
2008 Regional Geometry Exam Arkansas Council of Teachers of Mathematics

In each of the following questions choose the best answer and bubble the corresponding letter on the answer sheet. Note: The geometric figures on this exam are not necessarily drawn to scale. When you have completed the first 25 questions please work on the tiebreaker questions. These will used to break ties for determining first, second and third place, should a tie occur.

1. A chain of hexagons is made with toothpicks. Chains of length one, two and three are displayed below. How many toothpicks would be needed to make a chain that is 15 hexagons in length?

Problem #1

A. 90

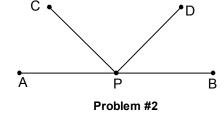
B. 62

C. 75

D. 76

E. None of these

2. In the figure $\overline{CP} \perp \overline{DP}$ and the points A, P and B are collinear. A pair of complementary angles is


A. ∠APC, ∠BPC

B. ∠APD, ∠BPD

C. ∠APC, ∠BPD

D. ∠BPC, ∠BPD

E. None of these

3. In a building project Jane needs three boards that are 2 feet 5 inches long. If one inch is allowed for waste, how long a board should she buy?

A. $7\frac{1}{4}$ ft

B. $7\frac{1}{3}$ ft

C. $7\frac{1}{2}$ ft

D. $6\frac{1}{3}$ ft

E. None of these

4. In \triangle ABC, \angle BCD is an exterior angle. If m \angle BCD = 117°, which of the following could be the measures of \angle ABC and \angle BAC?

A. 31°, 34°

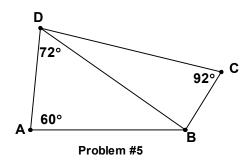
B. 42°, 19°

C. 35°, 18°

D. Not enough information

E. None of these

5. The following figure is **not** drawn to scale. According to the angle measures indicated, which will be the longest segment?



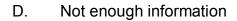
B. \overline{AD}

C.
$$\overline{BD}$$

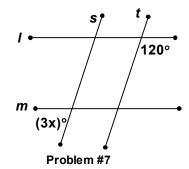
D. \overline{BC}

6. A prism has an octagonal base. The number of edges in the prism is

B. 16


C. 24

D. 32


- E. None of these
- 7. In the figure, $I \parallel m$ and $s \parallel t$. With the indicated angle measures, what is the value of x?

C. 60

8. Consider the following sets of numbers. Which could be the sides of a right triangle?

$$Q = \{9, 40, 43\}$$

$$R = \{12, 35, 37\}$$

B. Q

C. R

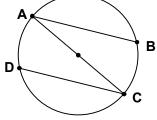
D. P and R

- E. Q and R
- 9. The width (W) of a rectangle is increased by 2 and the length (L) is increased by 3. The amount of change in the area is given by

A.
$$2L + 3W + 6$$

B.
$$WL + 3L + 2W + 6$$

C.
$$WL + 3W + 2L + 6$$

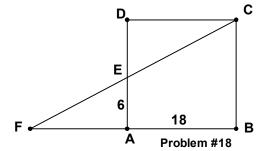

10. The sum of the measures of the interior angles of a polygon is 2160. The number of sides in the polygon is

E. None of these

11.	Consider the following statements about the diagonals of a rectangle.											
	l.	I. The diagonals are perpendicular.										
	II	The diagonals are congruent.										
	III.	The diagonals bisect each other.										
	Which	ch of the above statement are always true?										
	A.	I, II and III		B.	I and	II		C.	I and	III		
	D.	II and III		E.	None	of the	se					
12.	12. A quadrilateral is formed by joining the midpoints of the sides of a rectangle. quadrilateral is best described as a					The						
	A.	parallelograr	m		B.	squai	re e		C.	rectangle		
	D.	rhombus			E.	None	of thes	se				
13.	In the figure D and E are midpoints of \overline{BC} and \overline{AC} , respectively. If \overline{AD} and at P and AD = 18, then PD =					$\overline{\mathrm{AD}}$ and $\overline{\mathrm{B}}$	<u>E</u> inters	ect				
	A.	12		B.	6							
	C.	9		D.	Not e	nough	informa	ation	E	\ <u>\</u>	D	
	E.	None of thes	se							P		_
14.	In $\triangle ABC$, \overline{AD} is a median and $\overline{AD} \perp \overline{BC}$. Which of the following is true?											
I. ΔABC is an equilateral triangle.												
	II.											
	III.	III. $\angle ABD \cong \angle ACD$ Problem #14										
	A.	I and II		B.	I and	III						
	C.	II and III		D.	I, II ar	nd III		E.	None	of these		
15.	In $\triangle ABC$, $\overline{DE} \parallel \overline{BC}$. If AD = 6, BD = 15, and AC = 49, then CE =											
	A.	14	B.	35		C.	24.6					
	D.	29.4	E.	None	of thes	se			_R /	/		\

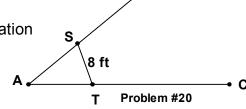
Problem #15

- In a circle with diameter \overline{AC} , $\overline{AB} \parallel \overline{CD}$. If m∠BAC = 42°, then the measure of the minor 16. arc CD is
 - 84° A.
- 42° B.
- C. 96°
- D. 159°
- E. None of these


Problem #16

- A regular polygon is inscribed in a circle of radius R. If the perpendicular distance from 17. the center of the circle to a side of the polygon is P then the side of the polygon is given by
 - $\sqrt{R^2 + P^2}$ Α.

- B.
- $\sqrt{R^2 P^2}$ C. $2\sqrt{R^2 + P^2}$


 $2\sqrt{R^2 - P^2}$ D.

- E. None of these
- 18. In the figure at the right ABCD is a square. If AB = 18 and AE = 6, then CF =
 - A. $3\sqrt{13}$
 - B. 27
 - $6\sqrt{10}$ C.
 - $9\sqrt{13}$ D.

- E. None of these
- A diagonal of a rectangle makes an angle of 42° with a side of the rectangle. If the length 19. of the diagonal is 12 then the perimeter of the rectangle (to the nearest thousandth) is
 - Α. 16.947
- В 33.895
- C. 34.081

- D. 68.163
- None of these E.
- Two points S and T are moving at the same rate along rays \overrightarrow{AB} and \overrightarrow{AC} , respectively. 20. If after 2 minutes the distance between S and T is 8 feet, how far are they apart after 5 minutes?
 - A. 20 feet
- B. 40 feet
- C. 24 feet
- Not enough information D.
- E. None of these

21.	At a particular time of day a person who is 6 feet tall casts a shadow along level ground
	that is 8 feet in length. At the same time of day, what will be the distance from the top
	of a tree that is 15 feet tall to the tip of the shadow of the tree?

A. 20 feet,

B. 25 feet

C. 24 feet

D. 30 feet

E. None of these

22. Let A = (-2, 1) and B = (3, -11) be points in the rectangular coordinate plane. The distance AB is

A. $\sqrt{101}$

B. 18

C. 13

D. $\sqrt{205}$

E. None of these

23. The points (-3, 2), (1,5) and (-2, 9) are three coordinates of vertices of a square. What are the coordinates of the fourth vertex?

A. (-6, 6)

B. (6, –6)

C. (-6, 4)

D. (-6, 5)

E. None of these

24. Which of the following lines is perpendicular to the line 2x - 3y = 6?

A. 2x + 3y = 6

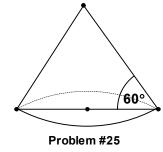
B. 6x + 4y = 15

C. 3x - 2y = 6

D. 2x - 3y = 12

E. None of these

25. In a right circular cone a line segment drawn on the surface of the cone from the vertex to the end of a diameter of the base of the cone makes an angle of 60° with the diameter. If the diameter of the base is 12, then the volume of the cone is

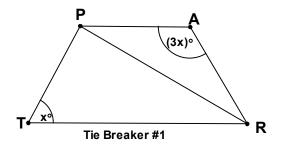

A. $72\sqrt{3} \pi$

B. $108\sqrt{3} \pi$

C. $288\sqrt{3} \pi$

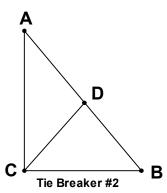
D. 72π

E. None of these

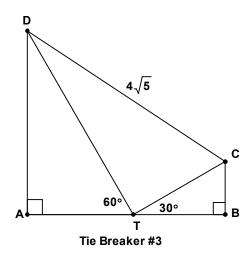

TIE BREAKER PROBLEMS GEOMETRY - 2008

Name		School	
<u></u>	DI FASE PRINT		

The tie breaker problems should be done when the first 25 questions have been answered. They will be used, in the order they are given, to break any ties for first, second, or third place.


Tie Breaker #1

In trapezoid TRAP with $\overline{PT}\cong \overline{PA}\cong \overline{AR}$ and m $\angle PTR=x^o$ and m $\angle PAR=(3x)^o$, find the measure of $\angle ARP$.

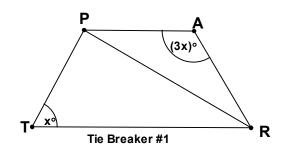

Tie Breaker #2

 \triangle ABC is a right triangle with right angle at C. A segment is drawn from C to the midpoint D of the hypotenuse. If AC = 8 and BC = 6, find the measure of \angle BCD to the nearest tenth of a degree.

Tie Breaker #3

Find the length of \overline{AB} if the ratio of the perimeter of ΔTBC to that of ΔDAT is 1 : 2.

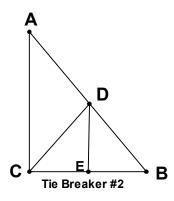
TIE BREAKER PROBLEMS GEOMETRY - 2008


Name	KEY	School	nool	
	PLEASE PRINT			

The tie breaker problems should be done when the first 25 questions have been answered. They will be used, in the order they are given, to break any ties for first, second, or third place.

Tie Breaker #1

In trapezoid TRAP with $\overline{PT} \cong \overline{PA} \cong \overline{AR}$ and m $\angle PTR = x^o$ and m $\angle PAR = (3x)^o$, find the measure of $\angle ARP$.


TRAP is isosceles so m \angle APT = (3x)°. \angle APT and \angle PTR are supplementary. So 3x + x = 180 and x = 45°. So m \angle PAR = 135°. \triangle APR is isosceles so m \angle ARP = ½ (180 – 135)°. So m \angle ARP = 22½°.

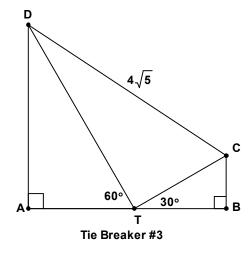
Tie Breaker #2

 \triangle ABC is a right triangle with right angle at C. A segment is drawn from C to the midpoint D of the hypotenuse. If AC = 8 and BC = 6, find the measure of \angle BCD to the nearest tenth of a degree.

A perpendicular from D to \overline{BC} bisects \overline{BC} at E. Now, DE = ½ AC = 4 . CD = ½ AB. AB = 10 so CD = 5. $\sin(\angle BCD) = \frac{4}{5}$ and $\angle BCD = 53.1^{\circ}$.

Tie Breaker #3

Find the length of \overline{AB} if the ratio of the perimeter of ΔTBC to that of ΔDAT is 1 : 2.


Let BC = a. Therefore CT = 2a. Thus, DT =
$$\sqrt{80-4a^2}$$
 .

But AT = 2a since

the ratio of the perimeters is 1 : 2 and $\triangle TBC$ is similar to $\triangle DAT$. Therefore, DT = 4a.

Therefore, $4a = \sqrt{80 - 4a^2}$. So $16a^2 = 80 - 4a^2$. Then $20a^2 = 80$ and $a^2 = 4$. Thus a = 2.

Now AB = AT + BT =
$$2a + a\sqrt{3} = 2(2 + \sqrt{3})$$

Alternate solution:

Let BC = a, then TC = 2a and AT = 2a. So DT = 4a. Therefore, $16a^2 + 4a^2 = 80$.

Thus, $a^2 = 4$ and a = 2. Since BT = $2\sqrt{3}$ then AT = $4 + 2\sqrt{3}$.

Key – Regional Geometry 2008

1. D

2. C

3. B

4. E

5. A

6. C

7. A

8. D

9. A

10. E

11. D

12. D

13. B

14. C

15. B

16. C

17. D

18. D

19. B

20. A

21. B

22. C

23. A

24. B

25. A