ACTM STATE CALCULUS COMPETITION April 25, 2015

Instructions: Select the best choice for each question. Afterward, attempt the tie-breaker questions in sequential order (Do #1 first, followed by #2, and then #3 last). Unless otherwise stated, assume all variables are real and all functions are continuous over relevant domains.

1. If
$$\int_{0}^{c} 6cx - 3x^{2} dx = 16$$
, then $c =$

- **A.** -2
- **B.** 2
- **C.** -4
- **D.** 4
- **E.** None of these

2. Suppose that $f''(x) = 2x - \frac{2}{x^2}$. On which of the following intervals is f decreasing?

- **A.** $(-\infty,0)$ only
- **B.** $(-\infty, -\sqrt[3]{2})$ only
- **C.** $(-\sqrt[3]{2},0)$ only
- **D.** $(-\infty, -\sqrt[3]{2})$ and $(0, \infty)$ only
- E. None of these

3. Let f be a differentiable function with f(2) = 3 and f'(2) = 4. Let g be defined by $g(x) = x^2 f(x)$. Which of the following is an equation of the tangent line for g at the point x = 2?

- **A.** y 12 = 4(x 2)
- **B.** y 3 = -28(x 2)
- **C.** y-3=4(x-2)
- **D.** y 12 = 28(x 2)
- **E.** None of these

- **4.** $\lim_{h \to 0} \frac{\frac{1}{x} \frac{1}{x+h}}{h} =$
- **A.** 0
- **B.** 1
- **C.** DNE
- **D.** +∞
- **E.** None of these
- **5.** A farmer wants to create a rectangular pen using 1000 yards of fencing. The pen will be bounded on one side by a barn, so fencing is only needed on the other three sides of the pen. What is the maximum size that the pen can be?
- **A.** 62,500 square yards
- **B.** 111,088.89 square yards
- **C.** 125,000 square yards
- **D.** 250,000 square yards
- **E.** None of these
- **6.** Suppose that the width of a rectangle is increasing at rate of 3 inches/sec and its length is increasing at a rate of 4 inches/sec. At what rate is the area of the rectangle increasing when its width is 5 inches and its length is 6 inches?
- **A.** 30 sq inches/sec
- **B.** 38 sq inches/sec
- **C.** 39 sq inches/sec
- **D.** 7 sq inches/sec
- **E.** None of these
- **7.** A science class decides to drop a rock from the top of a 400 ft building. The rock falls to the ground in a straight line, and the rock has fallen a distance of $s(t) = 16t^2$ feet after t seconds. What is the speed of the rock when it hits the ground?
- A. 32 feet/sec
- **B.** 160 feet/sec
- **C.** 320 feet/sec
- **D.** 640 feet/sec
- **E.** None of these

- 8. $\lim_{x \to -\infty} \frac{\sqrt{4x^2 7}}{3x 8} =$
- **A.** 0
- **B.** $-\frac{2}{3}$ **C.** -1
- **D.** $-\frac{4}{3}$
- **E.** None of these
- **9.** Determine the slope of the line tangent to the curve $x^2y y^2x = x^2 + 3$ at the point (-3, 1).
- **A.** $\frac{1}{15}$ **B.** $\frac{2}{3}$ **C.** $\frac{1}{3}$ **D.** $-\frac{2}{3}$

- E. None of these
- **10.** Let $f(x) = \sqrt{x-1}$ on the interval from [1, 5]. What is the value of c guaranteed to exist by the Mean Value Theorem?
- **A.** 1
- **B.** 2
- **C.** 3
- **D.** 4
- **E.** None of these
- **11.** If f'(x) is an increasing and negative function, then f is
- **A.** increasing and concave up
- B. increasing and concave down
- **C.** decreasing and concave up
- **D.** decreasing and concave down
- **E.** None of these

- **12.** Calculate the left Riemann sum for the function f(x) = -x on the interval [-2, 2] when n = 2.
- **A.** 3
- **B.** 4
- **C.** 2
- **D.** -2
- E. None of these
- **13.** If $\int_{1}^{7} f(x)dx = 13$ and $\int_{1}^{5} f(x)dx = 6$, then $\int_{7}^{5} f(x)dx = 6$
- **A.** 7
- **B.** 19
- **C.** -7
- **D.** -19
- E. None of these
- **14.** Suppose that f(5) = 2, f'(5) = 6, g(5) = 3, and g'(5) = 1. What is (g/f)'(5)?
- **A.** -4
- **B.** $\frac{16}{9}$
- **C.** 4
- **D.** $-\frac{16}{9}$
- E. None of these
- **15.** A company determines that the profit *P* (in dollars) made from selling *x* pencils is given by the function $P(x) = 0.0003x^3 + 6x$. What is the marginal profit when 76 pencils are sold?
 - **A.** \$11.20
 - **B.** \$11.40
 - **C.** \$12.00
 - **D.** \$11.05
 - **E.** None of these

16. Determine the point(s) at which $f(x) = 3x^5 - 5x^3 + 15$ has a local maximum.

- **A.** 0 only
- **B.** 1 only
- **C.** -1, 0, 1
- **D.** -1 only
- E. None of these

17. Determine $\frac{dy}{dx}$ when $y = 10^{x^2-1}$.

- **A.** $(\ln 10)10^{x^2-1}$
- **B.** $(2x)10^{x^2-1}$
- **C.** $(x^2 1)10^{x^2 1}$
- **D.** $x^2(\ln 10)10^{x^2-1}$
- E. None of these

18. If the function $f(x) = ax^3 + 4x^2 + cx + d$ has an inflection point at (1,0), then $a = \underline{\hspace{1cm}}$.

- **A.** $\frac{2}{3}$ **B.** $\frac{4}{3}$ **C.** $\frac{1}{2}$ **D.** $-\frac{4}{3}$

E. None of these

19. If the function $f(x) = x^3$ has an average value of 9 on the closed interval [0, k], then k = 1

- A. 3
- B.
- **C.** $36^{\overline{3}}$
- **D.** $36^{\frac{1}{4}}$

E. None of these

20. Suppose that f is continuous on [-3, 3], and f(-3) = 5, f(0) = -3, and f(3) = 17. Using the Intermediate Value Theorem, how many roots are guaranteed on the closed interval [-3, 3]?

- **A.** 0
- **B.** 1
- **C.** 2
- **D.** 3
- E. None of these

21. If
$$f(x) = (x-1)(x^2+2)^3$$
, then $f'(1) =$

- **A.** 54
- **B.** 27
- **C.** 0
- **D.** -27
- E. None of these

22.
$$\int \frac{x}{x^2 - 4} dx =$$

A.
$$\frac{1}{2(x^2-4)}+C$$

B.
$$\frac{1}{2} \ln |x^2 - 4| + C$$

C.
$$2 \ln |x^2 - 4| + C$$

D.
$$\frac{1}{2} \tan^{-1} \left(\frac{x}{2} \right) + C$$

E. None of these

23. Determine the value of *x* such that $f(x) = \frac{8x^2}{x^2 + 1}$ has a horizontal tangent.

- **A.** x = 0
- **B.** $x = \frac{1}{8}$
- **C.** $x = -\frac{1}{8}$
- **D.** x = -8
- E. None of these

- **24.** $\int_{1}^{2} \left(p + \frac{1}{p} \right)^{2} dp =$
- A. $\frac{15}{2}$ B. $\frac{37}{6}$ C. $\frac{5}{6}$ D. $\frac{29}{6}$

- E. None of these
- **25.** At what point does the function $f(x) = x^4 2x^2$ attain its average value on the interval from [0, 1]?
- **A.** x = .13
- **B.** x = .24
- **C.** x = .37
- **D.** x = .53
- **E.** None of these

ACTM Regional Calculus Competition	Name:
Tie Breaker Questions	
April 25, 2015	School/Teacher:
•	•

Reminder: Attempt the tie-breaker questions in sequential order (Do #1 first, followed by #2, and then #3 last).

1. The function $f(x) = x^3 + ax^2 + bx + c$ has a relative maximum at (-3, 25) and an inflection point at x = -1. Determine a, b, and c.

ACTM Regional Calculus Competition
Tie Breaker Questions
April 25, 2015

Name:	_
School/Teacher:	

2. If *a* and *b* are positive numbers, find the maximum value of $f(x) = x^a (1-x)^b$ on the closed interval [0, 1].

l/Teacher:

3. Determine the point on the line y = 2x + 3 that is closest to the origin.

Calculus Key

- 1. B
- 2. C
- 3. D
- 4. E
- 5. C
- 6. B
- 7. B
- 8. B
- 9. A
- 10. B
- 11. C
- 12. B
- 13. C
- 14. A
- 15. A
- 16. D
- 17. E
- 18. D
- 19. C
- 20. C
- 21. B
- 22. B
- 23. A
- 24. D
- 25. E

1.
$$a = 3$$
, $b = -9$, $c = -2$

$$2. f\left(\frac{a}{a+b}\right) = \frac{a^a b^b}{\left(a+b\right)^{a+b}}$$

$$3.\left(-\frac{6}{5},\frac{3}{5}\right)$$