ACTM REGIONAL CALCULUS COMPETITION MARCH 7, 2015

Instructions: Select the best choice for each question. Afterward, attempt the tie-breaker questions in sequential order (Do #1 first, followed by #2, and then #3 last). Unless otherwise stated, assume all variables are real and all functions are continuous over relevant domains.

- **1.** Evaluate the following limit: $\lim_{x\to 0} \frac{x}{|x|} =$
- **A.** 0
- **B.** 1
- **C.** -1
- **D.** does not exist
- E. None of these
- 2. $\int_{0}^{15} \frac{dx}{\sqrt{1+x}} =$
- **A.** 1.5
- **B.** 6
- **C.** 14
- **D.** 42
- E. None of these
- **3.** Determine $\frac{dy}{dx}$ when $x = \tan(xy)$.
- $\mathbf{A.} \ \frac{\cos^2(xy)}{x}$
- **B.** $\frac{1 y \tan(xy) \sec^2(xy)}{x \tan(xy) \sec^2(xy)}$
- $\mathbf{C.} \ \frac{\sec^2(xy) y}{x}$
- **D.** $\cos^2(xy)$
- **E.** None of these

- **4.** Determine the derivative of $f(x) = \ln(\ln(\ln(x)))$.
- **A.** $f'(x) = \frac{1}{\ln(\ln(x))}$
- **B.** $f'(x) = \frac{1}{x \ln(\ln(x))}$
- $C. \quad f'(x) = \frac{1}{x \ln x \ln(\ln(x))}$
- **D.** $f'(x) = \frac{1}{\ln x \ln(\ln(x))}$
- E. None of these
- **5.** Determine $-\int \csc^2(5x) dx$.
- **A.** $5\cot(5x) + C$
- **B.** $-5\cot(5x) + C$
- **C.** $-\frac{1}{5}\cot(5x) + C$
- **D.** $\frac{1}{5}\cot(5x) + C$
- E. None of these
- **6.** Suppose that f and g are differentiable, and that the following are true:
 - f(2) = 4
 - f'(2) = 7
 - g(2) = 6
 - g'(2) = -4
- What is $\frac{d}{dx}(f \cdot g)$ at x = 2?
- **A.** -28
- **B.** 26
- **C.** 3
- **D.** 6
- **E.** None of these

7. The volume of a cone of radius r and height h is given by $V = \frac{1}{3}\pi r^2 h$. If the radius and

height both increase at a constant rate of 2 inches per second, at what rate is the volume increasing when the height is 6 inches and the radius is 3 inches?

- **A.** 2π cubic inches
- **B.** 12π cubic inches
- C. 24π cubic inches
- **D.** 30π cubic inches
- **E.** None of these
- 8. If $f(x) = \begin{cases} \frac{\sqrt{2x+5} \sqrt{x+7}}{x-2} & x \neq 2 \\ & \text{and } f(x) \text{ is continuous everywhere, then } k = \underline{\hspace{2cm}}. \\ k & x = 2 \end{cases}$

- **E.** None of these
- **9.** The function $f(x) = x^2 e^x$ is increasing on
- A. $(-\infty, 2)$
- **B.** (0, 2)
- **C.** (-2, 0)
- **D.** (-2, ∞)
- **E.** None of these
- **10.** The average value of $\cos x$ on the interval from [-2, 5] is

- B. $\frac{\sin 5 \sin 2}{7}$ C. $\frac{\sin 5 + \sin 2}{3}$ D. $\frac{\sin 5 + \sin 2}{7}$
- **E.** None of these

11. Determine the minimum product xy whenever y = 5x - 8.

A.
$$-\frac{32}{5}$$

B.
$$-\frac{16}{5}$$

E. None of these

12. The graph of $y = \ln x$ has a tangent line with slope 1 at the point

- **A.** (1, 1)
- **B.** (*e*, 1)
- **C.** (1, 0)
- **D.** (1, *e*)

E. None of these

13. The cost of producing *x* washing machines is given by the equation $c(x) = 2000 + 100x - 0.1x^2$. The marginal cost of producing 100 washing machines is

- **A.** \$80
- **B.** \$90
- **C.** \$110
- **D.** \$11,000

E. None of these

14.
$$\frac{d^{2015}}{dx^{2015}}\cos x =$$

- **A.** $\sin x$
- **B.** $-\sin x$
- C. $\cos x$
- **D.** $-\cos x$

E. None of these

15. A water balloon is tossed upwards off the top of a tall building. The object's distance above the ground after t seconds is $s(t) = -32t^2 + 32t + 192$ ft. What is the object's speed at the moment of impact with the ground?

- **A.** 32 ft/sec
- **B.** 96 ft/sec
- **C.** 160 ft/sec
- **D.** 224 ft/sec
- **E.** None of these

- **16.** The equation of the line that represents the linear approximation of $f(x) = x^4 3x^2 + 5 + \sqrt{x+2}$ at the point a = 2 is
 - **A.** $y = \frac{81}{4}x + \frac{59}{2}$
 - **B.** $y = \frac{101}{4}x \frac{81}{2}$
 - **C.** $y = \frac{79}{4}x \frac{57}{2}$
 - **D.** $y = \frac{81}{4}x \frac{59}{2}$
 - E. None of these
 - **17.** Find the value for *c* such that $f(x) = \frac{cx+3}{2x^2+1}$ has a horizontal tangent line at x = 1.
 - **A.** -3
 - **B.** 3
 - **C.** 4
 - **D.** 12
 - E. None of these
 - **18.** $\int x \sin x \, dx =$
 - **A.** $\sin x + x \cos x + C$
 - **B.** $\sin x x \cos x + C$
 - $\mathbf{C.} -\sin x + x\cos x + C$
 - **D.** $-\frac{1}{2}x^2\cos x + C$
 - E. None of these
 - **19.** If $x^3 + xy = 33$, then when x = 3, $\frac{dy}{dx} =$
 - **A.** $\frac{3}{29}$
 - **B.** $\frac{29}{3}$
 - **C.** $-\frac{29}{3}$
 - **D**. 3
 - **E.** None of these

20. Evaluate the derivative $\frac{d}{dx} \left[\frac{f(x)g(x)}{x} \right]$ at x = 3, given the table below.

x =	1	2	3	4	5
f(x)	5	4	1	2	3
f '(x)	4	2	3	1	5
g(x)	2	3	5	1	4
g'(x)	1	4	2	5	3

- **A.** $\frac{4}{3}$
- **B.** $\frac{5}{3}$
- **c.** $\frac{46}{3}$
- **D.** $\frac{46}{9}$

E. None of these

21. The function $f(x) = 4x^3 - 7x^2 + 28$ changes concavity at x =

- **A.** $\frac{7}{12}$
- **B.** $\frac{7}{6}$
- **C.** 0
- **D.** $-\frac{7}{12}$

E. None of these

22. If
$$f(x) = \frac{e^{4x}}{4x}$$
, then $f''(x) =$

- **A.** $\frac{e^{4x}(4x+1)}{4x^2}$
- **B.** $\frac{e^{4x}(8x^2+4x+1)}{2x^2}$
- C. $\frac{e^{4x}(8x^2-4x+1)}{2x^3}$
- **D.** $\frac{e^{4x}(4x+1)}{4x^4}$

E. None of these

ACTM Regional Calculus Exam, Page 6

23. Which of the following are hypotheses of the Mean Value Theorem for Derivatives?

- I. *f* is continuous on [a, b]
- f(a) = f(b)II.
- f is differentiable on (a,b) III.
- **A.** I and II only
- B. II and III only
- C. I and III only
- **D.** All of these
- **E.** None of these

24. The arc length of the parabola $y = x^3$ on the interval [-1, 1] is given by

- **A.** $\int_{-1}^{1} \sqrt{1+3x^2} \, dx$
- **B.** $\int_{-1}^{1} \sqrt{1 + 9x^4} \, dx$ **C.** $\int_{-1}^{1} \sqrt{1 + x^6} \, dx$
- $\mathbf{D.} \int_{0}^{1} \sqrt{1+x^3} \, dx$
- E. None of these

25. If a population P(t) decreases at an annual rate of 5% per year from its initial value P_0 , then the equation for P(t) is

- **A.** $P(t) = P_0 e^{-0.05t}$
- **B.** $P(t) = P_0 e^{\ln(0.95)t}$
- **C.** $P(t) = P_0 e^{-0.95t}$
- **D.** $P(t) = P_0 e^{-\ln(0.95)t}$
- **E.** None of these

ACTM Regional Calculus Competition	Name:
Tie Breaker Questions	
March 7, 2015	School/Teacher:

Reminder: Attempt the tie-breaker questions in sequential order (Do #1 first, followed by #2, and then #3 last).

1. Air is being pumped into a spherical balloon so that its volume increases at a rate of $100 \text{ cm}^3/\text{sec}$. How fast is the radius of the balloon increasing when the diameter is 50 cm? (Recall the volume of a sphere is $\frac{4}{3}\pi r^3$) Leave your answer in terms of pi.

ACTM Regional Calculus Competition	Name:
Tie Breaker Questions	
March 7, 2015	School/Teacher:

2. Determine the 99th derivative of $f(x) = 5xe^{-x}$.

ACTM Regional Calculus Competition	Name:
Tie Breaker Questions	
March 7, 2015	School/Teacher:
	•

3. Determine the area of the region enclosed by the line y = x - 1 and the curve $y^2 = 2x + 6$.

Calculus Key

- 1. D
- 2. B
- 3. E
- 4. C
- 5. D
- 6. B
- 7. D
- 8. B
- 9. E
- 10. D
- 11. B
- 12. C
- 13. A
- 14. A
- 15. C
- 16. D
- 17. E
- 18. B
- 19. C
- 20. D
- 21. A
- 22. C
- 23. C
- 24. B
- 25. B

$$1. \ \frac{1}{25\pi} cm/\sec$$

- 2. $495e^{-x} 5xe^{-x}$
- 3.18