Work the multiple-choice questions first, choosing the single best response from the choices available. Indicate your answer here and on your answer sheet. Then attempt the tie-breaker questions at the end starting with tie breaker #1, then #2, and finally #3. Turn in your answer sheet and the tie breaker pages when you are finished. You may keep the pages with the multiple-choice questions.

Angles are given in radians unless otherwise stated.

1. Divide 3 - 2i by 2 + 3i.

b.
$$\frac{12-13}{12}$$

b.
$$\frac{12-13i}{13}$$
c. $\frac{12+13i}{13}$

d. None of the above

2. Which are polar coordinates of the point with rectangular coordinates (-1, 1)?

a.
$$\left(\sqrt{2}, \frac{3\pi}{4}\right)$$

b.
$$(\sqrt{2}, \frac{\pi}{4})$$

c.
$$(2, -\frac{3\pi}{4})$$

b.
$$\left(\sqrt{2}, \frac{\pi}{4}\right)$$

c. $\left(2, -\frac{3\pi}{4}\right)$
d. $\left(2, -\frac{\pi}{4}\right)$

3. Find the inverse function of $f(x) = a^{2x} + 1$. Assume a > 0.

a.
$$f^{-1}(x) = a^{x/2} - 1$$

b.
$$f^{-1}(x) = \log_a \sqrt{x+1}$$

c.
$$f^{-1}(x) = \log_a(x-1)$$

d.
$$f^{-1}(x) = \log_a \sqrt{x - 1}$$

4. Let vector $\vec{u} = 2i + j$ and vector $\vec{v} = i - 3j$. Find $||\vec{u} + \vec{v}||$.

- a. 1
- b. 5
- c. $\sqrt{5}$
- d. $\sqrt{13}$

5. Find the vertex of the parabola $y = 2x^2 - 8x + 14$

- a. (2,6)
- b. (-2,6)
- c. (2, -6)
- d. (-2, -6)

6. What is the solution set to the inequality |9x - 1| > 5?

a.
$$\left\{x : x < -\frac{4}{9}\right\}$$

b. $\left\{x : x > \frac{2}{3}\right\}$

b.
$$\left\{ x : x > \frac{2}{3} \right\}$$

c.
$$\left\{ x : -\frac{4}{9} < x < \frac{2}{3} \right\}$$

d.
$$\left\{ x : x < -\frac{4}{9} \text{ or } x > \frac{2}{3} \right\}$$

- 7. Suppose f is an odd function. What is an equivalent expression for $(f \circ f)(-x)$?
 - a. f(f(x))
 - b. -f(f(x))
 - c. -f(f(-x))
 - d. None of these
- 8. How long does it take your money to double if you invested in an account that earns 9% annual interest compounded continuously? Round to the nearest month.
 - a. 264
 - b. 92
 - c. 22
 - d. 8
- 9. Simplify the expression:

$$\frac{n! (n+2)!}{\left((n+1)!\right)^2}$$

- a. $\frac{n+2}{n+1}$
- b. $\frac{n(n+2)}{(n+1)^2}$
- C. $\frac{n}{n+1}$
- d. $\frac{n+2}{n(n+1)}$
- 10. Find the sum: $-17 9 1 + 7 + \cdots + 79$
 - a. 310
 - b. 324
 - c. 403
 - d. 420
- 11. What is the smallest angle, to the nearest degree, in a triangle with sides of length 20, 21, & 29?
 - a. 35°
 - b. 36°
 - c. 44°
 - d. 47°
- 12. Find the exact value of $\log_{\pi} a \times \log_a (\cos^{-1}(-1))$. Assume a > 0.
 - a. *a*
 - b. 0
 - c. 1
 - d. Undefined
- 13. What is the coefficient of x^7y^8 when $(x + y)^{15}$ expanded?
 - a. 15
 - b. 6435
 - c. 32432400
 - d. 259459200

- 14. What is the domain of $f(x) = \sin^{-1}(3x + 1)$?
 - a. [-1,1]

 - c. All real numbers
 - d. None of these
- 15. Determine the extraneous solution of the equation $\log_6(x-2) = 1 \log_6(x-1)$.
 - a. {4}
 - b. $\{-1,4\}$
 - c. $\{-1\}$
 - d. None of these
- 16. Find the solution set of the equation $x^3 x^2 7x + 15 = 0$.
 - a. $\{-3\}$
 - b. $\{3, -3\}$
 - c. $\{3, 2+i, 2-i\}$
 - d. $\{-3, 2+i, 2-i\}$
- 17. Find the inverse function of $f(x) = \frac{2x+1}{2x-1}$.

 - a. $f^{-1}(x) = \frac{2x-1}{2x+1}$ b. $f^{-1}(x) = \frac{x+1}{x-1}$ c. $f^{-1}(x) = \frac{x+1}{2x-1}$ d. $f^{-1}(x) = \frac{x+1}{2(x-1)}$
- 18. Find the area of \triangle ABC with the dimensions given. Round to the nearest tenth of a square unit.
 - a. $A = 4.9 \text{ units}^2$
 - b. $A = 7.7 \text{ units}^2$
 - c. $A = 9.1 \, units^2$
 - d. $A = 15.4 \text{ units}^2$
- 19. Find the exact value of $\cos\left(\frac{\sin^{-1}\left(-\frac{1}{5}\right)}{2}\right)$:

b.
$$\frac{\sqrt{10(5+\sqrt{26})}}{}$$

a.
$$-\frac{\sqrt{10(5+2\sqrt{6})}}{10}$$
b.
$$\frac{\sqrt{10(5+\sqrt{26})}}{10}$$
c.
$$-\frac{\sqrt{10(5+\sqrt{26})}}{10}$$
d.
$$\frac{\sqrt{10(5+2\sqrt{6})}}{10}$$

d.
$$\frac{\sqrt{10(5+2\sqrt{6})}}{10}$$

- 20. Let u > 0, express $\cot(\csc^{-1} u)$ in terms of u.
 - a. u 1
 - b. $\sqrt{u^2 1}$
 - c. u + 1
 - d. $\sqrt{u^2 + 1}$
- 21. Find the length of side a in a triangle with sides b = 8, c = 9, and angle $A = 28^{\circ}$, where side a is opposite of angle A. Round to the nearest tenth of a unit.
 - a. 4.2
 - b. 16.5
 - c. 17.9
 - d. 272.1
- 22. Simplify $\frac{(1-i)^{5020}}{2^{2510}}$.
 - a. 1 i
 - b. -1 + i
 - c. i
 - d. −1
- 23. What is the domain of the inverse function for $f(x) = \log_{\pi/2}(\csc^{-1} x)$?
 - a. $(-\infty, 1]$
 - b. [-1,1]
 - c. $[-1,0) \cup (0,1]$
 - d. $[-1, \infty)$
- 24. If $\tan \theta = t$, express $\sin 2\theta$ in terms of t.
 - a. $\frac{2t}{1+t^2}$ b. $\frac{2t}{1-t^2}$

 - c. 2*t*
 - d. None of these
- 25. Consider the functions: f(x) = x + 1, $g(x) = 2 x^2$. Evaluate $(f \circ g \circ f)(1)$
 - a. 1
 - b. −4
 - c. -1
 - d. 2

Tiebreaker Question 1

Name
School
Solve the triangle $b = 7$, $c = 8$, $B = 17^\circ$, where side a is opposite of angle A , side b is opposite of angle B , and side c is opposite of angle C . (Round your answers to one decimal place.)

Tiebreaker Question 2			
Name			
School	-		

A boat leaves point A and travels 780 miles to another point B on a bearing of N43°E. the boat later leaves point B and travels to point C, 630 miles away on a bearing of S71°E. find the distance between the points A and C to the nearest mile.

Tiebreaker Question 3			
Name			
School			
			4

Given that the terminal side of angle θ lies in the 2^{nd} quadrant, and that $\sin(\theta) = \frac{4}{5}$, evaluate the sum: $\sum_{n=1}^{\infty} \sin^n(2\theta)$

$$\sum_{n=1}^{\infty} \sin^n(2\theta)$$

Multiple Choice Answers

1) Α

Tie Breaker Answers

Tiebreaker 1: Solve problem using Law of Sines. The triangle described has a side-side-angle arrangement, which indicates that there are two different possible resulting triangles.

$$\frac{\sin C}{8} = \frac{\sin 17^{\circ}}{7} \to C = \sin^{-1} \left(\frac{8 \cdot \sin 17^{\circ}}{7} \right) = \begin{cases} C_{1} \approx 19.5^{\circ} \\ C_{2} \approx 180 - 19.5 \approx 160.5^{\circ} \end{cases}$$

Case 1: Use
$$C_1 = 19.5^{\circ}$$

$$A_1 \approx 180 - 17 - 19.5 \approx 143.5^{\circ}$$

$$A_1 \approx 180 - 17 - 19.5 \approx 143.5^{\circ}$$
 $A_2 \approx 180 - 17 - 160.5 \approx 2.5^{\circ}$ $a_1 \approx \frac{7 \sin 143.5^{\circ}}{\sin 17^{\circ}} \approx 14.2$ $a_2 \approx \frac{7 \sin 2.5^{\circ}}{\sin 17^{\circ}} \approx 1.1$

Case 2: Use
$$C_2 \approx 160.5^{\circ}$$

$$A_2 \approx 180 - 17 - 160.5 \approx 2.5^{\circ}$$

$$a_2 \approx \frac{7 \sin 2.5^{\circ}}{\sin 17^{\circ}} \approx 1.1$$

Tiebreaker 2:

One possible method is to use the law of cosines.

Angle B is $43^{\circ} + (90^{\circ} - 19^{\circ}) = 114^{\circ}$.

$$AC = \sqrt{780^2 + 630^2 - 2 \cdot 780 \cdot 630 \cdot \cos 114^{\circ}} \approx 1185 \text{ miles}$$

Tiebreaker 3:

Given that the angle is in Q2, $sin(t) = \frac{4}{5}$ and $cos(t) = \frac{-3}{5}$.

Note the identity sin(2t) = 2 sin(t) cos(t),

$$\sum_{n=1}^{\infty} \sin^{n}(2\theta) = \sum_{n=1}^{\infty} (\sin(2\theta))^{n} = \sum_{n=1}^{\infty} (2\sin(\theta)\cos(\theta))^{n}$$
$$= \sum_{n=1}^{\infty} \left(2 \cdot \frac{4}{5} \cdot \frac{-3}{5}\right)^{n} = \sum_{n=1}^{\infty} \left(\frac{-24}{25}\right)^{n}$$

Since $-1 < -\frac{24}{25} < 1$, this is a geometric series and the result converges.

$$\sum_{n=1}^{\infty} \left(\frac{-24}{25} \right)^n = \frac{1}{1 - \left(-\frac{24}{25} \right)} = \frac{25}{49}$$