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Abstract

Problems involving high-dimensional data, including pattern recognition, image analysis,
and gene clustering, often require a preliminary step of dimension reduction before or during
statistical analysis. If one restricts to a linear technique for dimension reduction, the remaining
issue is how to choose the projection. This choice can be dictated by desire to maximize certain
statistical properties, including variance, kurtosis, sparseness, and entropy, of the projected
data. Motivations for such criteria comes from empirical studies involving natural images. We
present a geometric framework for finding projections that are optimal for obtaining desired
statistical properties. Our approach is to define an objective function on spaces of orthogonal
linear projections – Stiefel and Grassmann manifolds, and to use stochastic gradient techniques
to optimize that function. This construction uses the geometries of these manifolds to perform
the optimization. Experimental results are presented to demonstrate these ideas for natural and
facial images.
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1 Introduction

In many applications involving pattern recognition, image analysis, meteorology, and environmental
sciences, large sizes (dimensions) of observed data prohibit efficient use of statistical analysis.
It becomes imperative to use a dimension-reduction technique either before or during statistical
analysis of data. In the context of pattern analysis, one is often interested in extracting relevant
features from observed data and the use of linear methods is prevalent for this feature extraction. In
some applications, such as face recognition using images, the underlying variability in observed data
is known to result from only a handful of physical variables, such as pose, shape, and illumination,
and that provides a strong motivation for seeking low-dimension representations of data. Low-
dimensional representations can also provide a useful immunity to observation noise, or clutter, that
is typically high dimensional. In statistics, there is a great interest in variable selection for problems
involving clustering and classification of high-dimensional data. In all these situations, the choice of
feature, or the choice of projection leading to dimension reduction, is itself an important issue. In
fact, a number of criteria have emerged in recent years that guide the process of dimension reduction.
These criteria include combinations of properties such as sparseness, correlation, variance, kurtosis,
and independence. Given a criterion like this, how can one find a linear projection, or a basis, such
that the data projected using this projection will achieve the given criterion? A solution to this
problem is the subject of this paper.

Consider the following setup. Let y be an n×1 vector of random variables and we are interested
in its statistical analysis – density estimation, modeling, testing, etc. In case n is very high, this
analysis is intractable if tried directly on y. For example, in analysis dealing with images of size
100×100, n is 104, and a direct analysis of y is difficult. A common approach is to reduce dimension
from n to d, where d << n, using a linear transformation. A linear transformation is a d×n matrix
that pre-multiplies y. It seems natural and efficient to restrict to matrices with linearly independent
rows, or even further, to impose orthonormality constraint on the rows. For instance, let U be an
n× d orthogonal matrix denoting an orthonormal basis of a d-dimensional subspace of Rn. Then,
the vector z = UTy ∈ Rd, also called the vector of coefficients, is a d-dimensional representation of
y or a projection of y.

In this paper we are concerned with the choice of U . Of course, depending upon the application
and the data, the actual value of U will differ. The goal is to develop a principled approach where
one chooses a criterion and then finds an optimal U under that criterion. Next, we presenla a
number of criteria that have been used in selecting U .

1.1 Past Criteria for Dimension Reduction

We start by listing some commonly used ideas:

1. Principal Component Analysis: One of the most commonly used idea for dimension
reduction is principal component analysis (PCA). In this approach, one chooses U in such a
way that the sum of variances of the projected coefficients is maximized. That is,

ÛPCA = argmax
U

(
d∑

i=1

variance(zi)) .

Another way to state this condition is: ÛPCA = argmaxU E[‖y−UUTy‖2], where ‖·‖ implies
the two norm of a vector and E denotes the expectation with respect to the joint probability
density function of components of y. In case the desired moments are not available, one
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maximizes the estimated variance:

FV =
1

k − 1

d∑

i=1

k∑

l=1

(Zi,l − z̄i)2. (1)

One reason for popularity of PCA is that the optimal projection, ÛPCA, can be determined
analytically. The solution is obtained using the singular value decomposition (SVD) of the co-
variance of y. Additionally, if y is multivariate normal, then the elements of z are statistically
independent, and this provides a natural decomposition of factors influencing y.

2. Canonical Correlation Analysis (CCA): For studying correlations between two given
vectors x and y of random variables, with finite second moments, one seeks their linear
projections such that the correlation between the projections are maximized (see for example
[14]). If Σx and Σy are the covariance matrices of x and y, respectively, and Σxy is the
cross-covariance, then the optimal projectors are related to the dominant eigen vectors of the
matrix Σ−1/2

x ΣxyΣ−1
y ΣT

xyΣ
−1/2
x . Since the covariance matrices are non-negative definite and

symmetric, the projections vectors can be considered as the columns of an orthogonal matrix
U .

3. Fisher’s Discriminant Analysis: In case of labeled data, i.e. the data consists of observa-
tions from different classes and the classes are known, the projection is chosen to maximize
separation between the classes. A standard approach is the use of Fisher’s discriminant anal-
ysis as follows. Define between-class scatter matrix by: SB =

∑
j E[(µj−µ)(µj−µ)T ] ∈ Rn×n,

where j is the index for classes, µj = E[yj ], and µ is the overall mean. The within-class scat-
ter matrix is given by: SW =

∑
j

∑
jth class

(
E[(yj − µj)(yj − µj)T ]

) ∈ Rn×n. The desired
basis is now obtained by solving:

ˆ[U ] = argmax
[U ]

det(UT SBU)
det(UT SW U)

, (2)

where det(·) denotes matrix determinant. Like PCA and CCA, the solution can be obtained
directly, using a generalized eigen-decomposition [11].

In contrast to PCA, CCA and FDA, there are some other criteria that do not result in an
analytical solutions and require numerical strategies to find an optimal U . Some examples
are listed next.

4. Sufficient Dimension Reduction: This idea is mainly used in linear regression and model
building problems. Pioneered by Cook and colleagues (see [4, 3] and references therein), the
main idea in this approach is to find subspaces for projecting a large vector x such that,
given the projected vector, the (univariate) response variable y is independent of x. This
is considered a projection of x without loss of any information about y. The smallest such
subspace is called the central subspace. Several methods have been proposed for finding the
central subspace, some of which can be stated as problems in optimization over the space of
all projectors.

5. Independent Component Analysis: Here the goal is to find a projection such that the
projected components are statistically independent. There are several ways to formulate ICA
[13]; one way is to use the cost function:

KL(P (z1, z2, . . . , zd)||P1(z1)P2(z2) . . . Pd(zd)) , (3)
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where KL denotes the Kullback-Leibler divergence. In this definition, P denotes the joint
probability, and Pis denote the marginal probabilities of the random variables zis. The desired
transformation is obtained by finding a minimizer of this cost function. Since it is difficult
to estimate KL divergence using observations of random variables, several approximations
of Kullback-Leibler function have been applied to obtain ICA in the literature [13]. One
idea is to maximize kurtosis of the projected variables and that is one of the main ideas
pursued in this current paper. Comon [2] proposed the use of negentropy, and further its
polynomial approximation, to approximate minimization of mutual information and Bell et
al. [1] used a stochastic gradient technique to solve such optimization problems. It must be
noted that some of these formulations do not require orthogonality of basis; in fact, they often
use over-complete or non-orthogonal bases. Hyvärinen [12] proposed a “FastICA” algorithm
for computing ICA using an over-complete basis.

1.2 More Recent Criteria for Feature Extraction

Some additional ideas have been presented in the recent years are presented next. Many of them are
motivated in part by applications in image analysis where empirical studies have shown that image
statistics, under a variety of representations, exhibit certain striking properties. As summarized
in [21], these properties are: (i) estimated densities are unimodal with modes at zeros, (ii) the
underlying random quantities are leptokurtic, i.e. their kurtosis are much larger than that of a
Gaussian and the tails are heavier. Consequently, there is interest in seeking representations that
emphasize these properties.

1. Maximal Kurtosis: There are several motivations to seek projections that maximize kur-
tosis. Firstly, kurtosis has been proposed earlier as an objective function for independent
component analysis [13]. Secondly, experiments indicate that the level of non-Gaussianity
of pixel values in a image seems to relate to information content of images [21]. Therefore,
there is interest in seeking linear projections that maximize non-Gaussianity and result in
heavy-tailed distributions. Of course, a difficult question is: How should one measure non-
Gaussianity? There are several ideas but perhaps the simplest one is to use kurtosis. The
kurtosis has the nice property that it is invariant to certain transformations such as transla-
tion and scale of the original image vector y; these transformations are considered as nuisance
variables in image analysis and may result from changes in intensity of illumination or color
maps. In other words, scaling of pixels, or adding a constant to pixels, does not often change
the information content, and hence the basis search criterion should be invariant to them.

For an n × d matrix U , let z = UTy be the d-dimensional projection of y into Rd. We are
interested in choosing a U that maximizes

d∑

i=1

kurt(zi), where kurt(zi) =
E[(zi − µi)4]
E[(zi − µi)2]2

and µi = E[zi] .

Note that z is a linear transformation of y, so the moments of z can in principle be computed
from the moments of y. However, in many practical situations we do not have exact moments
of y, and instead are given its observations. So we will focus on estimated quantities, such as
the sample kurtosis, throughout this paper. Let Y be the observation matrix such that Yi,l

denotes the lth observation of yi, 1 ≤ i ≤ n and 1 ≤ l ≤ k, and define Z = UT Y ∈ Rd×k.
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Then, the total estimated kurtosis of z is given by:

FK =
∑

i

FK,i, FK,i ≡ (k − 1)2

k

∑k
l=1(Zi,l − z̄i)4

(
∑k

l=1(Zi,l − z̄i)2)2
, where z̄i =

1
k

k∑

l=1

Zi,l . (4)

The definition of sample kurtosis sets up the optimization problem for maximizing kurtosis:
Û = argmaxU FK(U ; Y ).

2. Maximal Sparseness. Another criterion of interest in feature extraction and dimension
reduction is sparseness. A collection of random variables is considered sparse if the observa-
tions of that collection contains only a few non-zero values with a high probability. Motivated
by the studies of human visual system and by a growing understanding of its efficiency, re-
searchers have focused on sparsity of projected data as a criterion for dimension reduction.
Empirical studies of natural images show that the distributions of their wavelet coefficients
are typically sparse [5]. This means that the energy of the image is mostly concentrated in a
small proportion of wavelet coefficients [16, 18]. This result seems intuitively relevant because
natural images may generally be described in terms of a small number of structural primitives
- for example, edges, lines, or other elementary features. One of the ways to quantify sparse-
ness of the random variable v is [17, 7]: spars(v) = −E{log(1 + v2)}. The sample sparseness
of zi is given by: − 1

k

∑k
j=1 log(1 + Z2

i,j), and the total sparseness of the vector z is given by:

FS(U ;Y ) = −1
k

d∑

i=1

k∑

j=1

log(1 + Z2
i,j), Z = UT Y (5)

To maximize sparseness is to solve the problem: Û = argmaxU FS(U ; Y ). An obvious solution,
in case of unconstrained optimization, is Zi,j = 0, i = 1, . . . , d, j = 1, . . . , k. Therefore,
sparseness is seldom used alone as a criterion for dimension reduction. As described later, it
is used in conjunction with other criteria to form composite objective functions.

3. Optimal Entropy: In physics, entropy is considered to be a measure of chaos or uncer-
tainty in a dynamic system. Similarly, in information theory, entropy provides a measure
of information contained in a random quantity. Low entropy implies larger information and
vice-versa. Entropy also plays a very important role in independent component analysis [13].
For a continuous scalar random variable v, with probability density function f(v), the (dif-
ferential) entropy is defined as H(v) = − ∫

fv(t) log fv(t)dt. One use of entropy is in defining
the mutual information between two random variables v and w, according to:

I(v;w) = H(v)−H(v|w),

where H(v|w) is conditional entropy and denotes the uncertainty about v when w is known.
Thus, I(v;w) is the reduction in uncertainty about v due to the knowledge of w. One can
use this information-theoretic framework in dimension reduction as follows. We may seek
projections such that the mutual information between two random vectors is maximized. Or,
we might seek projections that make two random vectors independent of each other. In either
case, the idea is to maximize or minimize an entropy function, conditional or unconditional,
by choosing optimal projections. We will focus on one such subproblem in the current paper.
The evaluation of entropy requires the knowledge of underlying probability density function.
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In case one only has the observations, an estimate of the density function is used instead. For
instance, a kernel density estimator for zi, using the Gaussian kernel, is:

p̂i(x) =
1
k

k∑

j=1

1√
2πσ

e−
(x−Zi,j)2

2σ2 , (6)

where σ is the bandwidth of the kernel. To find the total entropy associated with the vector
z, we will need to estimate their joint density function. To avoid that calculation, we make a
gross approximation and consider the sum of individual entropies:

Ĥ = −
d∑

i=1

(∫

R
p̂i(x) log(p̂i(x))

)
≡

d∑

i=1

Ĥi, (7)

and the optimization problem is to find Û = argmaxU

∑d
i=1 Hi(U ; Y ). We must point out that

in the literature on independent component analysis, one rarely uses an estimated density
function to study entropy. It is most often approximated using lower order moments and
polynomials involving them [13].

Additional criteria can be generated by taking convex combinations of the individual criteria listed
above. In this paper we consider a few combinations described next.

• As a first combination, we study a convex combination of kurtosis and variance. The cost
function to minimize is given by FKV = λFK +(1−λ)FV , for a 0 < λ < 1. For small values of
λ we expect the maximizer to be similar to UPCA but for other values one needs to perform
experiments.

• Another possibility is to use a convex combination of kurtosis and sparseness. Thus, maxi-
mizing FKS will result in a basis that not only increase kurtosis but also sparseness: FKS =
λFK + (1− λ)FS .

• One can also study a convex combination of variance and sparseness, resulting in the goal
function FSV : FSV = λFS + (1− λ)FV .

Although we consider these composite criteria as joint optimization problem, they can also be
treated as Bayesian problems, or penalized likelihood problems, with one of the terms providing a
prior density with the other specifying the likelihood function [13].

1.3 Our Approach: Optimization over Manifolds

Based on the previous discussion, one can envision a variety of criteria that can be used for finding
a suitable projection, and the choice of an appropriate criterion depends on the nature of the
problem. Given such a criterion, how does one find an optimal projection U? Our approach is to
optimize the associated goal function over the space of all possible orthogonal projections U . This
amounts to searching for Û , where

Û = argmax
U

F (U ;Y ), (8)

where F is a scalar function. Since analytical solutions for F s of interest are not known, we will
take a numerical approach to search for Û . What is the set over which this optimization should be
performed? There are two possibilities:

6



1. U is an n× d orthogonal matrix and the required space could be the set of all such matrices.
This set is called a Stiefel manifold:

Sn,d = {U ∈ Rn×d|UT U = Id} . (9)

2. In some cases the goal function depends on the subspace and not a particular basis we choose
to represent it. In other words, F (U) = F (UO) where O is a d × d rotation matrix. For
instance, this is the case for the variance function FV . In this case one searches over the
space of all subspaces rather than searching over the space of all orthogonal bases. This set
is called the Grassmann manifold Gn,d.

Both Steifel and Grassmann manifolds are nonlinear spaces, i.e. they are not vector spaces,
and the traditional optimization techniques, such as those used in [13], do not apply directly.
We will use the differential geometry of these two manifolds to construct gradient processes, first
deterministic and then stochastic, to solve optimization problems. Several papers have addressed
the problem of solving numerical optimization on Stiefel and Grassmann manifolds. Of those, we
note the seminal paper by Edelman et al [6] which utilizes the geometry of these manifolds to
derive deterministic gradient approaches such as Newton-Raphson method. In our earlier work,
we have applied a stochastic gradient search algorithm to maximize classification performance in
image analysis [15, 22]. Similar problems have also been studied by Fiori and colleagues [8, 9],
especially for independent component analysis. The approach taken in the current paper, but
for cost functions involved in pattern recognition and classification, has earlier been explored by
Srivastava and Liu [22].

The rest of this paper is organized as follows. Section 2 describes the representation of or-
thogonal linear projections as elements of Stiefel and Grassmann manifolds. Section uses elements
from differential geometry of these manifolds that are important in our approach, and Section 4
describes our solution to the optimization problems formulated in Section 1.2. Finally, Section 5
presents some experimental results using natural and face image databases.

2 Representations of Linear Projections

We are interested in linear transformations that can be used for reducing data size. Such transfor-
mations can be denoted by n × d non-singular matrices. If the columns are forced to be linearly
independent, which seems natural for studying linear transformations, an efficient representation
is obtained by further assuming that the columns are orthogonal with unit length. Denoting such
a linear transformation via a matrix U ∈ Rn×d, U satisfies the property that UT U = Id, where
Id is the d× d identity matrix. This orthogonality constraint sets up our representation spaces as
follows.

1. Stiefel Manifold: The set of all n× d orthogonal matrices forms a Stiefel manifold Sn,d, as
stated in Eqn. 9. Each element of Sn,d provides an orthonormal basis for a d-dimensional
subspace of Rn. Sn,d can also be viewed as a quotient space of SO(n), where SO(n) = {Q ∈
Rn×n|QT Q = In, det(Q) = 1}, as follows. First, consider SO(n − d) as a subset of SO(n)
using the embedding: φ1 : SO(n− d) 7→ SO(n), defined by

φ1(A) =
[

Id 0
0 A

]
∈ SO(n), A ∈ SO(n− d).

Accordingly, SO(n − d) here consists of those rotations in SO(n) that rotate only the last
(n−d) components in Rn, leaving the first d unchanged. In this notation, Sn,d can be viewed
as the quotient space Sn,d = SO(n)/φ1(SO(n− d)) or simply SO(n)/SO(n− d).
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2. Grassmann Manifold: As stated earlier, a Grassmann manifold is the set of all d-dimensional
subspaces of Rn. Let SO(d) × SO(n − d) be a subset of SO(n) using the embedding
φ2 : (SO(d)× SO(n− d)) 7→ SO(n):

φ2(A1, A2) =
[

A1 0
0 A2

]
∈ SO(n) , A1 ∈ SO(d), A2 ∈ SO(n− d).

Then, Gn,d is a quotient space Sn,d/SO(d) or SO(n)/φ2(SO(d) × SO(n − d)), or simply
SO(n)/(SO(d)× SO(n− d)).

For an orthogonal matrix U ∈ Rn×d, we will use [U ] to denote an element of Gn,d, where

[U ] = {UO ∈ Rn×d|O ∈ SO(d)} .

That is, [U ] denotes the equivalence class of all orthogonal bases spanning the same d-
dimensional subspace of Rn.

In summary, (i) elements of SO(n) form full rotations in Rn, (ii) elements of Sn,d form a subset
where rotations within an (n−d)-dimensional subspace, corresponding to the last n−d components
of Rn, are ignored, and (iii) elements of Gn,d form a subset where, additionally, rotations within the
first d components are also ignored. Consequently, many properties of Sn,d and Gn,d are inherited
from SO(n). Both are compact manifolds and continuous functions defined on them attain their
maximum (or minimum) values on the manifolds.

We emphasize the choice of orthogonal bases in representing linear transformations as it leads
to a significant reduction in computational cost. Solving for an orthogonal basis on Sn,d or Gn,d

leads to a smaller search space as compared to searching for optimal linear transformations on (nd)-
dimensional space of n× d matrices. It also provides stability to iterative optimization algorithms
by ensuring that the basis vectors remain unit length and the basis matrix is always full ranked.

3 Tools for Gradient Searches

Our approach is to use stochastic gradient to solve the optimization problem stated in Eqn. 8.
Before we describe the final algorithm, we present some basic tools from differential geometry of
Sn,d that are needed in this optimization. In particular, we are interested in defining tangent spaces,
gradient vector fields, and gradient flows.

3.1 Tangent Spaces of Stiefel and Grassmann Manifolds

In a gradient-based search we need to define and compute the gradient of F with respect to the
elements of Sn,d and Gn,d. Since these manifolds are nonlinear, this is accomplished using tangent
spaces, whose elements also act as derivatives of functions. Nonlinearity of these spaces causes the
tangent spaces to differ from point to point on.

1. Stiefel Case: Let J ∈ Rn×d be a tall-skinny matrix, made up of the first d columns of In; J
acts as the “identity” element in Sn,d. Let Q ∈ SO(n) be a matrix that rotates the columns
of U to align with the columns of J , i.e. QT U = J . QT = [U V ], where V ∈ Rn×(n−d) is
an orthogonal basis of the null space of U. Note that the choice of Q is not unique. In this
notation, the space of vectors tangent to Sn,d at a point U , denoted TU (Sn,d), can be stated
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as follows:

TU (Sn,d) = {QT

[
C B

−BT 0

]
J |C = −CT , C ∈ Rd×d, B ∈ Rd×(n−d)}

= {QT

[
C

−BT

]
|C = −CT , C ∈ Rd×d, B ∈ Rd×(n−d)}

= {UC − V BT |C = −CT , C ∈ Rd×d, B ∈ Rd×(n−d)} (10)

Later on, we will be interested in projecting an arbitrary matrix D ∈ Rn×d onto the tangent
space TU (Sn,d) for a given point U ∈ Sn,d. According to Eqn. 10, an element of TU (Sn,d) takes
the form UC − V BT , we need to find an appropriate C and B such that ‖D−UC + V BT ‖2

is minimized. This leads to: C∗ = (−DT U+UT D)
2 and B∗ = −DT V . In other words, the

orthogonal projection of D onto the tangent space TU (Sn,d) is given by Π1 : Rn×d 7→ TU (Sn,d):

Π1(D) = UC∗ − V B∗T = U
(−DT U + UT D)

2
+ V V T D . (11)

2. Grassmann Case: The tangent space at [U ] ∈ Gn,d is given by:

T[U ](Gn,d) = {QT

[
0 B

−BT 0

]
J | B ∈ Rd×(n−d)}

= {−V BT | B ∈ Rd×(n−d)} (12)

The orthogonal projection of D onto the tangent space TU (Gn,d) is given by Π2 : Rn×d 7→
TU (Gn,d):

Π2(D) = V V T D . (13)

The formulas are very similar in the two cases except C = 0 in the second case.

3.2 Gradient Vector Fields

We can now define gradient vector fields associated with the given functions F on Sn,d or Gn,d. A
gradient vector field is a map from a space to its tangent spaces such that it assigns a gradient
vector at each point. In other words, for any U ∈ Sn,d, G(U) ∈ TU (Sn,d) is the gradient of F at U .
We remind the reader that the gradient at a point is the direction of maximal increase in the value
of F at that point. There are several ways of computing G. We will take an extrinsic approach
where we will first compute the gradient of F in the ambient space Rn×d. Then, we will project
this full gradient to TU (Sn,d) to obtain the gradient on Sn,d.

Let D = dF
dU be the gradient of F in Rn×d for a goal function F , i.e. Dl,p = ∂F

∂Ul,p
. We can

compute D using the chain rule as follows:

Dl,p =
dF

dUl,p
=

dF

dZ

dZ

dUl,p
=

d∑

i=1

k∑

j=1

∂F

∂Zi,j

dZi,j

dUl,p
. (14)

Recall that Yl,j is the lth observation of yj , U is the projection matrix and Z = UT Y is the matrix
of observations of z. The partial derivative ∂Zi,j

∂Ul,p
can be shown to be δi,pYl,j , where δi,p is the

Kronecker delta. Combining these terms, we find that the term ∂Zi,j

∂U is an n × d matrix that
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contains Y·,j ∈ Rn in its ith column and zero everywhere else. Therefore, the matrix D simplifies
to:

D = Y W T ,where the entries of W are Wi,j =
∂F

∂Zi,j
. (15)

The remaining issue is to compute the matrix W for a given objective function F . Once we have
W and, thus, D = Y W T , D can be projected onto the tangent spaces TU (Sn,d) and T[U ](Gn,d) using
the projection Π1 and Π2, respectively, to obtain a gradient vector field on Sn,d or Gn,d.

Next, we study the calculation of W for some of goal functions considered earlier in Section 1.

• Kurtosis: For FK given by Eqn. 4, its derivative with respect to the (elements of) matrix
Z is given by:

(WK)i,j =
∂FK

∂Zi,j
=

(k − 1)2

k

a− b

(
∑k

l=1(Zi,l − z̄i)2)3
, (16)

where i = 1, . . . d, j = 1,. . . k, and

a = 4(
k∑

l=1

(Zi,l − z̄i)3(δl,j − 1
k
))

k∑

l=1

(Zi,l − z̄i)2, b = 4(
k∑

l=1

(Zi,l − z̄i)4)(
k∑

l=1

(Zi,l − z̄i)(δl,j − 1
k
)).

• Sparseness: For FS given in Eqn. 5, its derivative with respect to the matrix Z is:

(WS)i,j =
∂FS

∂Zi,j
= −2

k

Zi,j

1 + Z2
i,j

. (17)

• Variance: For FV given by Eqn. 1, its derivative with respect to the matrix Z is:

(WV )i,j =
∂FV

∂Zi,j
=

2
k − 1

[(Zi,j − z̄i)− 1
k

k∑

l=1

(Zi,l − z̄i)]. (18)

• Entropy: If we replace the estimated density function in Eqn. 7 with its discrete approxi-
mations, the integral is replaced by a summation, with the total entropy being:

H = −
d∑

r=1

(
N∑

l=1

p̂l
r log(p̂l

r)

)
,

where p̂l
r is the estimated values of pdf of zr, p̂r evaluated on the lth bin denoted by tl, N is

the number of bins. p̂l
r is estimated using the rth row of the matrix Z = UT Y . Now, we can

calculate the required derivative WH = dH
dZ as follows.

(WH)i,j =
dH

dZi,j
=

d∑

r=1

N∑

l=1

dH

dp̂l
r

dp̂l
r

dZi,j

= − 1
k
√

2πσ3

N∑

l=1

(1 + log(p̂l
i))(tl − Zi,j)e

− (tl−Zi,j)2

2σ2 , (19)

where p̂l
i = 1

k
√

2πσ

∑k
j=1 e−

(tl−Zi,j)2

2σ2 .

• Kurtosis and Variance: If the objective function is given by F ≡ λFK + (1− λ)FV, then
its derivative with respect to Z is given by WKV = λWK + (1− λ)WV .
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• Variance and Sparseness: For the objective function F ≡ λFS + (1− λ)FV, the derivative
with respect to elements of Z is: WV S = λWS + (1− λ)WV .

• Kurtosis and Sparseness: For the function F ≡ λFK + (1− λ)FS, the derivative with
respect to elements of Z is: WKS = λWK + (1− λ)WS .

In each of these cases, starting from W , one can compute the actual gradient of F on Stiefel
Sn,d or Grassmann Gn,d as follows. First, compute D, the full derivative of F in the space Rn×d,
using Eqn. 15. Then,

1. In case of a Stiefel manifold, project D onto TU (Sn,d) using Π1 given in Eqn. 11. Call the
projected element G(U). This establishes a gradient vector field of F on Sn,d.

2. In case of a Grassmann manifold, project D onto TU (Gn,d) using Π2 given in Eqn. 13. Call
the projected element G(U). This establishes a gradient vector field of F on Gn,d.

3.3 Gradient Flows on Stiefel and Grassmann Manifolds

For the purpose of this discussion, we focus on the Stiefel manifold Sn,d; the case of the Grassmann
manifold can be obtained simply by restricting the Stiefel case.

Given a gradient vector field G on a manifold Sn,d or Gn,d, a process X(t) ∈ Sn,d is called its
gradient flow if it satisfies the relation

dX(t)
dt

= G(X(t)) . (20)

An important issue here is: Given a smooth vector field G, how to solve for the flow X(t)? On a
computer, one can approximate the solution using the following discretization: for a small step size
δ > 0, one can generate a discrete-time process {X(tδ), s = 1, 2, . . . , } that will approximate the
solution of Eqn. 20 as δ gets smaller. As stated in Section 3.1, G(U) ∈ TU (Sn,d), it takes the form:

G(U) = QT

[
C B

−BT 0

]
J ,

where C is skew-symmetric and QT = [U V ]. Let the inner skew-symmetric matrix be called

A =
[

C B
−BT 0

]
∈ Rn×n. It can be shown that a discrete approximation of X(t) is obtained

using the update:
X(t+1)δ = QT exp(δA)J , (21)

where exp denotes the matrix exponential. Note that both Q and A depend on the current location
X(tδ) although we have not shown this dependence explicitly. A discrete implementation of gradient
search involves starting from an initial condition, and iteratively updating using Eqn. 21.

Note that A is an n×n matrix, n being rather large in practice, and the computation of matrix
exponential is an order O(n3) operation. However, the matrix A here has a structure that can
be exploited to reduce this computational cost. If the submatrix C = 0, then A reduces to a
convenient form that can be exponentiated using O(nd2) computations (See Section 3.4 for details
of this idea). With a non-zero C, we do not know of any efficient, i.e. order O(nd2), algorithm to
compute exp(A). Therefore, we decompose the update in two steps: Let U ≡ X(tδ) be the current
state and Q, V be as defined earlier. Let D be the full gradient of F in Rn×d. The two steps are
as follows:

11



1. Update Subspace: In this step, we flow perpendicular to the sets [U ] by keeping C = 0 in
the skew-symmetric matrix A. This update is given by:

X̃(t+1)δ = QT exp(δ
[

0 B
−BT 0

]
)J . (22)

Recall that B = −DT V ∈ Rd×(n−d) as stated earlier. This exponential is computed efficiently
as described in Section 3.4.

2. Update Basis: This step updates the basis of the current subspace (spanned by columns
of X̃(t+1)δ), while keeping that subspace fixed. It essentially rotates the current axes in the
direction specified by the gradient of F . This update is given by:

X(t+1)δ = X̃(t+1)δ exp(δ1C̃) , (23)

where C̃ is a d × d skew-symmetric matrix that captures the gradient direction of function
F̃ (O) = F (UO) at O = Id, and where U = X̃(t+1)δ, δ1 is a gradient step size in the subspace
chosen. In general these step sizes δ and δ1 are different for two differen gradient processes
- one on G\,d another for basis rotations. Their values are chosen according to convenience
of the search not to small that process is going slow and not to large to cause bouncing
about the local extremum. It can be shown that: C̃ = (S − ST )/2, where S = X̃T

(t+1)δY W T .

Exponential of C̃ is O(d3) operation and can be performed fast since d is rather small in our
applications.

3.4 Computational Issues

There is a computational step in the previous section that require further considerations. In this
section we study an efficient strategy for step that is central to our gradient search. This idea was
presented earlier in [22] but is repeated here for convenience.

Exponential Map: Given a matrix A of the type: A =
[

0 B
−BT 0

]
, with B ∈ Rd×(n−d), the

goal is to compute exp(A)J efficiently without resorting to full matrix exponential in n× n. This
can be computed using the following algorithm.
Algorithm 1

1. Compute singular value decomposition of the matrix B: B = H1ΘHT
2 , where Θ is a d×(n−d)

diagonal matrix.

2. Set matrix H21 to the first d columns of the matrix H2.

3. Set matrix Θ1 to the first d columns of the matrix Θ, Θ1 ∈ Rd×d, diagonal.

4. Compute matrices Γ = cos(Θ1) and Σ = sin(Θ1). Note, matrices Γ, Σ ∈ Rd×d are diagonal
matrices.

5. Compute the matrix exp(A)J as

exp(A)J =
[

H1ΓHT
1

−H21ΣHT
1

]
, (24)
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4 Optimization Algorithm

In each of the application stated in Section 1, the goal of finding an optimal dimension-reduction
transformation reduces to solving an optimization problem on a Stiefel or a Grassmann manifold.
In this section, we use the tools introduced in the last section to develop a (stochastic) gradient
type approach to solving such problems. The goal here is to construct a stochastic gradient process,
governed by Markov chain dynamics, in such a way that the process converges to a global optimum
in the limit [10]. A useful idea in this context, that has been pursued earlier in [15] for optimization
on Grassmann manifolds and in [20] for MCMC-type random sampling on Grassmann manifolds,
is to utilize a Metropolis-Hastings type acceptance-rejection step. Here, the stochastic gradient
part provides candidates for updating estimates, but they are accepted or rejected according to
a probability density function that depends upon F . It uses randomly-perturbed versions of the
gradient directions to find candidates for updating the chain; these candidates are accepted and
rejected according to a certain probability. The search for global solutions, in general, is a hard
problem. One commonly used solution is simulated annealing. We adapt our Metropolis algorithm
to result in an annealing framework as follows: (i) we introduce a temperature T that is multiplied
to the random perturbations of gradient, and (ii) acceptance/rejection function is governed by T .
As iterations proceed, Tt is decreased slowly according to a slow cooling schedule, index t indicates
the current temperature on step number t.

For M = Sn,d or Gn,d, let F : M 7→ R+ be a performance function such that we seek an optimal
point of F . One can define a vector field on M associated with gradient of F . Note that this
vector field is smooth except for a finite set of points in M . The gradient flow is approximated by
Eqn. 21, and has the limitation that it converges to a local maximum of the function F . Define an
orthogonal basis of the set of skew-symmetric matrices using the elements:

Eij(k, l) =





1√
2
, if k=i, l=j ;

− 1√
2
, if k=j, l=i ;

0, otherwise,

∈ Rn×n (25)

where 1 ≤ i < j ≤ n. If we restrict i, j to 1 ≤ i < j ≤ d, then these Eij span matrices of type[
C 0
0 0

]
, and we call these basis matrices EC

ij . If we restrict 1 ≤ i ≤ d, d + 1 ≤ j ≤ n then these

Eij span matrices of type
[

0 B
−BT 0

]
, and we call these basis matrices EB

ij . We can use this

notation to add random terms to submatrices C and B separately and still preserve the structure
of A. Let A be the skew-symmetric matrix included in the gradient G(U) of a function F on Sn,d.
A random perturbation of A is given by:

Ã = A +
√

2Tt

d∑

i=1

n∑

j=d+1

ri,jE
B
ij +

√
2Tt

d∑

i=1

d∑

j=1

ri,jE
C
ij (26)

where ri,j are distributed normally with mean zero and variance 1
δ . In case of a Grassmann manifold,

the last term is zero. Tt is the temperature for simulated annealing and follows a slow cooling
schedule during the evolution of the algorithm. If update the states using Ã, instead of A, we obtain
a stochastic perturbation of the gradient update. However, we add a step of acceptance/rejection
that decides whether the point suggested by Ã is accepted or not. The acceptance/rejection function

is simply min{e
F (Unew)−F (Uold)

Tt , 1}, where Uold is the previous point and Unew is the candidate point
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generated by Ã. This is when F is being maximized, otherwise the signs for the two terms in the
exponent are changed. Initially, when Tt is high, the candidates are accepted more frequently while
later on only the good candidate points have a high probability of being accepted.

The full algorithm is presented next.
Algorithm : For a given objective function F , this algorithm updates the current state Xt ∈
Gn,d (Sn,d) to the state X(t+1) ∈ Gn,d (Sn,d) using the following sequence of steps.

1. Update the space:

(a) Compute the matrix D according Eqn. 15, where the matric W is computed using the
formula appropriate for the chosen F .

(b) For U = Xtδ, compute the matrix V = null(UT ).

(c) Compute the elements of the tangent vector according to B = −DT V .

(d) Generate ri,j ∼ N(0, 1
δ ) and calculate matrix B̂ = B +

√
2Tt

∑d
i=1

∑n
j=d+1 ri,jE

B
ij .

(e) Compute X̃(t+1)δ = QT
t eδÂJ using fast computation of eδÂJ in Eqn. 24, where Â =[

0 B̂

−B̂T 0

]
.

2. In case the optimization is on Stiefel manifold, the following steps are added:

(a) For the current state, X̃(t+1)δ, compute S = X̃T
(t+1)δY W T , and C̃ = (S − ST )/2.

(b) Generate ri,j iid ∼ N(0, 1
δ ) and form Ĉ = C̃ +

√
2Tt

∑d
i=1

∑d
j=1 ri,jE

C
ij .

(c) Generate a candidate for the next state according to Ucand = X̃(t+1)δe
δ1Ĉ .

If not, set Ucand to be X̃(t+1)δ.

3. Generate u ∼ Uniform(0, 1), and calculate p = min{e∆F
Tt , 1}, where ∆F = F (Ucand) −

F (Xtδ). If u < p, then X(t+1)δ = Ucand, and if u ≥ p then X(t+1)δ = X(t)δ.

4. Set Tt+1 = Tt
γ and t = t + 1. Go to Step 1.

Here γ > 1 is the cooling ratio for simulated annealing with a typical value of 1.0025. This
algorithm is an example of a larger family of algorithms that perform optimization over manifolds
with nonlinear constraints. It is also a particularization of Algorithm A.20 (page 200) [19], where
some asymptotic properties of the resulting Markov chain are discussed. These convergence results
rely on sufficiently slow decrease in annealing temperature, a condition that is difficult to establish
in a practical situation. Therefore, one relies on experimental results to evaluate algorithmic perfor-
mance. Experimental results presented in the next section point to the success of this algorithm in
solving some of the problems targeted in this paper. Similar to any other numerical procedure, the
performance of Algorithm is ultimately tied to the choice of parameters such as δ and the cooling
schedule. It must be noted that this dependence on parameters may render it ineffective in some
practical situations.
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(a)

(b)

Figure 1: (a) Examples of original natural images and some down-sampled images, (b) face images
used in the experiments presented here.

5 Experimental Results

For the experimental results presented in this section, we have used two publicly available databases
for results presented in this section.

• The first one is the database of natural images obtained from the home page of Hans van
Hateren’s Lab [url is hlab.phys.rug.nl/imlib/index.html]. These are images of natural
scenes: trees, roads, buildings, and fields, and the original images are much larger in size;
we have down-sampled them for our experiments. We extract patches of size 32 × 32 from
these larger images to form observations of y. Some examples of these oridinal images , of
size 128× 192, and down-sampled images, of size 32× 32, are shown in Figure 1 (a). In this
setting, the larger dimension is n = 32× 32 = 1024, and we use in our experiments k = 2400
of such images.

• The second type is ”The ORL Database of Faces”, a database of face images obtained from
the site http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html . There are ten
different images of each of 40 distinct subjects; each image has size 112 × 92 and is taken
under varying lighting conditions, pose, scale, facial expressions and the presence/absence of
glasses. The reason for selecting face images is the possibility of studying the problem of
human recognition. In addition to optimizing different criteria mentioned earlier, we can also
monitor the recognition performance under different projections. This data set was downsized
to the dimensionality 56×46, resulting in n = 2576, and we used images of this face database
as two disjoint sets. Half (200) of these images were used as a training set, so k = 200,
and half were used as a test set. The training set contains images of 40 people with 5 facial
expressions, and the test set consists of images of the same 40 people with 5 different facial
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(a) FK(Xt)/d found using the
random initial condition is plot-
ted vs t. The local maximal
value of FK/d is 1719.9.

(b) The images of the vectors of the basis at the point of con-
vergence found using the random initial condition.

Figure 2: The results of the experiments with goal function FK using the stochastic gradient method
on Sn,d.

expressions. Some examples of these images are given in Figure 1(b). We used the nearest
neighbor classifier for recognizing (classifying) test images although any such classifier can be
used here.

Throughout these experiments, the choice of n and d is determined according to computational
convenience, rather than a precise guiding principle.

Maximizing Kurtosis: To study maximization of FK , given in Eqn. 4, we used a set of nat-
ural images, with d = 10, n = 1024, and k = 2400. In this experiment, we used the stochastic
gradient method to maximize FK on Sn,d with three different initial points: (i) random initial
condition, (ii) initial condition generated by PCA method, and (iii) initial condition generated by
ICA method. The ICA algorithm used here is the FastICA which could be downloaded from the
site of the Department of Computer Science and Engineering at Helsinki University of Technol-
ogy (www.cis.hut.fi/projects/ica/fastica/). The initial temperature for simulated annealing was
T=10 for the random initial condition and the PCA initial condition, while it was T=100 for the
experiments with the ICA initial condition. The evolution of the goal function FK looks similar
for all three cases, it increases and then stabilizes. As an example, we show the evolution of the
function FK for the random initial condition in Figure 2(a). The images formed by re-arranging
individual columns of U at the point of convergence are shown in Figure 2(b). A few conclusions
can be drawn from these results. Firstly, the algorithm seems to find a maximum for each of the
three initial conditions, although the convergence seems to be more local than global. Although
the search performance improves, over a deterministic gradient approach, due to the presence of a
stochastic components, the convergence to a global solution is far from guaranteed. Secondly, in
terms of the resulting basis vectors, their images seem to contain edge-like structures at different
angles that may represent frequently occurring boundaries in the original image data.
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Maximizing Sparseness : The experiment on maximizing FS , as given in Eqn. 5, was conducted
using the Face Image database, with n = 2576, d = 5, k = 200. Again, the search was conducted
using the stochastic gradient method on a Stiefel manifold with random initial condition. To show
the results, first we plot the evolution of the sum of sparseness FS versus the iteration index in
Figure 3(a). Dashed lines in Figure 3 and all Figures further show the values achieved by PCA
basis. Additionally, we monitor the evolution of FK (Figure 3(b)) and FV (Figure 3(c)) for the
process that is maximizing FS . We can see from the resulting plots that FS increases at first
and then stabilizes; the resulting value is much higher than that achieved by a PCA basis. It
is well known that the PCA projections do not provide optimal sparsity in the projected data.
It is also interesting to note the increase in FK even though it is not a part of the optimization
process. It shows that two criteria: FK and FS are closely related. Since this experiment involved
face database, we also studied the changes in recognition performance generated using a nearest
neighbor classifier. It can be seen in Figure 3(e) that the recognition performance goes down as
the sparsity increases. This implies that image representations that result in sparse coefficients are
generally not good for use in face recognition and classifications. The images of the vectors of the
basis at the point of convergence are shown in Figure 3(d).

Maximizing Kurtosis and Variance Jointly: We used the facial data for these experiments
using the stochastic gradient search on Sn,d. The goal function used here is FKV is for λ = 1−10−5.
The initial conditions were chosen randomly. Figure 4(a) shows the evolution of the goal function
FKV . To study the evolution of other quantities for this gradient search, we plot the functions FK

in Figure 4(b), FV in Figure 4(c), FS in Figure 4(d), and the images of the vectors of the basis
at the point of convergence in Figure 4(e). Since FKV is a linear combination of FK and FV , it is
reasonable to expect an increase in both these functions during the maximization of FKV . Also, as
mentioned earlier, an increase in variance tends to decrease the level of sparseness associated with
a representation. This is also reflected here in the fact that FS decreases. In terms of comparisons
with the PCA basis, the solution obtained by the optimization process provides higher kurtosis and
higher sparseness, but smaller variance.

All the vectors of the basis at the point of convergence look similar, but the second vector looks
like the images of the vectors of the basis found by the PCA method. The images of the PCA
vectors are given in Figure 4(f). This similarity appears because FV is a part of the goal function,
it is maximized together with kurtosis, and PCA maximizes FV .

Maximizing Kurtosis and Sparseness Jointly: In this case, we form FKS with two values of
λ: 0.75 and 0.5, and the optimization process is initialized randomly. We present the results of the
case for λ = 0.5, while the other case is similar.

The evolution of the goal function FKS is shown in Figure 5(a) and it shows a steady increase in
FKS as the algorithm evolves. The next two plots in this figure show the evolution of the functions
FK (Figure 5(b)) and FS (Figure 5(c)). Since they both contribute in the definition of FKS , we
see an expected increase in their values as the algorithm proceeds. The evolution of FV is shown
in Figure 5(d) and it shows a sharp decrease in FV right at the start of the algorithm. This is
expected as both the kurtosis and the sparseness typically steer the algorithm towards a decrease
in the variance. The images of the vectors of the basis at the point of convergence are shown in
Figure 5(e), while the rate of recognition is shown in Figure 5(f).

Maximizing Sparseness and Variance Jointly: Here we describe the results for λ = 0.9. Fig-
ure 6(a) shows the evolution of the goal function FSV , while Figure 6(b) plots the evolution of
FV , Figure 6(c) plots FS , and Figure 6(d) plots the change in FK . Neither FV nor FSV reached
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(b) FK(Xt)/d is plotted vs t.
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(e) The evolution of the recogni-
tion rate.

Figure 3: The results of the experiments with goal function FS using the stochastic gradient method
on Sn,d.
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(a) FKV (Xt)/d is plotted vs
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(b) FK(Xt)/d is plotted vs t.

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

(c) FV (Xt)/d is plotted vs t.
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(d) FS(Xt)/d is plotted vs t.
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convergence.

(f) The images of the basis
vectors found using the PCA
method.

Figure 4: The results of the experiments with the goal function FKV , λ = 1− 10−5.
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(b) FK(Xt)/d is plotted vs t.
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(c) FS(Xt)/d is plotted vs t.
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(d) FV (Xt)/d is plotted vs t.

(e) The images of the vectors
of the basis at the point of
convergence.
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(f) The evolution of the recogni-
tion rate.

Figure 5: The results of the experiments with the goal function FKS , λ = 0.5.
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their levels found by the PCA method. This is obvious, because the PCA method produces the
maximum value of FV . The sparseness term bounces for some time and then stabilizes. The images
of the basis vectors at the end of the optimization are given in Figure 6(e). The vectors of the basis
at the point of convergence look like the images, which we found by the PCA method, but grainy.
For a comparison, the PCA images are given in Figure 4(f). The evolution of the recognition rate
is given in Figure 6(f). It increases slightly from 65.5% to 69.5%.

Entropy : The data set used for this experiment with is the set of natural images. We used 1000
images, so that n = 1024, d = 10, and k = 1000. Here we present results from a deterministic
maximization of entropy on Gn,d with random initial condition. Figure 7(a) shows the evolution of
the goal function H. One can see that the stabilized value of H is higher than that achieved by
a PCA basis. The PCA method maximizes variance, which is the measure of the variability; and
the entropy is the measure of uncertainty, so they are positively related. Figure 7(b) shows the
variance FV and Figure 7(c) shows the sparseness FS .

The H is rapidly increasing at the very beginning, then the increase becomes slower, and the sum
of the entropy stabilizes. The sum of the sparseness FS decreases at a high rate at the beginning,
then rate becomes lower and value stabilizes. The graphs of these two functions look as a mirror
reflection of each other with horizontal line as axis of symmetry. The sum of the sparseness FS

stabilizes at a level which is much lower than that for the PCA method. The sum of the variances
increases as the function H; as expected they change in the same direction. The evolution of the
sum of the kurtosis is given in Figure 7(d). Figure 7(e) shows the images of the vectors of the basis
at the point of convergence and Figure 7(f) shows the images of the vectors of a PCA basis. One
can see that these images look similar: they have geometrical structures on them, which are lighter
spots. In the case of the goal function H images are grainy, especially images of the first, third,
and ninth vectors.

6 Summary

We have presented the problem of dimension reduction of the data as a problem of the choice of
a linear projection. The basic idea was to define a criterion which might include combinations
of the properties of the data such as sparseness, variance, kurtosis, and independence and find a
linear projection or basis such that the projected data will achieve the optimal value of the given
criterion. We introduced the problem of dimension reduction as an optimization problem on the
Stiefel or Grassmann manifold and utilized differential geometry of these manifolds to construct a
stochastic search to solve this problem. This search used a multi-flow approach. An algorithm for
finding a local optimal point was presented. We demonstrated the algorithm using two different
collections of images, one set of natural images, and one set of facial images.
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Figure 6: The results of the experiments with the goal function FSV , λ = 0.9.
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(a) H(Xt)/d is plotted vs t. The
locally maximal value of H/d is
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Figure 7: The results of the experiments with the goal function H.
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