Arkansas Council of Teachers of Mathematics Name_ **2022 Calculus Regional Competition**

Work the multiple-choice questions first, choosing the single best response from the choices available. Indicate your answer here and on your answer sheet. Then attempt the tie-breaker questions at the end starting with tie breaker #1, then #2, and then #3. Turn in your answer sheet, your tie-breaker pages, and your scratch work when you are finished. Figures are not necessarily drawn to scale. Angles are given in radians unless otherwise stated.

- 2. Approximate the area bounded by $f(x) = \frac{1}{x}$, between x = 4, x = 5, and the *x*-axis using a Riemann Sum. Use two rectangles with right-hand endpoints and equal sub-interval widths.
 - 17 a. 72 19
 - b.
 - 72 17 c.
 - 90 19
 - d. 90
 - None of the above e.

- 3. The graphs in the beside figure show the position *s*, velocity $v = \frac{ds}{dt}$. and acceleration $a = \frac{d^2s}{dt^2}$ of a body moving along a coordinate line as functions of time t. Which graph is which?
 - a. The graph labeled A is the graph of the position *s*, the graph labeled C is the graph of the velocity v, and the graph labeled B is the graph of the acceleration a.
 - b. The graph labeled C is the graph of the position *s*, the graph labeled A is the graph of the velocity v, and the graph labeled B is the graph of the acceleration a.
 - The graph labeled A is the graph of the position *s*, C. the graph labeled B is the graph of the velocity v, and the graph labeled C is the graph of the acceleration a.
 - d. The graph labeled B is the graph of the position s. the graph labeled C is the graph of the velocity v, and the graph labeled A is the graph of the acceleration a.
 - e. The graph labeled C is the graph of the position s, the graph labeled B is the graph of the velocity v, and the graph labeled A is the graph of the acceleration a.
- 4. On what interval(s) is the function $f(x) = \frac{x x^2}{1 + 3x^2}$ increasing?
 - $\left(-\frac{\sqrt{3}}{3}i,\frac{\sqrt{3}}{3}i\right)$ a.
 - $\left(-1,\frac{1}{3}\right)$ b.

 - c.
 - d. f(x) never increases.
 - e. None of the above.
- Complete this sentence with the best option. If *f* is a polynomial function of degree *n*, then *f* has... 5.
 - a. at least one critical number.
 - b. *n* critical numbers.
 - c. (n-1) critical numbers.
 - d. no more than (n 1) critical numbers.
 - e. no more than (n 2) critical numbers.
- 6. What is the slope of the line normal to the graph of $y = x^3 3x^2 + 6x + 2022$ at its point of inflection?
 - a. 1
 - b. -1
 - c.
 - d. 3
 - e. Cannot be determined.

7. Evaluate the following limit.

$$\lim_{x\to\infty}\frac{\ln\left(\sqrt[7]{x}\right)}{\log\left(\sqrt[3]{x}\right)}=$$

- a. 1 b. $\frac{7}{3}$ c. $\frac{3\ln(10)}{7}$ d. $\frac{e}{10}^{7}$ e. Limit does not exist, *or* Limit cannot be determined
- 8. Iodine-131 is a radioactive element used in medicine. It has a half-life of about 8 days. Suppose a patient is given a 100 millicurie (written 100 mCi) dose of this medication. What is the rate of change $(in \frac{mCi}{day})$ at t = 12 days?
 - a. $-3.0 \frac{mCi}{day}$ b. $-1.1 \frac{mCi}{day}$ c. $-0.1 \frac{mCi}{day}$ d. $25 \frac{mCi}{day}$
 - e. None of the above.
- 9. Evaluate the limit

a. b. c. d. e.

$$\lim_{h \to 8} \frac{\frac{1}{h} - \frac{1}{8}}{\frac{1}{2}} =$$

$$-\frac{\frac{1}{8}}{\frac{1}{2}}$$

$$-\frac{1}{16}$$

$$\frac{1}{4}$$
None of the above.

10. Evaluate. Assume all variables are non-negative:

$$\frac{d}{dx} \left[\int_0^x \sqrt{10t + 9} \, dt \right] =$$

a.
$$\frac{5}{\sqrt{10x+9}}$$

b. $\sqrt{10x+9}$
c. $\frac{1}{15}(10x+9)^{3/2}$

d.
$$\sqrt{10x+9} - \sqrt{9}$$

e. Unable to determine

- 11. For an unknown function f(x) continuous at x = 0, $\sqrt{10 3x^2} \le f(x) \le \sqrt{10 x^2}$ on the interval $-1 \le x \le 1$. Use this fact to evaluate $\lim_{x \to 0} f(x)$.
 - a. $-\sqrt{7}$
 - b. $\sqrt{10}$
 - c. 7
 - d. 10
 - e. Does not exist or Cannot be determined
- 12. Consider the following piecewise function. Is this function differentiable at x = 1? Choose the best explanation why or why not.

$$f(x) = \begin{cases} x+1 & x \le 1\\ -3x+5 & x > 1 \end{cases}$$

- a. Yes, f(x) is differentiable because we can find the derivative of the left and the right "branches" of f(x).
- b. Yes, f(x) is differentiable because f(x) is continuous at x = 1.
- c. No, f(x) is not differentiable because f(x) has a corner at x = 1.
- d. No, f(x) is not differentiable because f(x) is a piecewise function.
- e. None of the above.

13. Define $f(x) = x^3 + 6x^2 + 14$. Define values *a* & *b* as the two critical numbers for f(x), with $a \le b$. Evaluate

$$\int_{a}^{b} f(x) \, dx =$$

- a. -6.4
- b. 194.5
- c. 248
- d. 368
- e. None of the above.
- 14. For what values of *a* and *b* is the following piecewise function continuous for all *x*-values?

$$f(x) = \begin{cases} -2 & x \le -1 \\ ax + b & -1 < x \le 3 \\ 12 & 3 < x \end{cases}$$

- a. $a = \frac{12}{13} \& b = \frac{16}{23}$ b. $a = \frac{12}{13} \& b = \frac{16}{13}$ c. a = 12 & b = 6d. $a = \frac{7}{2} \& b = \frac{3}{2}$
- e. No value(s) exist or Cannot be determined
- 15. You're standing on a tree house that is 5*m* above the ground. You throw an object upward with an initial velocity of $10\frac{m}{s}$. What is the velocity of the object at the instant it hits the ground? Approximate g with $10\frac{m}{s^2}$
 - a.
 - $-10\frac{m}{s}$ b.
 - $-14.1\frac{m}{2}$ c.
 - d. $-70\frac{m}{s}^{3}$

 - e. None of the above.

- 16. Build off your work in the previous question. What is the velocity of the object when it reaches its maximum height?
 - a. $0\frac{m}{s^2}$
 - b. $-10\frac{m}{s^2}$

 - c. $-14.1\frac{m}{s^2}$ d. $-70\frac{m}{s^2}$

 - e. None of the above.
- 17. Find the slope of the tangent line of the following curve at the given point.

 $y^4 + x^3 = y^2 + 10x$ point = (0, 1)

- a. $m_{tan} = -5$
- b. $m_{tan} = 5$
- c. $m_{tan} = \frac{5}{2}$
- d. $m_{tan} = -\frac{5}{2}$
- e. None of the above

18. Evaluate $\int \sec(x) \tan(x) dx$:

- a. $-\cot(x) + c$
- b. tan(x) + c
- c. $\sec(x) + c$
- d. $-\csc(x) + c$
- e. None of the above
- 19. Find the point(s) *c* on the interval [-6, 3] at which function $h(x) = 4 x^2$ equals its average height on the interval.
 - a. $c = \pm 2$
 - b. $c = \pm 3$
 - c. $c = \pm \sqrt{7}$
 - d. $c = \pm \sqrt{10}$
 - e. None of the above.

20. Find the following anti-derivative.

$$\int \frac{\sin(t)}{(3+\cos(t))^5} dt$$

- a. $\frac{1}{6}(3 + \cos(t))^{-6} + C$ b. $4(3 + \cos(t))^{-4} + C$ c. $(3 + \cos(t))^{-4} + C$
- d. $\frac{1}{4}(3 + \cos(t))^{-4} + C$
- e. None of the above

21. Find the volume of revolution for the solid generated by revolving the region bounded between these two equations about the *x*-axis.

$$y = \frac{8}{x} \quad \& \quad y = -x + 9$$

- a. $\frac{3745}{3}$ b. $\frac{3745\pi}{3}$
- b. $\frac{3745}{3}$
- C. $\frac{343}{3}$

d.
$$\frac{3433}{3}$$

- e. None of the above
- 22. The Mean Value Theorem applies to the function $f(x) = x^{5/2}$ on the interval [0, 1]. Find all possible values of *c* that satisfy the MVT.
 - a. $c = \left(\frac{2}{5}\right)^{2/3}$ b. $c = \left(\frac{2}{5}\right)^{3/2}$ c. $c = \left(\frac{5}{2}\right)^{2/3}$ d. $c = \left(\frac{5}{2}\right)^{3/2}$
 - e. No value exists

23. Calculate $\frac{d}{dx}[\sin(\sin(x))]$.

- a. $\cos(\cos(x))$
- b. $\cos(x) \cdot \cos(\sin(x))$
- c. $sin(x) \cdot sin(cos(x))$
- d. $\cos^2(x)$
- e. None of the above

24. Consider the function $f(x) = x^2 + \frac{b}{x}$. What value of *b* makes this f(x) have a local minimum at x = -2?

- a. b = -6
- b. b = 6
- c. b = -16
- d. *b* = 16
- e. No value *b* can be found.

25. Find
$$\frac{dy}{dx}$$
: $e^{7x} = \sin(x + 7y)$.
a. $\frac{dy}{dx} = \frac{e^{7x}}{\cos(x+7y)} - \frac{1}{7}$
b. $\frac{dy}{dx} = \frac{2e^{7x}}{3\cos(x+3y)} - \frac{1}{3}$
c. $\frac{dy}{dx} = \frac{-2e^{7x}}{3\sin(x+3y)} + \frac{1}{3}$
d. $\frac{dy}{dx} = \frac{-e^{7x}}{\sin(x+7y)} + \frac{1}{7}$
e. Cannot be found.

TIE BREAKER #1

Name: _____

School: _____

Find the derivative of the following function, using one single formula. $f(x) = |x|^3$

TIE BREAKER #2

Name: _____

School: _____

Solve the initial value problem to find y(x). Use exact values. Show all work. Assume all values for x are positive.

$$\frac{dy}{dx} = \frac{1}{x^3} + x \quad \& \quad y(3) = 1$$

TIE BREAKER #3

Name: _____

School: _____

Find a cubic polynomial $p(x) = x^3 + ax^2 + bx + c$ such that the graph of p has a local maximum at point (-3, 10) and a point of inflection when $x = -\frac{5}{3}$.

Arkansas Council of Teachers of Mathematics Name _ 2022 Calculus Regional Competition

ANSWER KEY

<mark># 1</mark>	C	<mark># 6</mark>	C	<mark># 11</mark>	B	<mark># 16</mark>	A	<mark># 21</mark>	D
<mark># 2</mark>	D	<mark># 7</mark>	C	<mark># 12</mark>	C	<mark># 17</mark>	B	<mark># 22</mark>	A
<mark># 3</mark>	A	<mark># 8</mark>	A	<mark># 13</mark>	E	<mark># 18</mark>	C	<mark># 23</mark>	B
<mark># 4</mark>	B	<mark># 9</mark>	E	<mark># 14</mark>	D	<mark># 19</mark>	B	<mark># 24</mark>	C
<mark># 5</mark>	D	<mark># 10</mark>	B	<mark># 15</mark>	C	<mark># 20</mark>	D	<mark># 25</mark>	A

Tie Breaker 1

Since $|x| = \sqrt{x^2}$, you can revise the given formula to $f(x) = |x|^3 = (\sqrt{x^2})^3 = (x^2)^{3/2}$. We can apply the Chain Rule to this formula.

$$f'(x) = \frac{3}{2}(x^2)^{3/2-1} \cdot (2x) = \frac{3}{2}(x^2)^{1/2} \cdot 2x = 3x\sqrt{x^2}$$
$$= 3x|x|$$

Tie Breaker 2

$$\frac{dy}{dx} = \frac{1}{x^3} + x \& y(3) = 1$$

This is a separable differential equation. We integrate:

$$\int dy = \int \frac{1}{x^3} + x \, dx$$
$$\int dy = \int x^{-3} + x \, dx$$
$$y = \frac{x^{-2}}{-2} + \frac{x^2}{2} + c = -\frac{1}{2x^2} + \frac{x^2}{2} + c$$
Evaluate this at coordinate (3, 1) and solve for c.
$$1 = -\frac{1}{2 \cdot 3^2} + \frac{3^2}{2} + c$$
$$c = -\frac{31}{9} = -3.\overline{4}$$

Final answer:

Redefine $f(x) = x^3$

$$y = -\frac{1}{2x^2} + x^2 - \frac{31}{9}$$

Tie Breaker 3 Define $f(x) = x^3 + ax^2 + bx + c$. Consider the inflection point first. We know $\frac{d^2}{dx^2}[f(x)] = 0$ at $x = -\frac{5}{3}$. $\frac{d^2}{dx^2}[f(x)] = 6x + 2a = 0$

$$\frac{d}{dx^2}[f(x)] = 6x + 2a = 0$$

$$+5x^{2^{3}} + bx + c.$$
 Now consider the critical point at $x = -3$.
$$\frac{d}{dx}[f(x)] = 3x^{2} + 10x + b = 0$$

Solve for b at point x = -3: b = 3.

Solve for *a* at point $x = -\frac{5}{2}$: a = 5.

Redefine
$$f(x) = x^3 + 5x^2 + 3x + c$$
. We now consider the coordinate (-3, 10).

$$f(-3) = 10$$

$$(-3)^3 + 5(-3)^2 + 3(-3) + c = 10$$

$$c = 1$$
Final answer: $f(x) = x^3 + 5x^2 + 3x + 1$.

Page 10