2009 ACTM Regional Algebra II Exam March 7, 2009

Circle the correct answer and mark it on the answer sheet.

1. Given x, y, and z are positive integers, which of the following is equivalent to $x^{\left(-\frac{y}{z}\right)}$?

a.
$$-\sqrt[z]{x^{y}}$$
 b. $\sqrt[y]{x^{z}}$ c. $-\frac{1}{\sqrt[y]{x^{z}}}$ d. $\frac{1}{\sqrt[z]{x^{y}}}$

2. Consider the table. Which function f(x) has all the characteristics?

Characteristic	f(x)							
Domain	All real numbers			f(x)	$= 2^x$		h f(y) =	-۱
Range	Y<1	(.				D. I(X	y -
Intercept	(0,0)							
Asymptote	Y = 1							
As $x \rightarrow +\infty$	$y \rightarrow -\infty$							
As $x \to -\infty$	$y \rightarrow 1$							
	•		c. f(x)	$= 2^{x} + 1$	1	d. f(x	$x = -2^{x} + $	⊦ 1

3. Consider the functions: $f(x) = \frac{1}{\sqrt{x-4}}$ and g(x) = 2x. What is the domain of f(g(x)) over the set of real numbers?

b. $f(x) = -2^{x}$

- b. x > 2 c. x > 4 a. x > 0 d. $x \ge 2$
- 4. Find the remainder when $x^3 37x + 84$ is divided by x 2. a. 14 b. 18 d. 162 c. 150
- 5. Simplify: $\sqrt{x} \cdot \sqrt[3]{x^2 y}$ a. $\sqrt[6]{x^7 y^2}$ b. $\sqrt[6]{x^3 y}$ c. $x \sqrt[6]{xy^2}$ d. can't be simplified
- 6. Rationalize the denominator of the following: $\frac{2}{\sqrt{a+3}}$

a.
$$\frac{2\sqrt{a}-6}{a-9}$$
 b. $\frac{2\sqrt{a}-6}{a+9}$ c. $\frac{2\sqrt{a}+6}{a+9}$ d. $\frac{2\sqrt{a}+6}{a-9}$

- 7. If xy is negative, which one of the following is possible?
 - a. x < y < 0 b. 0 < x < y c. x = y d. x < 0 < y
- 8. Let $g(x) = -x^2 + 4x + 1$ and find g(x + 2). a. $-x^2 + 4x + 3$ b. $-x^2 + 4x + 5$ c. $-x^2 + 5$ d. $x^2 + 8x + 13$

- 9. What is the solution of the compound inequality: $\frac{x}{2} 4 > 0$ or $\frac{x}{2} + 1 < 0$?
 - a. all real numbers b. no real numbers c. $(-\infty, -2) \cup (8, \infty)$ d. (-2, 8)

10. Write $\frac{5}{3-2i}$ in standard form.

a.
$$15-10i$$
 b. $\frac{15}{13} + \frac{10}{13}i$ c. $\frac{15}{13} - \frac{10}{13}i$ d. $3-2i$

 11. Which translation takes y = |x+2| - 1 to y = |x| + 2?

 a. 2 right, 3 down
 b. 2 right, 3 up
 c. 2 left, 3 down
 d. 2 left, 3 up

12. Which point maximizes N = 4x + 3y and lies within the feasible region of the constraints?

- $\begin{cases} y \le 10 \\ x + y \le 9 \\ x \le 3 \end{cases}$ a. (0,0) b. (9,0) c. (0,9) d. (2,5)
- 13. What is the maximum area in square units of a rectangle with a perimeter of 128 units?a. 1024b. 4096c. 256d. 32
- 14. Which description of the graph of $y = ax^2 + bx + c$ is not possible?
 - a. There are two x-intercepts, the vertex is below the x axis and a > 0.
 - b. There is one x intercept and the vertex is on the x axis.
 - c. There are two x intercepts, the vertex is below the x axis and a < 0.
 - d. There are no x intercepts, the vertex is above the x axis and a > 0.
- 15. Which statement is NOT true?

a. $-5 = -\sqrt{25}$ b. $-5 = \sqrt[3]{-125}$ c. $-5 = -\sqrt{-25}$ d. $5 = -\sqrt[3]{-125}$

- 16. What is the inverse of $y = x^2 5$?
 - a. $y = \pm \sqrt{x} + 5$ b. $y = \pm \sqrt{x} 5$ c. $y = \pm \sqrt{x} + 5$ d. $y = \pm \sqrt{x} 5$
- 17. An investment of \$750 will be worth \$1500 after 12 years of continuous compounding at a fixed interest rate. What is the interest rate?
 - a. 2% b. 6.73% c. 100% d. 5.78%

18. What are the restrictions on x when $\frac{x^2 - x - 2}{x^2 - 9}$ is divided by $\frac{x - 8}{x^2 + 10x + 25}$?

a. $x \neq \pm 3, -5$ b. $x \neq \pm 3, \text{ or -8}$ c. $x \neq \pm 3, -5, \text{ or 8}$ d. $x \neq 2, 9, 8, \text{ or -25}$

- 19. If x > 1, then which of the following has the least value?
 - a. \sqrt{x} b. $\sqrt{x \cdot x}$ c. $x\sqrt{x}$ d. $\sqrt{2x}$

20. If |x| > |y|, which of the following is the solution for x when y = -3?

a. x>-3 b. x>3 c. -3<x<3 d. x>3 or x<-3

21. For real numbers x and y, when is the equation |x + y| = |x - y| true?

- a. Only when x = y
- b. Only when x = 0 or y = 0
- c. Only when x = 0 and y = 0
- d. Never
- 22. The graph of the equation $y = 4^x$ is reflected over the y axis. What is the equation of the image?

a.
$$y = -4^x$$
 b. $y = \left(\frac{1}{4}\right)^x$ c. $y = -4^x$ d. $y = -\left(\frac{1}{4}\right)^x$

23. Which of the following operations results in a valid calculation?

$$A = \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix} \qquad B = \begin{bmatrix} -1 \\ 3 \\ 4 \end{bmatrix} \qquad C = \begin{bmatrix} -1 & 4 & 5 \\ 1 & -3 & -8 \end{bmatrix}$$

a. $A^2 + B^{-1}$ b. ABC c. $CB + A$ d. ACB

- 24. A function f is an even function if and only if f(x) = f(-x) for every value of x in the domain of f. One of the functions graphed below is an even function. Which one?
 - a. $y = \sin x$ b. y = x + 3 c. $y = x^2 + 3$ d. $y = x^3 x$
- 25. Whitney's grandmother invested \$150 at 5% interest compounded quarterly. When the account was recently given to Whitney, it contained \$6230. How long ago did Whitney's grandmother invest the \$150.

a.
$$\approx$$
 75 years ago b. \approx 8 years ago c. \approx 19 years ago d. \approx 42 years ago

2009 ACTM Regional Algebra II Tiebreakers March 7, 2009

Name

<u>Tie Breaker #1</u>

An open box is to be made from a square piece of material 36 cm. on a side by cutting equal squares from the corners and turning up the sides. Find the size square you should remove for the box to have a maximum volume and find the maximum volume? Show your work and method of solution.

Tie Breaker #2

Graph the following: $g(x) = \begin{cases} x+4, x < -1 \\ x^2, x \ge -1 \end{cases}$

Tie Breaker #3

Solve the following. Show all work and state your solution.

Amy, Jason and Courtney went to get food for their friends at school. Amy spent \$6.35 on two burgers, one order of french fries, and two colas. Jason ordered 1 burger, 2 orders of french fries, and two colas. His bill was \$5.45. Courtney's order of 3 burgers, 3 orders of french fries, and 3 colas totaled \$11.01. Find the price of each item.

2009 ACTM Regional Algebra II Exam ANSWERS March 7, 2009

1. D 2. D

3. B

4. B 5. C

6. A

7. D

8. C 9. C

10. B

11. B

12. C

13. A

14. C

15. C

16. C 17. D

17. D

19. A

20. D

21. B

22. B

23. D

24. C 25. A

Tiebreakers:

#1. 6 cm. square and a volume of 3456 cu. cm.

#2.

#3. Burger, \$1.89; fries, \$.99; cola, \$.79