (see Algorithm 3) consists of two main 

parts.  The first is called linking and the second is called graph contraction.  

 4.2.1 Linking 

  The first function of connected components algorithm is the linking phase which 

uses the sorted ϵ-neighbor list to assign a cluster label (parent) to nodes of a cluster (see 

Algorithm 4). 

  The ϵ-neighbor list is sorted so that each node can claim either itself or a neighbor 

as its parent without generating pointer cycles.  Each node in the original graph is 

initialized as having no parent.  Then, on the every iteration each node is assigned a 

parent from the set of itself and its ϵ-neighbors.  On odd iterations the minimum node 

identifier is chosen as the parent.  On even iterations the maximum node identifier is 

chosen as the parent.  Alternating the direction that each node seeks a parent typically 

allows Linking after r steps rather than d steps, where d is the maximum shortest path 

between two nodes (or diameter) and r is approximately d/2.   
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Figure 22: Computing connected components among epsilon neighbor pairs result in a 

set of candidate clusters. 

 

  As seen in Figure 22, the first pair of the node 1 (see N in Figure 22-a) is (1, 0), 

the second pair is (1, 2) and the third and the last pair is (1, 3).  Considering the color 

differences of N in Figure 22-a, the darker colors represent the pairs which will be 

processed.  For instance, on the first iteration the pair (1, 0) is handled and, since this is 

an odd iteration, the value min{1, 0} is 0.  Therefore, 0 is assigned as the parent of the 

node 1.  Similarly, the first ϵ-neighbor pair for node 2 is (2, 0) and therefore, 0 is assigned 

as the parent of the node 2. 
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Algorithm 4: Linking 

   

 At the end of the each iteration, the nodes in the list of ϵ-neighbors are replaced by 

their parent.  For instance, in Figure 22-c the node 2 has changed to its parent which is 0.  
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In the same fashion, the node 3 is replaced by its parent, node 1. As illustrated in Figure 

22-c, after all replacements are made N is updated using Thrust partition to effectively 

remove pairs containing identical nodes.  N is then sorted (see Figure 22-d).  We can see 

that the remaining pairs are (0, 1) and (1, 0).  Since this is the second iteration and it is an 

even iteration, the maximum value of the pairs (in this case 1) is assigned as the parent of 

nodes 0 and 1.  The updated parent list can be seen in Figure 22-e.  Notice that after 

linking is done, the parent of the nodes 0, 1, and 3 is the node 1 while the parent of the 

node 2 is 0.  Linking terminates once N is empty. 

 The second critical part of connected component algorithm is graph contraction 

which will be presented next. 

 4.2.2 Graph Contraction 

  This phase is to guarantee that all nodes in the same connected component have 

the same parent and is accomplished using the method of pointer doubling.  Pointer 

doubling is a method where each node's parent is replaced by the parent of the node's 

parent and results in all nodes of a tree having the same parent.   

  As seen from Algorithm 5, each thread k fetches the parent of node k as x.  If x is 

not null, then the thread fetches the parent of x as y.  If x and y are different, then y is 

stored as x, the parent of node k.  This continues for each thread until x equals to y. For 

example, in Figure 22-e, the parent of node 2 is 0 after the linking is done.  In graph 

contraction the appropriate thread traverses the hierarchy of parents for node 2 to the top 

level parent.  First it checks the parent of the node 2 which is 0.  Then it checks the parent 

of 0 which is 1.  Since the parent of node 1 is itself, node 1 is a top level parent, and the 
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thread ends the traversal.  The parent of 2 is now updated as 1.  Thus, the thread has 

completed graph contraction for node 2. 

 

 
Algorithm 5: Graph Contraction 

 

  Graph contraction concludes with a disjoint set of structurally connected 

components, however, the components must be verified as clusters in the next step of our 

algorithm, called clustering. 

4.3 Clustering 

 Not all structurally connected components are considered proper clusters.  In our 

algorithm, µ is set at µ=2, and so a proper cluster is a structurally connected component 

containing at least one core node.  In the clustering process components which do not 
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contain a core node are removed from the set of structurally connected components.  

Before clustering, the number of ϵ-neighbors is counted for each node to determine which 

nodes are cores (see Algorithm 1).  Nodes with at least µ ϵ-neighbors are cores.  As 

illustrated in Algorithm 6, thread k fetches whether the node k is a core node or not.  If 

node k is a core, then x, the parent id of node k, is stored in array clusters[x].  Next, each 

node's parent id x is replaced by clusters[x].  Hence, the parent ids of nodes which are not 

members of proper clusters become null.  Finally, each node's parent id becomes its 

cluster id. 

         

 
Algorithm 6: Clustering involves removing false clusters from the candidate clusters. 

 

   Figure 22 shows that after the connected component part is executed the nodes 8 

and 9 are assigned to a parent id of 8 (see parent in Figure 22-f).  Although nodes 8 and 9 
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form a structurally connected component neither node is a core.  Therefore, they cannot 

represent a cluster.  After the clustering part is completed we can see that we have only 

two clusters e.g. clusters 1 and 5 (see parent in Figure 23-b).  Nodes with a null parent are 

considered non-members. The next step after clustering is classifying non-members as 

either hubs or outliers. 

 

 
Figure 23: Nodes in graph G with µ or more entries in ϵ-neighbor pairs list N 

are considered core nodes. The parent nodes of cores are promoted to cluster 

representatives. Values of cluster representatives are then gathered into parent 

by parent keys. 

 

4.4 Classifying Non-Members 

 The final step of our algorithm is to classify the nodes in the network which 

remain without a parent after the algorithm has performed clustering.  How these 

non-member nodes are further classified as hubs or outliers is illustrated in Algorithm 7. 
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Algorithm 7: Nodes not belonging to a cluster are classified as either hub or outlier 

node. 

 

 Classifying non-members begins with removing the adjacency lists of cluster 

members from arc list A, the set of adjacency lists.  This is implemented using the 

parallel partition function provided by the Thrust library to move the adjacency lists of 

interest to the beginning of A.  Then, for each non-member reference node in A (see 

darker color nodes in Figure 24-a), the adjacent node's id is replaced by the cluster id of 

that adjacent node.  Next, pairs in A which have null cluster id in the adjacency node 

position are removed from A.  Finally, each cluster id in the adjacency node position s of 
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A is compared to the cluster id at (s-1).  If the two are different and the reference nodes at 

s and s-1 are the same, then the cluster id of that reference node is changed to identify the 

node as a hub.   

 

 
Figure 24: Pairs in arc list A with non-members as the reference node has the 

adjacent node replaced by the parent of the adjacent node. Non-member 

reference nodes with more than one adjacent cluster are identified as a hub 

node. Otherwise, the non-member node is an outlier. 

 

 For example, the adjacent nodes of the node 4 are 3 and 5.  The cluster ids of the 

nodes 3 and 5 are 1 and 5 respectively.  In other words, the adjacent clusters of the node 4 

are 1 and 5.  Since the node 4 has two different cluster ids, it is considered as a hub.  

Once this step is complete, all non-members which are not hub nodes are considered to 

be outlier nodes e.g. the nodes 8 and 9. 
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 Our algorithm has now identified each node’s cluster membership or non-member 

classification, but the resulting array parent must be further processed for the output to be 

presentable (see Algorithm 1).  If node u belongs to a cluster the cluster identifier is given 

as parent[u].  Otherwise, parent[u] is null for outliers and non-null for hub nodes.  In 

parallel, each thread k inserts the integer pair (k, parent[k]) into the array clusterID at 

position k.  Then, clusterID is sorted by the parent component and transferred to host 

memory.  When that is accomplished the clustering algorithm is finalized. 
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Chapter 5: Results 

 Implementation of the parallel algorithm was written in C++ for CUDA and 

executed on the commodity graphics processor Geforce GTX 460.  The results of our 

parallel algorithm are compared with SCAN’s results.  The sequential version is 

performed on the Intel Core i5 processor.  We first tested our parallel algorithm over real 

world data which was also used in original SCAN paper e.g. NCAA and political books.  

In order to display exact equivalence of results generated from both SCAN and our 

algorithm we generated bitmap images of the adjacency matrix of two real datasets sorted 

by cluster id and vertex id. 

 To test the performance we have generated random networks using the GTgraph 

graph generator suite [54].  GTgraph is a synthetic network generator introduced by 

Bader et al. and is capable of generating networks with different characteristics.  In our 

experiments we have used SSCA#2 networks and RMAT networks. 

 RMAT networks have a large number of vertices.  They also have a small degree 

for the most of the vertices while a few vertices have a large degree.  This model is the 

closest representation of the large real-world-networks like social networks.  SSCA#2 

graphs are made of random sized cliques of vertices with a hierarchical distribution of 

edges between cliques based on a distance metric.  A clique is defined as a maximal set of 

vertices where each pair of vertices is connected by directed edges in one or both 

directions.  

 



 

56 
 

5.1 Equivalence to SCAN 

 We use two real world networks to compare the clustering of SCAN and our 

parallel version.  For each cluster found in the network, the members are sorted by a node 

identifier and given the least node identifier in the cluster as their cluster identifier.  Next, 

the set of nodes is sorted by cluster identifier.  Then, the sorted list of hub nodes is 

appended followed by the sorted list of outlier nodes.  Using this ordering, the adjacency 

matrix for each graph is built and printed as a black and white bitmap.  Each pixel at row 

i, column j in the bitmap represents a link from the node in the list of nodes at position i 

to the node at position j.  These bitmaps are given in Figure 25. 

 

 
Figure 25: Bitmap representations of the adjacency matrix for two real world 

data sets. (a) Adjacency matrix of Political Books clustered by SCAN. (b) 

Political Books clustered by the parallel version. (c) NCAA teams clustered by 

SCAN. (d) NCAA teams clustered by the parallel version.  Bitmaps for Political 

Books clustering has been scaled up to fit. 
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 The first real world network is a set of 105 books about U.S. politics.  The nodes 

represent political books sold through Amazon.com.  The edges represent the books 

frequently bought by the same buyers.  Clustering this network with SCAN using ϵ = 0.4 

and µ = 2 produces three clusters. Naturally, these clusters are sets of liberal, 

conservative, and neutral biased books.  As illustrated by the adjacency matrix bitmaps in 

Figure 25, computing this clustering with our algorithm using the same parameters 

produces the exact same results. 

 The other real world network is a football game schedule of the National 

Collegiate Athletic Association (NCAA).  The 323 nodes in the network represent teams 

that play in the NCAA or against those teams.  Each edge represents a game scheduled.  

For instance, for the parameters (ϵ = 0.5, µ = 2), SCAN produces 29 dense clusters, 

possibly representing sub-conferences. Using those same parameters, our parallel version 

again produces the exact same clustering as SCAN. 

5.2 Performance 

 Clustering of any kind generally involves two basic tasks: computing similarity 

metric and generating clusters based on that metric.  We discuss the performance of both 

tasks computed together.  In addition, we also show the performance of our algorithm 

supposing the similarity has been pre-computed.  As illustrated in Figure 26, we have 

generated 10 SSCA#2 networks and 10 RMAT networks.  In both groups the number of 

vertices of the networks starts from 1024 and increases as the power of two. 

 



 

58 
 

 
Figure 26: The bar graph and table of the results for the R-MAT and SSCA2 

networks with a fixed average of degree of 6. 

  

 Figure 26 shows the results for the networks tested on both the SCAN and our 

algorithm. The computation time includes the process of calculating the structural 

similarity values.  For each network, it can be seen that the parallel version we 

implemented has a much lower computation time.  For instance, the computation time of 

the SCAN for 1024 edges is 46 milliseconds while the computation time of the parallel 

version is only 3.3 milliseconds for the RMAT network.  In other words, our algorithm is 

nearly 14 times faster than the SCAN for 1024 vertices.  We observe almost the same 

speedup for the SSCA#2 network. As the number of vertices increases the parallel 

version is getting significantly faster than the SCAN.  For the RMAT network with 

524,288 vertices, the computation time of the SCAN is 16,273 milliseconds while it is 

only 109.1 milliseconds for the parallel version.  Our algorithm is 149 times faster than 
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the SCAN for the RMAT network with 524,288 vertices.  Table 1 shows the speedup ratio 

of the computation times of both the SCAN and the parallel version. 

 

Average Degree 6 32,768 Nodes 

Nodes RMAT SSCA#2 Degree RMAT SSCA#2 

1024 

2048 

4096 

8192 

16384 

32768 

65536 

131072 

262144 

524288 
 

13.8 

13.3 

28.3 

31.3 

38.3 

50.5 

77.8 

88.7 

111.1 

149.2 
 

10.6 

13.1 

17.1 

16.1 

23.9 

31.9 

54.0 

59.7 

74.1 

87.6 
 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 
 

115.3 

151.3 

173.6 

185.9 

196.6 

198.6 

214.2 

219.6 

235.0 

239.2 
 

79.5 

114.2 

158.1 

173.4 

201.8 

218.5 

224.7 

235.0 

250.5 

254.2 
 

Table 1: Speedup rates for the graphs with a constant average node degree (Left), and 

for the graphs with a constant number of nodes but varying average node degree (Right). 

 

 The performance results imply that the speedup of the parallel version will be 

much higher for the networks that have much higher number of vertices.  Since the serial 

version of SCAN does not work for larger networks (e.g. larger than 524,288) we did 

compare our algorithm and SCAN up to these number of nodes.  However; with the 1GB 

of memory available on the Geforce GTX 460, our algorithm can run e.g. on up to 

16,000,000 edges. If greater memory capacity GPUs or multiple GPUs are used for the 

computation, the parallel algorithm is easily scalable.  
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 In a network or graph, degree is defined as the ratio of the number of the vertices 

divided by the number of the directed edges.  In the previous experiments, we have used 

networks that have an average degree of 6.  In this experiment set, we have used a fixed 

number of vertices (32,768) with 10 different degrees ranging from 10 to 100. 

 

 
Figure 27: The bar graph and table of the results for the R-MAT and SSCA#2 

networks with a fixed numbers of vertices of 32768. 

 

  Figure 27 shows the results of both the parallel version and the SCAN.  The 

computation time of the SCAN for the degree of 10 is 5,807 milliseconds while the 

computation time of our algorithm is only 50.3 milliseconds for the RMAT network.  

Thus, our implementation is approximately 115 times faster than the SCAN for 32,768 

vertices with the degree of 10.  For the RMAT network of 32,768 vertices with the degree 

of 100, the computation time of the SCAN is 360,634 milliseconds while it is only 
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1,507.9 milliseconds for the parallel version.  Hence, our algorithm is 239 times faster 

than the SCAN for the RMAT network for 32,768 vertices with the degree of 100 and 

even greater for SSCA#2 networks with the same dimensions. 

   

 
Figure 28: The bar graph and table of the results for the R-MAT and SSCA2 

networks with a fixed average of degree of 6.  The computation times do not 

include the process of calculating the structural similarity. 

 

  When the computation of the structural similarity is not included in the 

computation time our algorithm is still significantly faster than the SCAN.  For 1,024 

vertices with the average degree of 6, the parallel version is 2.2 times faster than the 

SCAN for RMAT networks and 1.9 times faster for SSCA#2 networks.  As the number 

of vertices increase, the speedup rate reaches almost 65 times for the RMAT networks 

and 28 times for SSCA#2 networks. When the number of the vertices is set at 32,768, the 
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speedup rate is 17.5 for RMAT networks with the degree 10 and 46.6 for the degree 100.  

For SSCA#2 networks, the speedup rate is 22.1 for the degree 10 and 45.7 for the degree 

100. 

 

 
Figure 29: The bar graph and table of the results for the R-MAT and SSCA2 

networks with a fixed numbers of vertices of 32,768. The computation times do 

not include the process of calculating the structural similarity. 

 

  When the number of vertices is fixed to the 32,768 as shown in Figure 29, the 

speedup ratio is approximately 17 times for the degree of 10 and it is almost 47 times for 

the average degree of 100. Table 2 shows all the speedup rates for RMAT and SSCA2 

networks when the pre-computed similarity values are used by our algorithm. 
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Average Degree 6 32,768 Nodes 

Nodes RMAT SSCA#2 Degree RMAT SSCA#2 

1024 

2048 

4096 

8192 

16384 

32768 

65536 

131072 

262144 

524288 
 

2.2 

4.5 

8.7 

9.0 

13.3 

17.3 

24.4 

37.2 

49.6 

64.6 
 

1.9 

3.5 

5.3 

5.4 

7.9 

9.7 

16.0 

16.8 

24.1 

28.0 
 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 
 

17.5 

24.3 

28.4 

30.9 

32.0 

37.5 

41.8 

43.5 

44.8 

46.6 
 

22.1 

29.7 

34.8 

38.2 

39.5 

40.4 

41.7 

41.7 

43.6 

45.7 
 

Table 2: Speedup rates with pre-computed similarity for the graphs with a 

constant average node degree (Left), and for the graphs with a constant number 

of nodes but varying average node degree (Right). 

 

  Table 2 shows that even though we use pre-computed structural similarities, our 

algorithm is still significantly faster than SCAN.  Since we could not test SCAN for much 

larger networks, we only have outcomes for the networks with 524288 nodes.  However, 

the increase in the speedup rates proves that as the size of networks increase we get much 

better results comparing to SCAN. 
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Chapter 6: Conclusion 

 In this study, we have introduced a parallel structural network clustering 

algorithm which is a GPU-based parallel version for SCAN network clustering algorithm.  

We have outlined the tasks of redesigning and parallelizing an optimized sequential 

algorithm designed for execution on the CPU into a massively parallel algorithm greatly 

accelerated by the GPU using C for CUDA.  The performance of the GPU accelerated 

structural clustering can be more than 250 times faster than a CPU implementation.  The 

results also indicate that this speedup becomes greater for networks with larger numbers 

of edges.  Moreover, the parallel version we implemented is scalable it works for very 

large networks if the number of GPUs is increased. 

 Our implementation is generic enough to be executed on any CUDA enabled 

GPU with compute capability of 2.0 or greater.  With small changes to the parameters of 

the kernel calls, GPUs with at least 1GB of device memory can structurally cluster 

networks several times larger than those documented in the performance analysis of this 

thesis.  However, the current implementation requires that for each step the necessary 

data structures exist entirely in device memory.  Hence, our parallel version is limited by 

the amount of device memory available on the GPU.  However, if multiple GPUs are 

included in the system this problem will be solved since our algorithm is scalable. 
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