Arkansas Council of Teachers of Mathematics Algebra II 2019 Regional Exam

Work the multiple-choice questions first, choosing the single best response from the choices available. Indicate your answer here and on your answer sheet. Then attempt the tie-breaker questions at the end starting with tie breaker \#1, then \#2, and finally \#3. Turn in your answer sheet and the tie breaker pages when you are finished. You may keep the pages with the multiple-choice questions.

1. Determine the real numbers D, E, and F so that the equation

$$
D(3 x-5)+E(2 x-1)+F x^{2}=-6+5 x
$$

is an identity.
A. $D=1, E=1, F=0$
B. $D=0, E=2, F=1$
C. $D=-1 / 2, E=6, F=0$
D. $D=1, E=4 / 5, F=-3$
2. What is the product of $(3-2 i)$ and $(7+6 i)$?
A. $9+4 i$
B. $21+16 i$
C. $33+4 i$
D. $21-12 i$
3. Find the quotient $q(x)$ and the remainder $r(x)$ if $f(x)=2 x^{4}-x^{3}+7 x+3$ is divided by $g(x)=x^{2}+2 x-5$.
A. $q(x)=x^{2}+x-1, r(x)=-x+3$
B. $q(x)=x^{2}-7, r(x)=-10 x+2$
C. $q(x)=2 x^{2}-5 x+20, r(x)=-58 x+103$
D. $q(x)=9 x^{2}-1, r(x)=-12 x+1$
4. Rewrite the product of the following two polynomials in expanded notation:

$$
2 x^{3}-x^{2} \quad \text { and } \quad 3 x^{4}-x^{3}+x
$$

A. $6 x^{7}-5 x^{6}+x^{5}+2 x^{4}-x^{3}$
B. $6 x^{7}+x^{6}-x^{5}+2 x^{4}+x^{3}$
C. $6 x^{7}+x^{6}-x^{5}-2 x^{4}-x^{3}$
D. $6 x^{7}+5 x^{6}+x^{5}-2 x^{4}-x^{3}$

Arkansas Council of Teachers of Mathematics Algebra II 2019 Regional Exam

5. Line A goes through the point $(1,5)$ and is perpendicular to Line B , which is given by $x+3 y=6$. What is the slope-intercept form of the equation representing Line A ?
A. $y=-\frac{1}{3} x-4$
B. $y=2 x+1$
C. $y=\frac{2}{3} x+6$
D. $y=3 x+2$
6. Determine the quotient of the complex numbers $3+4 i$ and $8-2 i$, using the latter as the divisor.
A. $\frac{3}{10}+\frac{11}{20} i$
B. $-\frac{3}{7}+\frac{5}{9} i$
C. $\frac{4}{17}+\frac{19}{34} i$
D. $-\frac{11}{32}-\frac{23}{38} i$
7. How many real roots does the following quadratic equation contain?

$$
f(x)=-4 x^{2}+12 x-9
$$

A. 0
B. 1
C. 2
D. 3
8. A circle with a radius of 4 , translated 2 to the left, and 5 up , can be described by which of the following equations?
A. $(x-2)^{2}+(y+5)^{2}=4$
B. $(x+2)^{2}+(y-5)^{2}=4$
C. $(x-2)^{2}+(y+5)^{2}=16$
D. $(x+2)^{2}+(y-5)^{2}=16$
9. If g varies inversely as the square root of h, and $g=9$ when $h=121$, find g when $h=81$.
A. $g=\frac{1}{11}$
B. $g=11$
C. $g=13.4$
D. $g=99$

Arkansas Council of Teachers of Mathematics Algebra II 2019 Regional Exam

10. A butcher has some hamburger that is 80% lean and some that is 88% lean. He wishes to make 800 pounds of a burger mix that is 83% lean. How much of each type should he use?
A. 300 pounds at $80 \%, 500$ pounds at 88%
B. 400 pounds at $80 \%, 400$ pounds at 88%
C. 500 pounds at $80 \%, 300$ pounds at 88%
D. 550 pounds at $80 \%, 250$ pounds at 88%
11. Select the correct interval of x values obtained from the inequality: $x^{2}-2 x-8 \geq 0$.
A. $(-\infty,-2] \cup[4, \infty)$
B. $[-2,4]$
C. $(-\infty,-4] \cup[2, \infty)$
D. $[-4,2]$
12. Which of the following functions could represent the polynomial graph shown?

A. $y=(x+4)(x+2)^{2}(x-1)(x-3)$
B. $y=(x+7)^{3}(x+2)^{4}(x-1)(x-3)$
C. $y=(x+5)^{2}(x+2)(x-2)^{2}(x-3)^{2}$
D. $y=(x+3)(x+1)(x-1)(x-4)^{4}$
13. If y varies directly as x and inversely as the square of z and $y=1 / 6$ when $x=20$ and $z=6$, determine y when $x=14$ and $z=5$.
A. $3 / 10$
B. $14 / 25$
C. $21 / 25$
D. $21 / 125$

Arkansas Council of Teachers of Mathematics Algebra II 2019 Regional Exam

14. The following conic section equation is written in standard form. What conic section does this formula create?

$$
x^{2}+x \cdot y+y^{2}-6 x-4 y-3=0
$$

A. Circle
B. Parabola
C. Ellipse
D. Hyperbola
15. Which of the graphs depict the solution to the following systems of inequalities?

$$
\begin{gathered}
3 x-2 y \geq 6 \\
5 x+4 y \leq 10 \\
y>-3
\end{gathered}
$$

A)

C)

B)

D)

)
16. Assuming that if $f(x)=3 x-1$ and $g(x)=x^{2}-2$, find the composition of functions given as $g(f(x))$.
A. $g(f(x))=6 x^{2}-6 x+1$
B. $g(f(x))=9 x^{2}-6 x+3$
C. $g(f(x))=9 x^{2}-3 x-1$
D. $g(f(x))=9 x^{2}-6 x-1$

Arkansas Council of Teachers of Mathematics Algebra II 2019 Regional Exam

17. Suppose you wanted to solve the following equation by completing the square.

$$
x^{2}-6 x=3
$$

The next step would be to add a value p to both sides of the equal sign. What is this value?
A. $p=3$
B. $p=9$
C. $p=-3$
D. $p=-9$
18. Which equation matches the exponential graph shown below?

A. $a=\sqrt[7]{3}$
B. $a=\sqrt[3]{7}$
C. $a=3^{7}$
D. $a=7^{3}$
19. Find a polynomial of degree 8 such that -1 is a zero of multiplicity three and 0 is a zero of multiplicity five.
A. $f(x)=x^{8}+3 x^{7}+3 x^{6}+x^{5}$
B. $f(x)=2 x^{8}+5 x^{7}+5 x^{6}-x^{5}$
C. $f(x)=x^{8}+3 x^{7}+3 x^{6}+x^{5}+x^{4}$
D. $f(x)=x^{8}-3 x^{7}-3 x^{6}+x^{5}$

Arkansas Council of Teachers of Mathematics Algebra II 2019 Regional Exam

20. Name any vertical asymptotes and/or holes found in the following rational expression:

$$
f(x)=\frac{2 x-8}{x^{2}-16}
$$

A. Asymptote at $x=4$; there are no holes
B. There are no asymptotes; holes at $x=4$ and $x=-4$
C. Asymptote at $x=-4$; hole at $x=4$
D. Asymptotes at $x=4$ and $x=-4$; there are no holes
21. Which of the following tables shows a relationship that is directly proportional?
A.

x	1	2	3	4
y	2	3	4	5

B.

x	1	2	3	4
y	5	4	3	2

C.

x	1	2	3	4
y	1	3	5	7

D.

x	1	2	3	4
y	2	4	6	8

22. Determine a, b, and c such that the graph of the equation $y=a x^{2}+b x+c$ passes through the points $(0,11),(1,5)$, and $(2,3)$.
A. $a=2, b=-8, c=11$
B. $a=-2, b=4, c=11$
C. $a=-4, b=8, c=0$
D. $a=1, b=4, c=11$
23. Find the determinant of the following matrix:

$$
\left[\begin{array}{cc}
10 & -9 \\
-7 & 3
\end{array}\right]
$$

A. 33
B. -33
C. 99
D. -99

Arkansas Council of Teachers of Mathematics Algebra II 2019 Regional Exam

24. Solve the following system of equations for x, y, and z.

$$
\begin{aligned}
-4 x-5 y-z & =18 \\
-2 x-5 y-2 z & =12 \\
-2 x+5 y+2 z & =4
\end{aligned}
$$

A. $(-4,1,4)$
B. $(-4,0,2)$
C. $(-4,0,-2)$
D. $(12,-1,-8)$
25. Find a polynomial of degree 2 with real coefficients that has the complex number $3-2 i$ as a zero.
A. $5 x^{2}-3 x+7$
B. $x^{2}+x-11$
C. $2 x^{2}+1$
D. $x^{2}-6 x+13$

Arkansas Council of Teachers of Mathematics Algebra II 2019 Regional Exam

Tie Breaker \#1

Name: \qquad

School: \qquad
Find all roots for the equation $2 x^{3}-3 x^{2}-17 x+30=0$.

Arkansas Council of Teachers of Mathematics Algebra II 2019 Regional Exam

Tie Breaker \#2

Name: \qquad
School: \qquad

Using Matrix A and Matrix B, show that matrix multiplication is not commutative.

$$
A=\left[\begin{array}{cc}
1 & 2 \\
-1 & 3
\end{array}\right] \quad B=\left[\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right]
$$

Arkansas Council of Teachers of Mathematics Algebra II 2019 Regional Exam

Tie Breaker \#3

Name: \qquad

School: \qquad

If you invest $\$ 20,000$ at an annual interest rate of 1% compounded continuously, calculate the final amount (to nearest cent) you will have in the account after 20 years.

Arkansas Council of Teachers of Mathematics Algebra II 2019 Regional Exam

ACTM Contest Regional Algebra II Exam Answer Key

1. A 2. C 3. C 4. A 5. D 6. C 7. B 8. D 9. B 10. C 11. A 12. A 13. D 14. C 15. A 16. D 17. B 18. B 19. 20. C 21. 22. 23. 24. 24. 25.	Tie-Breaker \#1: $x=2,-3, \frac{5}{2}$, using the rational zeroes (roots) theorem or factoring. Tie-Breaker \#2: $A \cdot B=\left[\begin{array}{cc}2 & 3 \\ -2 & 2\end{array}\right]$ and $B \cdot A=\left[\begin{array}{cc}1 & 7 \\ -1 & 3\end{array}\right]$, which means $A \cdot B \neq B \cdot A$. Tie-Breaker \#3: $\sim \$ 24428.06=20,000 e^{0.01 \cdot 20}$

