Work the multiple-choice questions first, choosing the single best response from the choices available. Indicate your answer here and on your answer sheet. Then attempt the tie-breaker questions at the end starting with tie breaker #1, then #2, and finally #3. Turn in your answer sheet and the tie breaker pages when you are finished. You may keep the pages with the multiple-choice questions.

Figures aren't necessarily drawn to scale. Angles are given in radians unless otherwise stated.

1. $\lim_{x \to 2} \left(\frac{4x^2 - 16}{x - 2} \right) = 16$. By the definition of a limit, there is a positive real number δ such that $\left|\frac{4x^2-16}{x-2}-16\right| < 0.4$ if $0 < |x-2| < \delta$. The largest valid value of δ is A. 0.02 B. 0.05 C. 0.1 D. 0.2 E. 0.5 $2. \quad \lim_{x \to 0} \left(\frac{4x}{\sin(2x)} + \frac{5x}{\cos(3x)} \right) =$ A. Undefined B. 1 C. 2 D. 4 E. 9

- 3. Which of the following indicates the presence of a horizontal asymptote for the graph of y = f(x)?
 - $A. \lim_{x \to 4} f(x) = 3$

 - B. $\lim_{x \to \infty} f(x) = 3$ C. $\lim_{x \to \infty} f(x) = \infty$ D. $\lim_{x \to 3} f(x) = \infty$

 - E. Each of the other answers is incorrect.
- 4. There is a stack of newspapers whose weight is given by w(t) where t is time. A match is thrown in the stack and we notice that the fire is increasing in vigor at time t = 2. Which of the following must be true?
 - A. w'(t) > 0 and w''(t) > 0
 - B. w'(t) > 0 and w''(t) < 0
 - C. w'(t) < 0 and w''(t) > 0
 - D. w'(t) < 0 and w''(t) < 0
 - E. One cannot determine the signs of these derivatives.

5. $\lim_{h \to 0} \frac{f'(x+h) - f'(x)}{h} =$ A. Does not exist B. 0 C. f(x)D. f'(x)E. f''(x)6. $\frac{d}{dx} \left(\ln\left(\sin(x)\right) \right) =$ A. $\ln\left(\cos(x)\right)$ B. $\cos\left(\ln(x)\right)$ C. $\left(\frac{1}{x}\right)\cos(x)$ D. $\sin\left(\frac{1}{x}\right)$ E. $\cot(x)$ 7. $\frac{d}{dx} \left(\frac{3}{x} + 4\sqrt{x} + 5x\right) =$ A. $3\ln(x) + 2\sqrt{x} + 5$ B. $-\frac{3}{x^2} + 2\sqrt{x} + 5$

- C. $-\frac{3}{x^2} + \frac{2}{\sqrt{x}} + 5$
- D. $3x + 4\sqrt{x} + 5$
- E. Each of the other answers is incorrect.
- 8. The depth of the water *x* feet from the end of a swimming pool is given by $h(x) = 3 + \frac{1}{80}x^2$ for

x ∈ [0,20]. What is the average depth of the water on this interval to the nearest tenth of a foot?
 A. 3.7

- B. 4
- C. 4.3
- D. 4.7
- E. Each of the other answers is incorrect.
- 9. A region is bounded by the curves x = 2, x = 4, $y = x^4$, and $y = 4^x$. Compute the area of the region. Round your answer to two decimal places.
 - A. 24.00
 - B. 25.28
 - C. 52.25
 - D. 78.40
 - E. Each of the other answers is incorrect.

For j	problems 10 and 1	<u>1</u> . Following is a t	able of velocities	and times since	midnight for a	vehicle.
		_ 0			0	

<i>t</i> hours	1	3	5	7	9	11	13	15	17
<i>v</i> miles/hour	25	45	53	55	60	62	61	53	42

10. Give the best estimate of the instantaneous acceleration exactly at 7:00 am.

A. 1 *mi/h*² B. 1.75 *mi/h*² C. 2.5 *mi/h*² D. 7.86 *mi/h*² E. 55 *mi/h*²

11. Use the midpoint rule with 4 intervals to approximate the total distance traveled from 1:00 am to 5:00 pm.

- A. 860 mi B. 828 mi C. 430 mi D. 203 mi
- E. 180 *mi*

12. What is the equation of the tangent line to $f(x) = \frac{x^2 + 1}{x - 1}$ at x = 2?

- A. y = 7 x
- B. y = x + 5
- C. y = 5 x

D.
$$y = 2x + 5$$

E. Each of the other answers is incorrect.

13. $\frac{d}{dx}(\sin^2(x)) =$

- A. $2\sin(x)$
- B. sin(2x)
- C. $\sin(x^2)$
- D. $\cos^2(x)$
- E. Each of the other answers is incorrect.

For problems 14 and 15. Following is the flow rate of a pollutant in a lake in liters/hour as a function of time in hours.

14. Estimate the total amount of the pollutant which entered the lake from time t = 2 to t = 5.

- A. 5 liters
- B. 10 liters
- C. 15 liters
- D. 20 liters
- E. 30 liters

15. How fast the flow rate changing at t = 4.4?

- A. Decreasing at 1.5 liters/hour/hour
- B. Decreasing at 2.5 liters/hour/hour
- C. Decreasing at 3.5 liters/hour/hour
- D. Increasing at 2.5 liters/hour/hour
- E. Increasing at 3.5 liters/hour/hour

16.
$$\frac{d}{dx}(\sec(x)\tan(x)) =$$

A.
$$2 \sec^3(x) - \sec(x)$$

B. sec(x)

C.
$$\sec^3(x)\tan(x)$$

D.
$$\frac{\cos^2(x) - 2\sin^2(x)}{\cos^3(x)}$$

E. Each of the other answers is incorrect.

17. If p(3) = 4, p'(3) = 0 and p''(3) = 2 which of the following must be true about the graph of s(x)?

- A. The graph has a local maximum at (3, 4).
- B. The graph has a local minimum at (3, 4).
- C. The graph has an inflection point at (3, 4).
- D. There is a hole in the graph at (3, 4).
- E. Each of the other answers is incorrect.

18.
$$\frac{d}{dx} \left(e^{\sin(5x^3)} \right) =$$

A. $15x^2 \cos(5x^3) e^{\sin(5x^3)}$
B. $15x^2 e^{\sin(5x^3)}$

- C. $15x^2e^{\cos(5x^3)}$
- D. $e^{\cos(15x^2)}$
- E. Each of the other answers is incorrect.
- 19. A container is in the shape of a square pyramid with the vertex at the bottom. Its base is 12 meters on each side, and its height is 4 meters. It is being filled with water at a rate of 9 m³/min. How fast is the depth of the water growing when the depth is 2 meters? The volume of a pyramid is given by

$$V = \frac{1}{3}Bh.$$

- A. 2 meters/minute
- B. 1 meter/minute
- C. 0.5 meters/minute
- D. 0.25 meters/minute
- E. Each of the other answers is incorrect.

20. There is a line going from the origin to a point on the graph of $y = x^2 e^{-3x}$, $x \ge 0$. Of all such lines, what is the slope of the one with the largest slope?

- A. $\frac{1}{3e}$
- B. $\frac{1}{3}$
- D_{1}
- C. $\frac{1}{2}$
- D. $\frac{1}{9e}$
- E. Each of the other answers is incorrect.

21. The region *R* bounded by the graphs of $y = x^{\frac{3}{2}}$, y = 1, and x = 4 is revolved around the *y*-axis to form a solid of revolution. The volume of this solid is given by the integral

A. $\pi \int_{1}^{4} \left(x^{\frac{9}{4}} - 1 \right) dx$ B. $\pi \int_{1}^{4} \left(x^{3} - 1 \right) dx$ C. $\pi \int_{1}^{16} \left(x^{\frac{3}{2}} - 1 \right)^{2} dx$ D. $\pi \int_{1}^{\sqrt[3]{16}} \left(1 - y^{\frac{4}{9}} \right) dy$ E. $\pi \int_{1}^{8} \left(16 - y^{\frac{4}{3}} \right) dy$

22. Here is a table of values for a function y = f(x):

x	2.9	2.99	2.999	2.9999	3	3.0001	3.001	3.01	3.1
f(x)	0.67872	0.67932	0.67984	0.67998	23	0.64002	0.64021	0.64235	0.64467

The values in this table suggest $\lim_{x\to 3} f(x) =$

A. 23

B. 0.68

C. 0.64

D. 0.66

E. The limit does not exist.

23.
$$\lim_{x \to \infty} \left(\frac{3x^7 + 7^{x-2}}{5x^7 - 3 \cdot 7^x} \right) =$$

A. $-\frac{1}{3}$
B. $-\frac{1}{147}$
C. 0
D. $\frac{3}{5}$
E. ∞

24. $\lim_{x \to a} \left(\frac{\sin(x) - \sin(a)}{x - a} \right) =$ A. $-\cos(a)$ B. $\sin(1)$ C. 0 D. $\cos(a)$ E. None of the other answers is correct.

25. The function g(x) has a derivative g'(x) that is continuous over an interval [a,b]. The definite integral

 $\int_{0}^{b} g'(x) dx \text{ can be interpreted as}$

A. The net area between the graph of y = g(x) and the *x*-axis between x = a and x = b.

B. The average rate of change of y = g(x) between x = a and x = b.

C. The average rate of change of y = g'(x) between x = a and x = b.

D. The net change in the function y = g(x) between x = a and x = b.

E. The net change in the function y = g'(x) between x = a and x = b.

Tiebreaker Question 1

Name _____

School _____

Let f(x) be a differentiable function and c be a constant real number. Let $g(x) = c \cdot f(x)$.

Complete the following statement: g'(x) = _____.

Prove this result.

Tiebreaker Question 2

Name _____

School _____

Consider the family of functions of the form $f(x) = \frac{ax}{bx+c}$, where *a*, *b*, and *c* are all non-zero real numbers.

Answer the following in terms of *a*, *b*, and *c*. Justify all answers.

a) Identify any discontinuities of the function. Determine whether the discontinuities are removable or non-removable.

b) Find f'(x).

c) Find f''(x)

d) Determine the intervals where f(x) is increasing or decreasing.

Tiebreaker Question 3

Name _____

School _____

The following table gives various values of a function and its derivatives.

X	f(x)	f'(x)	f''(x)
0	1	2	4
2	5	0	1
4	11	6	3

Furthermore, f''(x) is continuous for all real numbers x.

Is it possible for the line x = 3 to be a vertical asymptote for the graph y = f(x)? Explain.

<u>Solutions</u>					
1	С				
2	С				
3	В				
4	D				
5	E				
6	E				
7	С				
8	D				
9	В				
10	В				
11	А				
12	А				
13	В				
14	E				
15	С				
16	Α				
17	В				
18	Α				
19	D				
20	Α				
21	E				
22	E				
23	В				
24	D				
25	D				

Tiebreaker Question 1 Solution

Let f(x) be a differentiable function and c be a constant real number. Let g(x) = c f(x).

Complete the following statement: $g'(x) = \underline{cf'(x)}$.

Prove this result.

Proof:

$$g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$$
$$= \lim_{h \to 0} \frac{c f(x+h) - c f(x)}{h}$$
$$= \lim_{h \to 0} \frac{c (f(x+h) - f(x))}{h}$$
$$= c \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$= c f'(x)$$

Definition of Derivative

Definition of g(x)

Distributive Property [ca + cb = c(a + b)]

Limit Property: $\left[\lim_{h \to a} (c \ p(h)) = c \lim_{h \to a} (p(h))\right]$

Definition of Derivative

Tiebreaker Question 2 *Solution*

Consider the family of functions of the form $f(x) = \frac{ax}{bx+c}$, where *a*, *b*, and *c* are all non-zero real numbers.

Answer the following in terms of *a*, *b*, and *c*. Justify all answers.

a) Identify any discontinuities of the function. Determine whether the discontinuities are removable or non-removable.

- b) Find f'(x).
- c) Find f''(x)
- d) Determine the intervals where f(x) is increasing or decreasing.

a) Since *f* is a rational function, it is continuous throughout the domain. The only discontinuity is at the zero of the denominator, $x = -\frac{c}{b}$. At this value of *x*, the numerator will be $-\frac{ac}{b} \neq 0$ since *a* and *c* are both not zero. Thus, $\lim_{x\to -\frac{b}{c}} f(x)$ does not exist, so *f* has a non-removable discontinuity.

b) Quotient Rule:
$$f'(x) = \frac{(bx+c)a - ax(b)}{(bx+c)^2} = \frac{ac}{(bx+c)^2}$$
 or
Product Rule $f'(x) = -ax(bx+c)^{-2}b + a(bx+c)^{-1} = (bx+c)^{-2}[-abx+a(bx+c))] = \frac{ac}{(bx+c)^2}$

c)
$$f''(x) = \frac{d}{dx} \left[ac (bx+c)^{-2} \right] = -2ac (bx+c)^{-3} b = -\frac{2abc}{(bx+c)^{3}}$$

d) The denominator $(bx+c)^2$ of the derivative f'(x) will be positive for all real values of x with $x \neq -\frac{c}{b}$. Thus the sign of f'(x) will depend on the sign of the product ac.

- If *a* and *c* are both positive or both negative, then f'(x) will be positive and thus f(x) will be increasing on the intervals $\left(-\infty, -\frac{c}{b}\right)$ and $\left(-\frac{b}{c}, \infty\right)$.
- If *a* and *c* have different signs, then f'(x) will be negative and thus f(x) will be decreasing on the intervals $\left(-\infty, -\frac{c}{b}\right)$ and $\left(-\frac{b}{c}, \infty\right)$.

Tiebreaker Question 3 Solution

The following table gives various values of a function and its derivatives.

X	f(x)	f'(x)	f''(x)
0	1	2	4
2	5	0	1
4	11	6	3

Furthermore, f''(x) is continuous for all real numbers *x*.

Is it possible for the line x = 3 to be a vertical asymptote for the graph y = f(x)? Explain.

No. The continuity of f" implies that f' is differentiable, and thus continuous, for all x. Repeating the logic gives f is continuous for all x. Since f is continuous for all x, there can be no vertical asymptote.