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Abstract

A symmetry analysis is performed on a 2 + 1 dimensional linear diffusion equation
with a nonlinear source term involving the dependent variable and its spatial derivatives.
In the first part of the paper, we use the classical method to classify source terms where
the original equation admits a nontrivial symmetry. In the second part of the paper, we
use the nonclassical method and show that we simply recover the classical symmetries.
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1 Introduction

Symmetry analysis has played a fundamental role in the construction of exact solutions to
nonlinear partial differential equations. Based on the original work of Lie [1] on continu-
ous groups, symmetry analysis provides a unified explanation for the seemingly diverse
and ad-hoc integration methods used to solve ordinary differential equations. At the
present time, there is extensive literature on the subject and we refer the reader to the
books by Bluman and Kumei [2], Olver [3] and Rogers and Ames [4]. For equations in
1 + 1 dimensions, one seeks the invariance of a differential equation

Ω(t, x, u, ut, ux, utt, utx, ...) = 0, (1.1)
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under the group of infinitesimal transformations

t = t + T(t, x, u)ε + O(ε2),

x = x + X(t, x, u)ε + O(ε2), (1.2)

u = u + U(t, x, u)ε + O(ε2).

This leads to a set of determining equations for the infinitesimals T, X and U which, when
solved, gives rise to the symmetries of (1.1). Once a symmetry is known for a differential
equation, invariance of the solution leads to the invariant surface condition

Tut + Xux = U. (1.3)

Solutions of (1.3) lead to a solution ansatz, which, substituted into equation (1.1) lead to
a reduction of the original equation. A generalization of the so-called ”classical method”
of Lie was proposed by Bluman and Cole [5], which, today is commonly referred to as
the ”nonclassical method”. Their method seeks invariance of the original equation aug-
mented with the invariant surface condition.

A particular class of partial differential equations that has benefited tremendously
from this type of analysis are reaction diffusion equations. These type of equations model
a wide variety of physically interesting phenomena, and we refer the reader to Murray
[6] for further discussion. The first account of the classical symmetry analysis of reaction-
diffusion equation in one spatial dimension

ut = [D(u)ux]x + Q(u), (1.4)

was given by Dorodnitsyn [7]. In an exhaustive study, several forms of D and Q were
given that provided a symmetry reduction of the original equation. This was subse-
quently followed by a nonclassical symmetry analysis of equation (1.4) by Arrigo et al.
[8] and Clarkson and Mansfield [9] in the case of D constant, and then by Arrigo and
Hill [10] in the case of exponential and power law type diffusivity. These papers all led
to new exact solutions to the reaction-diffusion equation (1.4). For nonlinear convection-
diffusion equations,

ut = [D(u)ux]x + G′(u)ux, (1.5)

commonly referred to as Richard’s equation, classical symmetry analysis in one space
dimension was first given by Yung et al. [11] and Edwards [12] where again, several forms
of D and G were given that gave rise to a symmetry reduction of the original equation. A
generalized conditional symmetry method, independently developed by Fokas and Liu
[13] and Zhdanov [14], was used by Qu [15] on the one-dimensional equation

ut = [D(u)ux]x + P(u)ux + Q(u), (1.6)

an equation that encompasses both reaction and convection. Qu’s analysis led to a clas-
sification of those types of equations that admit a generalized conditional symmetry in
the case of exponential and power law type diffusivity. This was further extended to
equations of the form

ut = g(u)uxx + f (u, ux) , (1.7)
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by Zhdanov and Andreitsev [16], who considered conditional symmetries of order 3, 4
and 5. For two- and three-dimensional reaction-diffusion equations of the form,

ut =
n

∑
i=1

(
Di(u)uxi

)
xi

+ Q(u), (1.8)

a classical symmetry analysis by Dorodnitsyn et al. [17] and by Galaktionov et al. [18]
gave rise to the cases:

(i) Di(u) = D(u), for all i, (1.9a)
(ii) Di(u) 6= 0, D1/D2 6= const. for n = 2, (1.9b)

(iii) Di(u) 6= 0, (D1/D2)
2 + (D2/D3)

2 + (D3/D1)
2 6= 0 for n = 3. (1.9c)

Nonclassically, equation (1.8) without a source term (i.e., Q(u) = 0) was first considered
by Arrigo et al. [19] in the case of n = 2, and with a source term by Goard and Broadbridge
[20]. Gandarias and del Aguila [21] go on further to provide many reductions of (1.8) also
in the case of n = 2 and D = 1. In the case of higher dimensional diffusion equations
with convection

ut =
n

∑
i=1

(
Di(u)uxi

)
xi

+ G(u)uxn , (1.10)

a nonclassical analysis was first performed by Edwards and Broadbridge [22]. Further
generalizations to systems of reaction-diffusion equations do not have as extensive a body
of results as single equations. We note the work of Wiltshire [23] who investigated the case
of coupled nonlinear diffusion equation without reaction, that of Baugh [24] and Nikitin
and Wiltshire [25] who independently considered linear diffusion with reaction, and of
Buchynchyk [26] who considered nonlinear diffusion with reaction.

The objective of the present paper is to obtain the symmetries of the linear diffusion
equation

ut = uxx + uyy + Q
(
u, ux, uy

)
, Qux 6= 0, Quy 6= 0, (1.11)

and to determine those source terms Q that admit nontrivial symmetries. The paper is
organized as follows. In section two, the determining equations of the classical symme-
tries of (1.11) are obtained and solved. Here several forms of the nonlinear source term
are identified that admit a nontrivial symmetry. In section three, our analysis is then ex-
tended to the nonclassical symmetries of this same equation ((1.11)). Here we will show
that the nonclassical method simply recover the classical symmetries. An interesting fact
is that the results obtained by Bindu et el. [27] do not appear within our results. In our fi-
nal section we address this and show that it is necessary to split some of our determining
equations in order to recover these results.

2 Classical symmetries

In this section we obtain and solve the determining equations for the classical symmetries
of (1.11). If we let

∆ = ut − uxx − uyy −Q
(
u, ux, uy

)
, (2.1)
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then invariance under the infinitesimal transformations

t̄ = t + εT(t, x, y, u) + O(ε2),
x̄ = x + εX(t, x, y, u) + O(ε2),
ȳ = y + εY(t, x, y, u) + O(ε2), (2.2)
ū = u + εU(t, x, y, u) + O(ε2),

is conveniently written as
Γ(2)∆

∣∣∣
∆=0

= 0, (2.3)

where the infinitesimal operator Γ is defined as

Γ = T
∂

∂t
+ X

∂

∂x
+ Y

∂

∂y
+ U

∂

∂U
, (2.4)

and Γ(1) and Γ(2) are extensions to the operator Γ in (2.4), namely

Γ(1) = Γ + U[t]
∂

∂ut
+ U[x]

∂

∂ux
+ U[y]

∂

∂uy
, (2.5a)

Γ(2) = Γ(1) + U[tt]
∂

∂utt
+ U[tx]

∂

∂utx
+ U[ty]

∂

∂uty

+ U[xx]
∂

∂uxx
+ U[xy]

∂

∂uxy
+ U[yy]

∂

∂uyy
. (2.5b)

The extended transformations are given by

U[t] = DtU − utDtT − uxDtX − uyDtY, (2.6a)

U[x] = DxU − utDxT − uxDxX − uyDxY, (2.6b)

U[y] = DyU − utDyT − uxDyX − uyDyY, (2.6c)

and

U[tt] = DtU[t] − uttDtT − utxDtX − utyDtY, (2.7a)

U[tx] = DxU[t] − uttDxT − utxDxX − utyDxY, (2.7b)

U[ty] = DyU[t] − uttDyT − utxDyX − utyDyY, (2.7c)

U[xx] = DxU[x] − utxDxT − uxxDxX − uxyDxY, (2.7d)

U[xy] = DxU[y] − utyDxT − uxyDxX − uyyDxY, (2.7e)

U[yy] = DyU[y] − utyDyT − uxyDyX − uyyDyY, (2.7f)

where the total differential operators Dt , Dx and Dy are given by

Dt =
∂

∂t
+ ut

∂

∂u
+ utt

∂

∂ut
+ utx

∂

∂ux
+ uty

∂

∂uy
+ uttt

∂

∂utt
· · · (2.8a)

Dx =
∂

∂x
+ ux

∂

∂u
+ utx

∂

∂ut
+ uxx

∂

∂ux
+ uxy

∂

∂uy
+ uttx

∂

∂utt
· · · (2.8b)

Dy =
∂

∂y
+ uy

∂

∂u
+ uty

∂

∂ut
+ uxy

∂

∂ux
+ uyy

∂

∂uy
+ utty

∂

∂utt
· · · (2.8c)
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Applying Lie’s invariance condition (2.3) gives rise to the following determining equa-
tions for T, X, Y and U

Tx + pTu = 0,

(2.9a)

Ty + qTu = 0,
(2.9b)

Xx −Yy + pXu − qYu = 0,
(2.9c)

Yx + Xy + pYu + qXu = 0,
(2.9d)

(Tx + pTu) Qp +
(
Ty + qTu

)
Qq − TuQ + 2Xx − Tt

+Txx + Tyy + 2 (Xu + Txu) p + 2
(
Yu + Tyu

)
q +

(
p2 + q2

)
Tuu = 0,

(2.9e)

Ut −Uxx −Uyy − 2pUxu − 2qUyu −
(

p2 + q2
)

Uuu

−pXt + pXxx + pXyy + 2p2Xxu + 2pqXyu + p
(

p2 + q2
)

Xuu

−qYt + qYxx + qYyy + 2pqYxu + 2q2Yyu + q
(

p2 + q2
)

Yuu

+ (Uu − 2Xx − 3pXu − qYu) Q +
(
−Ux − pUu + pXx + qYx + p2Xu + pqYu

)
Qp

−UQu +
(
−Uy − qUu + pXy + qYy + pqXu + q2Yu

)
Qq = 0,

(2.9f)

where we have adopted the usual notation that subscripts refer to partial differentiation
and that ux = p and uy = q. Since T, X and Y are independent of p and q, we see from
(2.9a) − (2.9e) that

Tx = 0, Ty = 0, Tu = 0, Xu = 0, Yu = 0, (2.10)

which gives that
T = T(t), X = X(t, x, y), Y = Y(t, x, y), (2.11)

where T, X and Y satisfy

Tt − 2Xx = 0, Xx −Yy = 0, Yx + Xy = 0. (2.12)

With these simplifications, (2.9f) becomes

Ut −Uxx −Uyy −
(

p2 + q2
)

Uuu + (Uu − 2Xx) Q−UQu

+
(
(Xx −Uu)p + Yxq−Ux

)
Qp +

(
Xy p + (Yy −Uu)q−Uy

)
Qq

− (2Uxu + Xt) p− (
2Uyu + Yt

)
q = 0, (2.13)
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We further find from (2.12) that

X =
1
2

T′(t)x + A(t)y + B(t), Y = −A(t)x +
1
2

T′(t)y + C(t), (2.14)

where A, B and C are arbitrary functions of t. Substitution of T = T(t) and (2.14) into
(2.13) gives

Ut −Uxx −Uyy −
(

p2 + q2
)

Uuu +
(
Uu − T′

)
Q−UQu

((
1
2

T′ −Uu

)
p− Aq−Ux

)
Qp +

(
Ap +

(
1
2

T′ −Uu

)
q−Uy

)
Qq (2.15)

−
(

2Uxu +
1
2

T′′x + A′y + B′
)

p−
(

2Uyu − A′x +
1
2

T′′y + C′
)

q = 0.

Our goal now is to determine forms of Q(u, p, q) and corresponding functions T(t), A(t),
B(t), C(t) and U(t, x, y, u) such that (2.15) is satisfied. This leads to two special cases:
U = 0 and U 6= 0. Each will be considered separately noting that arbitrary constants are
denoted by ci, i = 0, 1, 2, . . . .

2.1 U(t, x, y, u) = 0.

If we set U = 0, then equation (2.15) becomes
(

1
2

T′p− Aq
)

Qp +
(

Ap +
1
2

T′q
)

Qq − T′Q

−
(

1
2

T′′x + A′y + B′
)

p−
(
−A′x +

1
2

T′′y + C′
)

q = 0. (2.16)

Differentiating (2.16) with respect to xp and xq (or yp and yq) gives T′′ = 0 and A′ = 0
from which we deduce that

T(t) = 2c1t + c0 A(t) = c2.

This, in turn, gives (2.16) as

(c1p− c2q) Qp + (c2 p + c1q) Qq − 2c1Q− pB′(t)− qC′(t) = 0.

As Q is independent of t, this forces B′ and C′ to be constant giving

B(t) = c3t + c4, C(t) = c5t + c6,

Thus, we finally have a single equation for Q, namely

(c1 p− c2q) Qp + (c2p + c1q) Qq − 2c1Q− c3 p− c5q = 0. (2.17)

The solution of (2.17) depends on whether the constants c1 and c2 are zero, noting that in
the case where c1 = c2 = 0, then c3 = c5 = 0 which lead to translational symmetries in
t, x and y for arbitrary Q.
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Case (i) c1 = 0, c2 6= 0.
From (2.17) we have

−c2q Qp + c2p Qq − c3p− c5q = 0,

which has the solution
Q = F

(
u, p2 + q2

)
− c5

c2
p +

c3

c2
q,

where F is an arbitrary function. The associated infinitesimals for this particular source
term are

T = c0, X = c2y + c3t + c4, Y = −c2x + c5t + c6, U = 0.

Case (ii) c1 6= 0, c2 = 0.
From (2.17) we have

c1p Qp + c1q Qq − 2c1Q− c3p− c5q = 0,

which has the solution

Q = p2F
(

u,
q
p

)
− c3

c1
p− c5

c1
q,

where F is an arbitrary function. The associated infinitesimals for this particular source
term are

T = 2c1t + c0, X = c1x + c3t + c4, Y = c1y + c5t + c6, U = 0.

Case (iii) c1 6= 0, c2 6= 0.
If we switch to polar coordinates p = r cos θ, q = r sin θ, equation (2.17) becomes

c1r Qr + c2Qθ − 2c1Q− c3r cos θ − c5r sin θ = 0,

which has the solution

Q = r2F
(

u, θ − c2

c1
ln r

)
− c1c3 + c2c5

c2
1 + c2

2
r cos θ − c1c5 − c2c3

c2
1 + c2

2
r sin θ

or, in terms of the original variables

Q =
(

p2 + q2
)

F
(

u, tan−1 q
p
− c2

2c1
ln p2 + q2

)
− c1c3 + c2c5

c2
1 + c2

2
p− c1c5 − c2c3

c2
1 + c2

2
q,

where F is an arbitrary function. The associated infinitesimals for this particular source
term are

T = 2c1t + c0, X = c1x + c2y + c3t + c4, Y = −c2x + c1y + c5t + c6, U = 0.
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2.2 U(t, x, y, u) 6= 0.

Dividing equation (2.15) by −U and re-grouping gives

Qu +




(
Uu − 1

2 T′
)

U
p +

A
U

q +
Ux

U


 Qp +


−A

U
p +

(
Uu − 1

2 T′
)

U
q +

Uy

U


 Qq

(T′ −Uu)
U

Q +
(

p2 + q2
) Uuu

U
+

(
2Uxu + 1

2 T′′x + A′y + B′
)

U
p (2.18)

+

(
2Uyu − A′x + 1

2 T′′y + C′
)

U
q +

Uxx + Uyy −Ut

U
= 0.

As Q is only a function of p, q and u, then each coefficient of (2.18) can be at most a
function of u. If we let

Uu − 1
2 T′

U
= λ1(u),

A
U

= λ2(u),
Ux

U
= λ3(u),

Uy

U
= λ4(u),

T′ −Uu

U
= λ5(u),

Uuu

U
= λ6(u),

2Uxu + 1
2 T′′x + A′y + B′

U
= λ7(u), (2.19)

2Uyu − A′x + 1
2 T′′y + C′

U
= λ8(u),

Uxx + Uyy −Ut

U
= λ9(u),

then (2.18) becomes

Qu +(λ1 p + λ2q + λ3)Qp +(−λ2 p + λ1q + λ4)Qq + λ5Q + λ6(p2 + q2)+ λ7 p + λ8q + λ9 = 0,
(2.20)

where λ1 − λ9 are to be determined. Our investigation of (2.19) leads us to consider three
cases:

(i) λ2 6= 0,
(ii) λ2 = 0, λ1 + λ5 6= 0,
(iii) λ2 = 0, λ1 + λ5 = 0.

Each case will considered separately.

Case (i) λ2 6= 0.
If λ2 6= 0, then from the second equation of (2.19) gives

U = A(t)k(u), (2.21)

where k(u) = 1/λ2(u). With this assignment, we further deduce from the seventh and
eighth equation of (2.19) that T′′ = 0 and A′ = 0 since U is independent of both x and y.
This gives

T = 2c1t + c0, A = c2, (2.22)

which implies that U = c2k(u). Since the only time dependence in (2.19) is through B′

and C′, this forces these to be constant. Thus,

B = c3t + c4, C = c5t + c6. (2.23)
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This gives, from (2.14), (2.21), (2.22) and (2.23) the infinitesimals

T = 2c1t + c0, X = c1x + c2y + c3t + c4, Y = −c2x + c1y + c5t + c6, U = c2k(u). (2.24)

Therefore, in this case (2.19) reduces to

λ1 =
c2k′(u)− c1

c2k(u)
, λ2 =

1
k(u)

λ3 = 0, λ4 = 0,

λ5 =
2c1 − c2k′(u)

c2k(u)
, λ6 =

k′′

k
, λ7 =

c3

c2k(u)
, λ8 =

c5

c2k(u)
, λ9(u) = 0, (2.25)

and thus it follows from (2.20) and (2.25) that any Q satisfying

c2kQu + [(c2k′ − c1)p + c2q]Qp +
[−c2p + (c2k′ − c1)q

]
Qq

+
(
2c1 − c2k′

)
Q + c2k′′

(
p2 + q2

)
+ c3 p + c5q = 0, (2.26)

is left invariant under (1) with the infinitesimals as given in (2.24) where k(u) is any arbi-
trary function of u. The solution of (2.26) is given by

Q = k(u) exp
(
−2

c1

c2

∫
du
k

)
F

(
1
2

ln u2
x + u2

y − ln k +
c1

c2

∫
du
k

, tan−1 uy

ux
+

∫
du
k

)

− k′

k

(
u2

x + u2
y

)
− c1c3 + c2c5

c2
1 + c2

2
ux − c1c5 − c2c3

c2
1 + c2

2
uy

where F is any arbitrary function.

Case (ii) λ2 = 0, λ1 + λ5 6= 0.
With λ2 = 0, then from (2.19) we have that A = 0. Since λ1 + λ5 6= 0, if we add the first
and fifth equation of (2.19) then

1
2 T′

U
= λ1 + λ5.

and, if we set

λ1 + λ5 =
1

2k(u)
,

then
U = T′k(u).

From the seventh and eighth equation of (2.19) we see that

1
2 T′′x + B′

T′k
= λ7,

1
2 T′′y + C′

T′k
= λ8,

from which we deduce that T′′ = 0, and then B′′ = 0 and C′′ = 0. Integrating gives

T = 2c1t + c0, B = c2t + c3, C = c4t + c5. (2.27)
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Thus, from from (2.14) with T, B and C given in (2.27) gives the infinitesimals as

T = 2c1t + c0, X = c1x + c2t + c3, Y = c1y + c4t + c5, U = 2c1k(u). (2.28)

From (2.19) we see that

λ1 =
k′ − 1

2
k

, λ5 =
1− k′

k
, λ6 =

k′′

k
, λ7 =

c2

2c1k
, λ8 =

c4

2c1k
(2.29)

with all other λ′s zero. Thus, it follows from (2.20) and (2.29) that any Q satisfying

kQu + (k′ − 1
2)p Qp + (k′ − 1

2)q Qq + (1− k′)Q + k′′
(

p2 + q2
)

+
c2

2c1
p +

c4

2c1
q = 0, (2.30)

is left invariant under (1) with the infinitesimals as given in (2.28) where k(u) is any arbi-
trary function of u. The solution of (2.30) is

Q = k(u) exp
(
−

∫
du
k

)
F

(
1
2

ln u2
x + u2

y − ln k +
1
2

∫
du
k

, tan−1 uy

ux

)

− k′

k

(
u2

x + u2
y

)
− c2

c1
ux − c4

c1
uy

where F is any arbitrary function.

Case (iii) λ2 = 0, λ1 + λ5 = 0.
If λ2 = 0, then from (2.19) A = 0. Since λ5 = −λ1, then adding the first and fifth equation
in (2.19) gives T′ = 0 from which we obtain T = c1. Integrating the first equation of (2.19)
gives

U = f (t, x, y)k(u), (2.31)

where f an arbitrary function of x, y and t and

k(u) = e
∫

λ1(u)du.

Substituting (2.31) into the third and forth equation of (2.19) gives

fx

f
= λ3(u),

fy

f
= λ4(u),

from which we deduce that λ3 and λ4 are constant and

f = f0(t)eλ3x+λ4y, (2.32)

with f0 an arbitrary function of t. Substituting (2.31) with (2.32) into the ninth equation of
(2.19) gives

(λ2
3 + λ2

4) f0 − f ′0
f0

= λ9(u), (2.33)
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showing that λ9 is also constant. Integrating (2.33) gives f0 as

f0 = U0e(λ2
3+λ2

4−λ9)t (2.34)

where U0 is a constant. Thus, combining (2.31), (2.32), and (2.34) gives

U = U0eλ3x+λ4y+(λ2
3+λ2

4−λ9)tk(u). (2.35)

Substituting (2.35) into the seventh and eighth equation of (2.19) and simplifying gives

2λ3
k′(u)
k(u)

+
B′(t)

U0k(u)
e−λ3x−λ4y−(λ2

3+λ2
4−λ9)t = λ7(u) (2.36a)

2λ4
k′(u)
k(u)

+
C′(t)

U0k(u)
e−λ3x−λ4y−(λ2

3+λ2
4−λ9)t = λ8(u). (2.36b)

As (2.36) must be independent of both x and y this gives rise to two cases: λ3 = λ4 = 0 or
B′ = C′ = 0.
Subcase (i) λ3 = λ4 = 0.
In this case, we conclude from (2.36)

B′(t) = b1U0e−λ9t, C′(t) = c1U0e−λ9t, (2.37)

with b1 and c1 arbitrary constants and

λ7 =
b1

k(u)
, λ8 =

c1

k(u)
.

If λ9 = 0, then integrating (2.37) gives

B = b1U0t + b0, C = c1U0t + c0,

where b0 and c0 are arbitrary constants. This, in turn, leads to the infinitesimals

T = c1, X = b1U0t + b0, Y = c1U0t + c0, U = U0k(u). (2.38)

If λ9 6= 0, then integrating (2.37) gives

B = −b1U0

λ9
e−λ9t + b0, C = − c1U0

λ9
e−λ9t + c0,

where b0 and c0 are arbitrary constants. This, in turn, leads to the infinitesimals

T = c1, X = −b1U0

λ9
e−λ9t + b0, Y = − c1U0

λ9
e−λ9t + c0, U = U0e−λ9tk(u). (2.39)

These infinitesimals ((2.38) and (2.39)) apply for source terms that satisfy

kQu + k′p Qp + k′q Qq − k′Q + k′′
(

p2 + q2
)

+ b1 p + c1q + λ9k = 0, (2.40)
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depending whether λ9 is zero or not zero. The solution of (2.40) is

Q = kF
(ux

k
,

uy

k

)
− k′

k

(
u2

x + u2
y

)
− (

b1ux + c1uy + λ9k
) ∫

du
k

,

where F is an arbitrary function.

Subcase (ii) B′ = C′ = 0.
In this case B = b0 and C = c0, arbitrary constants and from (2.36), λ7 = 2λ3k′/k and
λ8 = 2λ4k′/k. This, in turn leads to the infinitesimals

T = c1, X = b0, Y = c0, U = U0eλ3x+λ4y+(λ2
3+λ2

4−λ9)tk(u), (2.41)

which apply for source terms that satisfy

kQu + (k′p + λ3k) Qp + (k′q + λ4k) Qq − k′Q + k′′
(

p2 + q2
)

+ 2λ3k′p + 2λ4k′q + λ9k = 0.
(2.42)

The solution of (2.42) is given by

Q = kF
(

ux

k
− λ3

∫
du
k

,
uy

k
− λ4

∫
du
k

)
− k′

k

(
u2

x + u2
y

)
− λ9k

∫
du
k

,

where F is an arbitrary function.

3 Nonclassical Symmetries

For the nonclassical method, we seek invariance of both the original equation and its
invariant surface condition. This can also be conveniently written as

Γ(2)∆1

∣∣∣
∆1=0,∆2=0

= 0, (3.1)

where ∆1 and ∆2 are defined as

∆1 = ut − uxx − uyy −Q
(
u, ux, uy

)
, ∆2 = ut + Xux −U, (3.2)

noting that we can set T = 1 without of loss of generality provided that T = 0. In (3.1), the
infinitesimal operator Γ, its first and second extensions and extended transformations can
all be found in the previous section, (2.4) − (2.7) and we refer the reader there. Applying

12



(3.1) gives rise to the following determining equations for X, Y and U

Xx −Yy + pXu − qYu = 0,

(3.3a)

Yx + Xy + pYu + qXu = 0,
(3.3b)

Ut −Uxx −Uyy − 2pUxu − 2qUyu −
(

p2 + q2
)

Uuu

−pXt + pXxx + pXyy + 2p2Xxu + 2pqXyu + p
(

p2 + q2
)

Xuu

−qYt + qYxx + qYyy + 2pqYxu + 2q2Yyu + q
(

p2 + q2
)

Yuu

+2 (U − pX − qY) (Xx + pXu)

+ (Uu − 2Xx − 3pXu − qYu) Q +
(
−Ux − pUu + pXx + qYx + p2Xu + pqYu

)
Qp

−UQu +
(
−Uy − qUu + pXy + qYy + pqXu + q2Yu

)
Qq = 0.

(3.3c)

From (3.3a) and (3.3b) we find that

X = X(t, x, y), Y = X(t, x, y), (3.4)

where
Xx −Yy = 0, Yx + Xy = 0, (3.5)

and from (3.3c)

Ut −Uxx −Uyy + 2XxU −
(

p2 + q2
)

Uuu + (Uu − 2Xx) Q−UQu

((Xx −Uu) p + Yxq−Ux) Qp +
(
Xy p +

(
Yy −Uu

)
q−Uy

)
Qq (3.6)

− (2Uxu + Xt + 2XXx) p− (
2Uyu + Yt + 2YXx

)
q = 0.

If we let X → X/T, Y → Y/T and U → U/T where T = T(t), then (3.6) becomes

Ut −Uxx −Uyy +
U
T

(2Xx − Tt)−
(

p2 + q2
)

Uuu + (Uu − 2Xx) Q−UQu
(

(Xx −Uu) p + Yxq−Ux

)
Qp +

(
Xy p +

(
Yy −Uu

)
q−Uy

)
Qq (3.7)

−
(

2Uxu + Xt +
X
T

(2Xx − Tt)
)

p−
(

2Uyu + Yt +
Y
T

(2Xx − Tt)
)

q = 0.

Comparing (3.7) with (2.13) shows that they are identical if 2Xx − Tt = 0. As with the
classical symmetries where several cases were consider, (U = 0 and U 6= 0) we will also
consider these cases separately where we will establish that 2Xx − Tt = 0.
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3.1 U(t, x, y, u) = 0.

If we set U = 0, then equation (3.7) becomes

−2XxQ + (Xx p + Yxq) Qp +
(
Xy p + Yyq

)
Qq

−
(

Xt +
X
T

(2Xx − Tt)
)

p−
(

Yt +
Y
T

(2Xx − Tt)
)

q = 0. (3.8)

Differentiating (3.8) twice with respect to x and y and adding gives, using Xxx + Xyy = 0
and Yxx + Yyy = 0

(
Xx (2Xx − Tt)x + Xy (2Xx − Tt)y

)
p +

(
(Yx (2Xx − Tt)x + Yy (2Xx − Tt)y

)
q = 0,

which gives

Xx (2Xx − Tt)x + Xy (2Xx − Tt)y = 0, (3.9a)

Yx (2Xx − Tt)x + Yy (2Xx − Tt)y = 0, (3.9b)

From (3.9) and (3.5) we find that either

Xx = 0, Xy = 0, Yx = 0, Yy = 0, (3.10)

or
(2Xx − Tt)x = 0, (2Xx − Tt)y = 0. (3.11)

We choose the latter as it is clearly more general. Integrating (3.11) gives

2Xx − Tt = k(t) (3.12)

for some arbitrary function k but this can be absorbed into T without loss of generality
thus establishing that 2Xx − Tt = 0.

3.2 U(t, x, y, u) 6= 0.

Dividing equation (3.7) by −U and re-grouping gives

Qu +
(

(Uu − Xx)
U

p− Yx

U
q +

Ux

U

)
Qp +

(
−Xy

U
p +

(
Uu −Yy

)

U
q +

Uy

U

)
Qq

+
(2Xx −Uu)

U
Q +

(
p2 + q2

) Uuu

U
+

1
U

(
2Uxu + Xt +

X
T

(2Xx − Tt)
)

p (3.13)

+
1
U

(
2Uyu + Yt +

Y
T

(2Xx − Tt)
)

q +
1
U

(
Uxx + Uyy −Ut − U

T
(2Xx − Tt)

)
= 0.

As seen in the previous section using the classical method, as Q is only a function of p, q
and u, then each coefficient of (3.13) can be at most a function of u. If we let

Uu − Xx

U
= λ1(u), −Yx

U
= λ2(u),

Ux

U
= λ3(u),

Uy

U
= λ4(u),
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2Xx −Uu

U
= λ5(u),

Uuu

U
= λ6(u),

1
U

(
2Uxu + Xt +

X
T

(2Xx − Tt)
)

= λ7(u), (3.14)

1
U

(
2Uyu + Yt +

Y
T

(2Xx − Tt)
)

= λ8(u),
1
U

(
Uxx + Uyy −Ut − U

T
(2Xx − Tt)

)
= λ9(u),

then (3.13) becomes

Qu +(λ1 p + λ2q + λ3)Qp +(−λ2 p + λ1q + λ4)Qq + λ5Q + λ6(p2 + q2)+ λ7 p + λ8q + λ9 = 0,
(3.15)

exactly the same as (2.20) derived using the classical method. As the investigation there
lead to considering three cases: (i) λ2 6= 0, (ii) λ2 = 0, λ1 + λ5 6= 0, (iii) λ2 =
0, λ1 + λ5 = 0, we do the same here.

Case (i) λ2 6= 0.
If λ2 6= 0, then from the second equation of (3.14) gives

U = Yxk(u), (3.16)

where k(u) = 1/λ2(u). Since Y is Laplacian in x and y, then from (3.16), so is U. From the
seventh and eighth equation of (3.14), we have

2Uxu + Xt +
X
T

(2Xx − Tt) = λ7(u)U, (3.17a)

2Uyu + Yt +
Y
T

(2Xx − Tt) = λ8(u)U. (3.17b)

Differentiating both (3.17a) and (3.17a) with respect to x and y twice and adding gives
(3.9). As we deduced there that 2Xx − Tt = 0, then so is the case here.

Case (ii) λ2 = 0 λ1 + λ5 6= 0.
If λ1 + λ5 6= 0, then adding the first and fifth equation of (3.14) gives

U = Xxk(u), (3.18)

where k(u) = 1/(λ1(u) + λ5(u)). Since X is Laplacian in x and y, then again, so is U. As
we recognize that this case is the same as the previous case, we therefore deduce by the
arguments presented in case (i) that 2Xx − Tt = 0.

Case (iii) λ2 = 0, λ1 + λ5 = 0.
If λ2 = 0 and λ1 + λ5 = 0, then from the second of (3.14), first + fifth of (3.14) and (3.5)
gives

Xx = 0, Xy = 0, Yx = 0, Yy = 0, (3.19)

so X = X(t) and Y = Y(t) only. Furthermore, comparing (2.13) and (3.6) shows that they
are identical! Thus, the source terms from each method will be identical. In the classical
method T = c1. Since X, Y and U in the classical method can be scaled by c1 and with this
scaling (2.13) remains invariant, we therefore can set c1 = 1 without loss of generality. We
thus conclude that in this case the nonclassical method recovers the classical method.
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4 Conclusion

In this paper we have considered the symmetry analysis of a 2 + 1 diffusion equation with
a nonlinear source term that involves both the dependent variable and it first derivatives.
In the first part of the paper, the classical method was used to classify those source terms
that admit a nontrivial symmetry. The second part of the paper used the nonclassical
method to show there were no nonclassical symmetries − those symmetries that cannot
be obtained classically. It is interesting note that the case where Q is of the form

Q =
2

1− u

(
u2

x + u2
y

)
+ u(1− u) (4.1)

doesn’t appear among our results. This is a source term for (1.11) that Bindu et el. [27]
showed admitted infinitesimal transformations with the infinitesimals

T = c0, X = c1y + c2, Y = −c1x + c3, U = f (t, x, y)(1− u)2 (4.2)

where ft = fxx + fyy + f . They further showed that under the transformation u = 1− 1/v,
the original PDE linearized. It is therefore natural to ask why this result is not contained
within ours. The reason lies in our focus on the equation (2.18) for Q. We have assumed
that all the terms in this equation must appear. In order to obtain the results of Bindu et
el., it is necessary to split equation (2.18). We admit that in doing so, the source term might
not be a general as those obtained in section (2) but it is possible (and we will demonstrate
this) that a larger symmetry group can be obtained. We now re-examine (2.15) with first
a re-organization

A′(x q− y p)− B′p− C′q +
1
2

T′
(

p Qp + q Qq − 2Q
)− 1

2
T′′ (xp + yq)

−A
(
q Qp − p Qq

)−UxQp − 2Uxu p−UyQq − 2Uyuq + Ut −Uxx −Uyy (4.3)

−UQu −Uu
(

p Qp + q Qq −Q
)−

(
p2 + q2

)
Uuu = 0.

We first set the coefficients of the first four terms to zero

A′ = B′ = C′ = T′ = 0, (4.4)

and then split the remaining equation according to

Ux Qp + 2p Uxu = 0, Uy Qq + 2q Uyu = 0, (4.5a)
q Qp − p Qq = 0, Ut −Uxx −Uyy = k1U, (4.5b)

UQu + Uu
(

pQp + qQq −Q
)

+
(

p2 + q2
)

Uuu = k1U, (4.5c)

for some arbitrary constant k1. In the case of k1 = 1, then (4.5) is identically satisfied by
(4.2) if we choose the source term (4.1). We further note that if we solve (4.4) and (4.5) in
general, we obtain

T = c0, X = c1y + c2, Y = −c1x + c3, U =
f (t, x, y)

S′(u)
,

Q =
S′′(u)
S′(u)

(
p2 + q2

)
+

k1S(u) + k2

S′(u)
, (4.6)
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where k2 is another arbitrary constant, S(u) an arbitrary function and f (t, x, y) a function
satisfying ft = fxx + fyy + k1 f , thus generalizing the result of Bindu et el. [27]. We further
note that for this source term (4.6), the substitution v = S(u) linearizes (1.11).
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