Calculus Contest 2008

1)
$$\lim_{x \to 0} \frac{\sqrt{x+1}-1}{x}$$
(a) 0 (b) 1/2 (c) 1 (d) 2 (e) none of these
2)
$$\lim_{x \to \infty} \frac{\sqrt{x^2+4}}{x}$$
(a) 0 (b) 1/2 (c) 2 (d) 4 (e) none of these
3)
$$\frac{d}{dx} \log_2 \left(x^2+1\right)$$
(a)
$$\frac{1}{x^2+1}$$
 (b)
$$\frac{2x}{x^2+1}$$
 (c)
$$\frac{1}{(x^2+1) \ln 2}$$
(d)
$$\frac{2x}{(x^2+1) \ln 2}$$
 (e) none of these
4)
$$\frac{d}{dx} \tan^{-1}(2x)$$
(a)
$$\frac{1}{4x^2+1}$$
 (b)
$$\frac{2}{x^2+1}$$
 (c)
$$\frac{2x}{4x^2+1}$$

(d)
$$\frac{2}{4x^2+1}$$
 (e) none of these
5) If $2x - x^2 \le f(x) \le x^2 - 2x + 2$ for all x, then $\lim_{x \to 1} f(x)$ is
(a) -1 (b) 0 (c) 1 (d) 2 (e) none of these
6)
$$\lim_{x \to -2} \frac{x^3+8}{x+2}$$
(a) 1 (b) 1/2 (c) 4 (d) 8 (e) none of these

7)
$$\frac{d|x|}{dx}$$

(a) 1 (b) $\frac{|x|}{x}$ (c) $\frac{1}{|x|}$ (d) 0 (e) none of these

8) If
$$y = \frac{x}{x+1}$$
, then the equation of the tangent at $x = -2$ is
(a) $y = x + 4$ (b) $y = x + 2$ (c) $y = x - 2$
(d) $y = 2x$ (e) none of these

9) If
$$x^3 - xy + y^2 = x + 1$$
 then y' is
(a) $\frac{3x^2 - 1}{x - 2}$ (b) $\frac{3x^2 + y - 1}{x - 2y}$ (c) $\frac{3x^2 - y - 1}{x - 2y}$

(d)
$$\frac{3x^2 + y}{x - 2y}$$
 (e) none of these

10) If
$$f(x) = \begin{cases} x, & x \le 1 \\ 2x^2 + a, & x > 1 \end{cases}$$
 the value of *a* that makes *f* continuous is
(a) -1 (b) 0 (c) 1 (d) 2 (e) none of these

11) If f and g are continuous functions and

$$\lim_{x \to 1} f(x) = 2, \lim_{x \to 0} g(x) = 1, \text{ then } \lim_{x \to 0} f(g(x))$$
(a) 0 (b) 1 (c) 2 (d) 4 (e) none of these

12) If
$$f(x) = \sin 2x$$
, then $f^{(21)}(x)$ is
(a) $2^{21}\sin 2x$ (b) $2^{21}\cos 2x$ (c) $-2^{21}\sin 2x$ (d) $-2^{21}\sin 2x$ (e) none of these

13) If $f(x) = x^3 - 6x^2 + 9x$ then f is increasing on the interval(s)

(a) x < 1 (b) 1 < x < 3 (c) x < 1 and x > 3 (d) x > 3(e) none of these

14) If $f(x) = \frac{x^3}{x-1}$ then which of the following is an asymptote for f(x)?

(a) $y = x^2$ (b) $y = x^2 + x$ (c) $y = x^2 + 1$ (d) $y = x^2 + x + 1$ (e) none of these

- 15) If f(x) is continuous on the interval [a,b] then which of the following statements are true
- (a) f(x) has both an absolute minimum and maximum on [a,b]
- (b) f(x) has only an absolute minimum on [a,b]
- (c) f(x) has only an absolute maximum on [a,b]
- (d) f(x) has neither an absolute minimum nor maximum on [a,b]
- (e) nothing can be said without knowing what f(x) is
- 16) The area bound between $y = x^3 x$ and the *x*-axis is

(a)
$$-1/4$$
 (b) $-1/2$ (c) 0 (d) $1/4$ (e) none of these

17)
$$\int \frac{x+1}{x^2+1} dx$$

(a) $\ln(x^2+1) + c$ (b) $\tan^{-1}x + c$ (c) $\ln(x^2+1) + \tan^{-1}x + c$
(d) $\frac{1}{2}\ln(x^2+1) + \tan^{-1}x + c$ (e) none of these

18) The position of a car after *t* minutes driving in a straight line is given by $s(t) = \frac{1}{2}t^2 - \frac{1}{12}t^3$ The instantaneous velocity of the car at t = 2 is (a) $\frac{1}{12}$ (b) $\frac{5}{12}$ (c) $\frac{1}{2}$ (d) $\frac{4}{3}$ (e) none of these 19) The average of $y = \sin x$ on $[0,\pi]$ is

(a) 0 (b)
$$\frac{1}{3}$$
 (c) $\frac{1}{2}$ (d) $\frac{2}{\pi}$ (e) none of these

20) The value of A such that $y = Axe^x$ satisfies $\frac{dy}{dx} - y = 4e^x$ is

(a) 1 (b) 2 (c) 4 (d) 5 (e) none of these

21)
$$\frac{d}{dx}x^x$$

(a) $x^{\chi}(\ln x + 1)$ (b) $x \ln x$ (c) $\ln x + 1$ (d) x^{χ} (e) none of these

22) If
$$f(x) = x^3 + 2x$$
 and if $g(x)$ is the inverse of $f(x)$, then $g'(3)$ is

(a)
$$\frac{1}{29}$$
 (b) $\frac{1}{5}$ (c) 3 (d) 29 (e) none of these

23) If f and g are differentiable functions where f(1) = 3, g(1) = 2, f'(1) = 4, f'(2) = 3, g'(1) = -2, and g'(3) = 5, and h is defined as h(x) = f(g(x)) then h'(1) is

(a) -6 (b) 3 (c) 4 (d) -2 (e) none of these

24)
$$\frac{d}{dx} \int_{1}^{x^{2}} \sin t^{2} dt$$

(a) $\sin x^{2}$ (b) $\sin x^{4}$ (c) $2x \sin x^{2}$ (d) $2x \sin x^{4}$ (e) none of these

- 25) The values *a* and *b* such that y = 5x + 1 is the equation of the tangent to $y = x^2 + ax + b$ at x = 1 are
- (a) a = 2, b = 3 (b) a = 5, b = 1 (c) a = 2, b = 1 (d) a = 5, b = 3
- (e) none of these

Name: _____

Calculus Tie Breakers

1) Find the value of k such that
$$y = \frac{k}{x}$$
 and $y = 2\sqrt{x}$ intersect at right angles?

2) Evaluate
$$\int \frac{dx}{\sqrt{2} + \sin x + \cos x}$$
.

3) Find the point on the parabola $y = 1 - x^2$ at which the tangent line cuts from the first quadrant the triangle with the smallest area.

Regional Calculus Contest – Solutions

1 – b	11 - c	21 – a
2 – e	12 – b	22 - b
3 – d	13 – c	23 – a
4 – d	14 - d	24 – d
5-c	15 – a	25 – e
6 – e	16 – e	
7 – b	17 – d	
8 – a	18 – e	
9 – c	19 – d	
10 – a	20 – c	

Tie Breaker 1

Suppose that the two curves intersect at x = a (to be determined). Then from the y value of each curve we obtain $\frac{k}{a} = 2\sqrt{a}$. Since the curves are to intersect at right angles their tangents at the point of intersect will be perpendicular. Hence, the derivatives for each are $y' = -\frac{k}{x^2}$, and $y' = \frac{1}{\sqrt{x}}$. At x = a, the respective slopes are $m_1 = -\frac{k}{a^2}$, $m_2 = \frac{1}{\sqrt{a}}$, from which we obtain the perpendicular condition $m_1 m_2 = -\frac{k}{a^2} \cdot \frac{1}{\sqrt{a}} = -1$. This gives two equations for the unknowns a and k. Solving gives a = 2 nad $k = 4\sqrt{2}$.

Tie Breaker 2

Integrate $\int \frac{dx}{\sqrt{2} + \sin x + \cos x}$

Solution. If we use the identity $\sin\left(x + \frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}\left(\sin x + \cos x\right)$, then

$$\int \frac{dx}{\sqrt{2} + \sqrt{2}\sin\left(x + \frac{\pi}{4}\right)} = \frac{1}{\sqrt{2}} \int \frac{dx}{1 + \sin\left(x + \frac{\pi}{4}\right)}$$

If we let $u = x + \frac{\pi}{4}$ then the integral becomes

$$\frac{1}{\sqrt{2}} \int \frac{du}{1+\sin(u)} = \frac{1}{\sqrt{2}} \int \frac{(1-\sin(u))du}{\cos^2 u} = \frac{1}{\sqrt{2}} \int \sec^2 u - \sec u \tan u \, du$$

Each readily integrates giving the final solution $\frac{1}{\sqrt{2}} \left(\tan\left(x + \frac{\pi}{4}\right) - \sec\left(x + \frac{\pi}{4}\right) \right) + c$

Tie Breaker 3

If we let x = a be the point of tangency, then the tangent is $y - (1 - a^2) = -2a(x - a)$. This intersects each axis $(0, a^2 + 1)$ and $(\frac{a^2 + 1}{2a}, 0)$ giving the area of the triangle as

$$A = \frac{\left(a^2 + 1\right)^2}{4a}.$$
 From the first derivative $A' = \frac{\left(a^2 + 1\right)\left(3a^2 - 1\right)}{4a^2}$ gives $a = \frac{1}{\sqrt{3}}$ as a critical point and the second derivative test $\left(A'' = \frac{3a^4 + 1}{2a^3} > 0\right)$ gives us a mi