Arkansas Council of Teachers of Mathematics

2014 Regional Exam

Calculus

For questions 1 through 25, mark your answer choice on the answer sheet provided. After completing items 1 through 25, answer each of the tiebreaker items in sequential order (do #1 first, followed by #2, and then #3 last). Be sure that your name is printed on each of the tiebreakers.

- 1. Evaluate the following limit: $\lim_{x\to\infty} x \sin\left(\frac{1}{x}\right) =$
 - A. 0
 - B. 1
 - C. e
 - D. +∞
 - E. None of these
- 2. If $\sin x = \sin y$, then $\frac{d^2y}{dx^2} =$
 - A. $\frac{\tan y \cos^2 x \sin x \cos y}{\cos^2 x}$
 - B. $\frac{\tan y \cos^2 x \sin x \cos y}{\cos^2 y}$
 - $C. \frac{\cos y(\sin x \sin y)}{\cos^2 y}$
 - D. $\frac{\cos y(\sin x \sin y)}{\cos^2 x}$
 - E. None of these
- 3. Evaluating the integral $\int \frac{x}{x^2+1} dx$ yields the result
 - A. $x \tan^{-1} x + C$
 - $B. \ \frac{x+3}{2x} + C$
 - C. $\frac{1}{2}\ln(x^2+1)+C$
 - $D. \ \frac{1}{2} \ln |x| + C$
 - E. None of these

- 4. A rock is dropped off a bridge and its distance s (in ft) from the bridge after t seconds is $s = 15t^2$. What is the velocity of the rock at t = 3 seconds?
 - A. 15 ft/sec
 - B. 45 ft/sec
 - C. 90 ft/sec
 - D. 135 ft/sec
 - E. None of these
- E. None of these

 5. Determine the value of a so that the function $f(x) = \begin{cases} \frac{5\sin 3x}{x} & x < 0 \\ 3a 4x & x \ge 0 \end{cases}$ is continuous
 - at x = 0.
 - A. 1
 - B. 3
 - C. 6
 - D. 15
 - E. None of these
- 6. The graph of a function f that satisfies f'(x) < 0 and f''(x) > 0 on (0, 10) means that f
 - A. is increasing at an increasing rate on (0, 10)
 - B. is increasing at a decreasing rate on (0, 10)
 - C. is decreasing at an increasing rate on (0, 10)
 - D. is decreasing at a decreasing rate on (0, 10)
 - E. None of these
- 7. Which of the following functions has vertical asymptotes at x = 0, x = 4, and x = -3, and a horizontal asymptote at y = 2?

A.
$$f(x) = \frac{2x^3}{x(x-4)(x+3)}$$
B.
$$f(x) = \frac{2x^3 + 3}{x(x-4)(x-3)}$$
C.
$$f(x) = \frac{8x^3}{4x(x+4)(x+3)}$$
D.
$$f(x) = \frac{4x^2 + 10}{2x(x-4)(x+3)}$$
E. Norwege of these

B.
$$f(x) = \frac{2x^3 + 3}{x(x-4)(x-3)}$$

C.
$$f(x) = \frac{8x^3}{4x(x+4)(x+3)}$$

D.
$$f(x) = \frac{4x^2 + 10}{2x(x-4)(x+3)}$$

E. None of these

- 8. The point c guaranteed to exist by Rolle's Theorem for the function $f(x) = 2x^2 8x$ on the interval [0, 4] is
 - A. 0
 - B. 1
 - C. 2
 - D. 3
 - E. None of these
- 9. The sides of a cube are increasing at a rate of R cm/sec. When the sides have a length of 4 cm, the rate of change of the volume of the cube is
 - A. 4*R*
 - B. 64R
 - C. 16R
 - D. 48R
 - E. None of these
- 10. The doubling time for a bank account whose balance is given by $A(t) = 500e^{.042t}$ is
 - A. 0.042 (ln 2)
 - B. 0.042 / ln 2
 - C. ln 2 / 0.042
 - D. 1/0.042
 - E. None of these
- 11. Determine the slope of the tangent line to the graph of $g(x) = \frac{3x^2 + 2x 4}{3x 5}$ at the point x = 2.
 - A. -14
 - B. -22
 - C. 50
 - D. 12
 - E. None of these
- 12. Compute the derivative of $h(x) = 3\csc x 4\cot x + 5\sec x$
 - A. $-3\csc x \cot x 4\csc^2 x + 5\sec x \tan x$
 - B. $-3\csc^2 x 4\cot^2 x + 5\sec^2 x$
 - C. $3\csc x \cot x + 4\csc^2 x + 5\sec x \tan x$
 - D. $3\tan^2 x 4\csc^2 x + 5\csc\cot x$
 - E. None of these

- 13. The area of the region between the curves y = x and $y = 2 x^2$ is
 - A. $-\frac{1}{2}$
 - B. $\frac{21}{6}$
 - C. $-\frac{3}{2}$
 - D. $\frac{27}{6}$
 - E. None of these
- 14. If $5x^2 + 2xy + y^3 = 25$, then the value of $\frac{dy}{dx}$ at the point (2, 1) is
 - A. $\frac{11}{3}$
 - B. $\frac{22}{7}$
 - C. $-\frac{20}{7}$
 - D. $\frac{20}{3}$
 - E. None of these
- 15. Let $g(x) = 2x^3 + Ax^2 + Bx 3$ with g(2) = 13 and g'(2) = 30. What is A+B?
 - A. -5
 - В. -3
 - C. 1
 - D. 3
 - E. None of these
- 16. Suppose $f(x) = e^{nx}$. What is $f^{n}(x)$?
 - A. $n^n e^{nx}$
 - B. ne^{nx}
 - C. $n!e^{nx}$
 - D. $n^n e^x$
 - E. None of these

- 17. Compute $\frac{dy}{dx}$ for $f(x) = \tan^{-1}\left(\frac{1}{x}\right)$.
 - A. $\frac{1}{x^2 + 1}$
 - B. $\frac{-1}{x^2 + 1}$
 - C. $\frac{-1}{x^2(x^2+1)}$
 - $D. \frac{1}{x^2(x^2+1)}$
 - E. None of these
- 18. On the interval [-2, 2], the function $f(x) = x^4$
 - A. has an absolute maximum but no local maxima
 - B. has an absolute maximum at an interior point of the interval
 - C. has no local or absolute extrema
 - D. has a local minimum but no absolute minimum
 - E. None of these
- 19. How many points c satisfy the conclusion of the Mean Value Theorem for the function $f(x) = x^3$ on the interval from [-1, 1]?
 - A. 0
 - B. 1
 - C. 2
 - D. 3
 - E. None of these
- 20. Let f(x) = 5x 7 and note that $\lim_{x \to 2} f(x) = 3$. For $\varepsilon = 0.5$, determine the value for $\delta > 0$ so that $|f(x) 3| < \varepsilon$ whenever $|x 2| < \delta$.
 - A. 0.1
 - B. 0.2
 - C. 0.25
 - D. 0.5
 - E. None of these

21.
$$\int \frac{x^4}{e^{x^5}} =$$

- A. $-\frac{1}{5}\ln e^{x^5} + C$
- $B. \frac{1}{5} \ln e^{x^5} + C$
- $C. \frac{1}{5e^{x^5}} + C$
- D. $-\frac{1}{5e^{x^5}} + C$
- E. None of these
- 22. Determine the average value of the function $f(x) = x^2 5$ on the interval [0, 3].
 - A. -6
 - B. -2
 - C. 3
 - D. 5
 - E. None of these
- 23. Calculate the derivative for the function $f(x) = \tan^2(x^2 + 3x 5)$.
 - A. $(2x+3) \cdot \sec^4(x^2+3x-5)$
 - B. (2x+3) $\tan(x^2+3x-5)$ $\sec^2(x^2+3x-5)$
 - C. $(4x+6) \cdot \tan^2(x^2+3x-5) \cdot \sec^2(x^2+3x-5)$
 - D. (4x+6)· $\tan(x^2+3x-5)$ · $\sec^2(x^2+3x-5)$
 - E. None of these
- 24. The graph of $f(x) = \frac{4}{x-3}$ is concave down whenever
 - A. x < 0
 - B. x < 2
 - C. x < 3
 - D. x < 4
 - E. None of these

- 25. The area of the region in the first quadrant bounded by the graph of f(x) = x(4-x) and the *x*-axis is

 - A. $9\frac{1}{2}$ B. $10\frac{2}{3}$ C. $11\frac{1}{3}$ D. $12\frac{1}{2}$
 - E. None of these

Name:
<i>Reminder:</i> Attempt the tie-breaker questions in sequential order (Do #1 first, followed by #2, and then #3 last).
Tie-Breaker 1

Two nonnegative numbers are such that the first plus the square of the second is 10. Find the numbers if their sum is as large as possible.

Name:				

Tie-Breaker 2

Once Jimmy's kite reaches a height of 50 feet directly above his hands, it rises no higher but drifts due east in a wind blowing 5 feet per second. How fast is the string running through Jimmy's hands at the moment he has released 120 feet of string? Round your answer to 2 decimal places.

Name:		_	
Tie-Breaker 3			

Determine the volume of the solid obtained by revolving the region bounded by the curves $x = -y^2 + 2y$ and $x = -2y^2 + 4y$ about the y-axis.

Calculus Key

- 1. B
- 2. B
- 3. C
- 4. C
- 5. E
- 6. C
- 7. E
- 8. C
- 9. D
- 10. C
- 11. B
- 12. E
- 13. D
- 14. E
- 15. B
- 16. A
- 17. B
- 18. A
- 19. C
- 20. A
- 21. D
- 22. B23. D
- 24. C
- 25. B
- 1. $9\frac{3}{4}$ and $\frac{1}{2}$
- 2. 4.54 feet per second
- 3. $\frac{16\pi}{5}$ units³