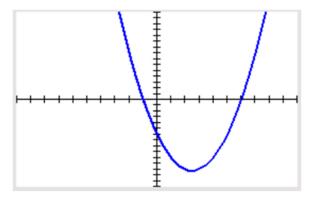

Work the multiple-choice questions first, choosing the single best response from the choices available. Indicate your answer here and on your answer sheet. Then attempt the tie-breaker questions at the end starting with tie breaker #1, then #2, and then #3. Turn in your answer sheet and the tie-breaker pages when you are finished. You may keep the pages with the multiple-choice questions. Figures are not necessarily drawn to scale.

- 1. In 1946, the lowest price of a World Series ticket was \$1.20. By 2012, the lowest price of a ticket had increased to \$110. Find the average rate of change in the lowest price of a World Series ticket from 1946 to 2012.
 - A. Tickets increased an average of \$66 each year.
 - B. Tickets decreased an average of \$108.80 each year.
 - C. Tickets increased an average of \$108.80 each year.
 - D. Tickets decreased an average of \$1.65 each year.
 - E. Tickets increased an average of \$1.65 each year.
- 2. Solve for *x*. |2x 3| 5 = 4
 - A. x = -3, 6
 - B. x = 4, 6
 - C. x = -0.5, 3.5
 - D. x = 3.5, 4
 - E. No real solution
- 3. Which expression is equivalent to $\sqrt{20x^{12}}$?
 - A. $2x^6\sqrt{5}$
 - B. $2x^3\sqrt{5}$
 - C. $2x^4\sqrt{5}$
 - D. $4x^6\sqrt{5}$
 - E. $4x^3\sqrt{5}$
- 4. Solve for *x*. $4x^2 38 = 158$?
 - A. No real solution B. x = 49C. x = -49, 49D. x = 7E. x = -7, 7


- 5. Write the equation of the line that passes through (-3, -12) and (3, -2) in slope-intercept form.
 - A. $y = -\frac{7}{3}x + 5$ B. $y = -\frac{7}{3}x - 9$ C. $y = \frac{5}{3}x - 3$ D. $y = \frac{5}{3}x - 7$
 - E. None of the above
- 6. The Quadratic function graphed on the right represents the first of two equations in a system of equations, $y = x^2 - 5x - 6$.

If the graph of the second equation in the system is linear and passes through the points (0, 4) and (3, -2), which statement is true?

- A. The only solution to the system is (-2, 8).
- B. The only solution to the system is (5, -6).
- C. The solutions to the system are (-2, 8) and (5, -6)
- D. The system has no solution.
- E. The system has an infinite number of solutions.

- A. $f(x) = x^2 + 5x 6$
- B. $f(x) = 3x^2 + 15x 18$
- C. $f(x) = -x^2 5x + 6$
- D. All of the above
- E. None of the above
- 8. If the graph of $y = 2^x 1$ is shifted the right 5 units, which of the following equations describes the resulting graph?
 - A. $y = 2^{x-5} 1$ B. $y = 2^{x+5} - 1$ C. $y = 2^{x} - 6$ D. $y = 2^{x} + 4$ E. None of the above

- 9. Expand. $3(x-2)^2 14x + 5$
 - A. $3x^2 14x + 17$ B. $3x^2 - 26x - 7$ C. $3x^2 - 26x + 17$ D. $9x^2 - 14x - 7$ E. $9x^2 - 14x + 41$
- 10. A car rental company charges a flat fee of \$45 plus \$0.17 per mile the car is driven. Find an equation that can be used to determine the total cost, C(x), if the rental car is driven for x-miles.
 - A. C(x) = 0.17x 45B. C(x) = 0.17x + 45C. C(x) = 45x - 0.17D. C(x) = 45x + 0.17E. C(x) = 0.17x
- 11. A ball is thrown from a height of 3 feet at an initial velocity of 5 ft/sec. The height of the ball h(t), t seconds after the ball has been thrown is represented by $h(t) = -t^2 + 5t + 3$. This function

is shown on the graph to the right.

Determine the maximum height that the ball reaches.

- A. −0.541 *feet*
- B. 3 feet
- C. 2.5 feet
- D. 9.25 feet
- E. 5.541 feet

(0,3) (-0.541,0) (0,3) (5.541,0)

12. Which values are solutions to $x^2 - 20x + 52 = 0$?

A. $x = 10 \pm 8\sqrt{3}$ B. $x = 20 \pm 4\sqrt{3}$ C. $x = 10 \pm 4\sqrt{3}$ D. $x = 20 \pm 8\sqrt{3}$ E. No real solution

- 13. The perimeter of a rectangle is represented by P = 2l + 2w (where P = perimeter, l = length, and w = width). A specific rectangle has a perimeter of 39 inches and a length of 11 inches. Determine the width of the rectangle.
 - A. 8.5 inches
 - B. 11 inches
 - C. 17 inches
 - D. 22 inches
 - E. 28 inches

14. Combine: $\frac{3}{x+4} + \frac{2}{x-2}$

A.
$$\frac{5}{x^2+2x-8}$$

B. $\frac{6}{x^2+2x-8}$
C. $\frac{2x+7}{x^2+2x-8}$
D. $\frac{3x-4}{x^2+2x-8}$
E. $\frac{5x+2}{x^2+2x-8}$

15. Find the zero(s) of f(x) = (x - 2)(x + 5).

- A. (-5,0) and (2,0)
- B. (0, -5) and (0, 2)
- C. (0,-10)
- D. (-10,0)
- E. No real zeros

16. Which values are solutions to $x^2 + 11x - 60 = 0$?

A. x = -4, 15B. x = -15, 4C. x = -15, -4D. x = -6, 10E. x = -10, 6

17. Which expression is equivalent to $\frac{7}{\sqrt{xy}}$?

A. $\frac{7}{xy}$ B. $\frac{\sqrt{xy}}{7}$ C. $\frac{7x}{\sqrt{y}}$ D. $\frac{7\sqrt{xy}}{xy}$ E. $\frac{\sqrt{7}}{xy}$

18. Solve the following system of equations.	4x + 3y = 11
	-5x + 2y = 15

- A. (6,5)
- B. (5,6)
- C. (5,−1)
- D. (-1,5)
- E. No Solution
- 19. Katherine wants to build a rectangular puppy pen in her backyard. She has 16 meters of fencing and wants to use it all. The function $A(x) = -x^2 + 8x$ represents the area, A(x), of the puppy pen as a function of the width, x. Which of the following statements best describes the domain of the function within the scenario?
 - A. All real numbers
 - B. $x \le 16$
 - C. $x \ge 0$
 - D. 0 < x < 16
 - E. 0 < *x* < 8

20. Solve the following equation for *x*. 7(3x + 9) = 11 - (x + 3)

A. $x = \frac{5}{2}$ B. $x = -\frac{5}{2}$ C. $x = \frac{11}{4}$ D. $x = -\frac{11}{4}$ E. No Solution

- 21. Several terms of a sequence of numbers are $a_2 = 8$, $a_3 = 13$, $a_4 = 18$, $a_5 = 23$, and $a_6 = 28$. Based on this information, which equation can be used to find the term of the sequence a_n ?
 - A. $a_n = 3n + 2$
 - B. $a_n = 3n + 4$
 - C. $a_n = 5n 2$
 - D. $a_n = 5n + 2$
 - E. None of the above
- 22. The table below represents some points on the graph of an exponential function. What equation represents the same relationship?

x	0	1	2	3
У	2	1	0.5	0.25

- A. $y = 2(0.5)^x$
- B. $y = 2(1.5)^x$
- C. $y = 0.5(2)^x$
- D. $y = 2.5^x$
- E. None of the above

23. Solve for *x*: $\sqrt{4x + 1} - 2 = 1$

A. x = 0B. x = 2C. x = 3D. x = 8E. No Solution

24. Given the equation below, solve for *c*.

4p - 3c = 5k

A.
$$c = 5k - 4p$$

B. $c = 5k + 4p$
C. $c = \frac{4p - 5k}{3}$
D. $c = \frac{5k + 4p}{3}$

E. None of the above

Relation A	Relation B	Relation C
x y	x y	xy
-3 5	-1 2	-5 2
0 0	2 2	-2 0
1 -1	5 -1	3 -1
1 2	6 -4	4 -3
3 1	8 1	7 -7

25. Which of the following relations shown below, if any, represent a function?

- A. Relation A only
- B. Relation C only
- C. Relations A and C
- D. Relations B and C
- E. None of the above

Tie Breaker #1

Name: _____

School: _____

A construction company is building a rectangular fence around a swimming pool. The length of the rectangular fence is 6 meters more than the width.

- A. Let *x* represent the width of the fence. Write a simplified expression to represent the perimeter of the rectangular fence that will be built around the pool.
- B. If the construction company plans to use exactly 124 meters of fencing, determine the dimensions on the fence.

Tie Breaker #2

Name: _____

School: _____

The admission fee for a museum is \$5 for children and \$12.50 for adults. On a given day, 284 people visited the museum and \$3145 was collected from admission fees. How many children and how many adults visited the museum?

Tie Breaker #3

Name: _____

School: _____

The following table lists the numbers of commercial and savings banks in the United States for various years.

Year, x	Number of Banks, y		
2010	8605		
2011	8441		
2012	8185		
2013	7821		
2014	7523		
2015	7255		
2016	6950		
2017	6669		

- A. Model the data with a linear function. Let the independent variable represent the number of years after 2010. If necessary, round coefficients to the nearest tenth.
- B. Using your function found in part A, predict the number of banks in the United States in 2020. If necessary, round to the nearest whole number.
- C. Using your function found in part A, predict the first year where the number of banks is fewer than 5000.

Answer Key:

1	Е	10	В	19	E
2	А	11	D	20	В
3	А	12	С	21	С
4	Е	13	А	22	А
5	D	14	Е	23	В
6	С	15	А	24	С
7	D	16	В	25	D
8	А	17	D		
9	С	18	D		

Tie Breaker #1

A. P = 4x + 12B. L = 34m W = 28m

Tie Breaker #2

54 children, 230 adults

Tie Breaker #3

- A. y = -286.9x + 8685.1
- B. 5817 banks
- C. In year 2023 (x = 13), the number of banks is 4956.