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Abstract

In this paper, we consider the problem of mathematically determining the feedback
inhibition rates in multi-branched metabolic pathways. To solve the problem, we model
the system with a series of nonlinear ordinary differential equations by using the law of
mass action without the usual quasi-steady state assumptions. Through an equilibrium
analysis, we develop formulas to calculate the feedback inhibition rates in terms of the
concentrations of end-products and regulatory enzymes at equilibrium. We then prove
that the linearized system of the nonlinear system at its equilibrium is exponentially
stable by applying Routh’s stability criterion, thus the equilibrium of the nonlinear
system is locally exponentially stable. This local stability proves that the feedback
inhibition rates determined by our formulas are effective in regulating the end-products.
This feasibility of these feedback inhibition rates is further tested numerically using
both randomly generated data and biological data.
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1 Introduction

Most of the biochemical reactions of a cell are accelerated through enzymes in metabolic
pathways, which are necessary for the biosynthesis of the major molecules needed in cells
and organisms such as nucleotides, amino acids, sugars, and lipids. A metabolic pathway
is made up of a series enzymes which take some molecular substrate and convert it into a
modified molecule through a sequence of catalyzed reactions that are specifically regulated
and controlled.
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Figure 1: Biosynthetic pathway of Adenosine and Guanosine from Inosine.

If a cell or network is producing more of the end product than it needs, the end product or
a byproduct may act as an inhibitor on one or more of the regulatory enzymes of the pathway.
This inhibition can be caused through different process such as allosteric modification, where
the affinity of the regulatory enzyme is altered, or competitive inhibition where the inhibitor
or modulator inhibits active sites of the enzyme. Generally, the end product acts as an
inhibitor of the first committed step in the pathway. This property enables the enzymes
in metabolic pathways to have specific controls for different branches, thus being able to
sustain homeostasis under dynamic controls. Note also that this process avoids unwanted
intermediates in the cell. A well known example of such regulatory feedback inhibition occurs
in the purine metabolism, specifically the biosynthesis of adenosine 5-monophosphate (AMP)
and guanosine 5’-monophosphate (GMP) [21, 24], as shown in Figure 1. In this metabolic
pathway inosine monophosphate (IMP) is the initial metabolite and the regulatory enzymes
A; and G are the first branched steps that compete for IMP as seen in Figure 1.
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Figure 2: Feedback inhibition in a branched metabolic pathway.

To be able to mathematically analyze the feedback inhibition, we consider a generic
abstract branched metabolic pathway as shown in Figure 2: an initial substrate S is catalyzed
by an enzyme E to form an intermediate metabolite P, P is catalyzed by the enzymes
E,; and E5; to form two other intermediate metabolites P, o and P, 5, and so on. If there
is an excess of the end-products P ;11 and P; ,,1; in the cell, P, ;11 and P; ;41 will inhibit
the regulatory enzyme FE;; and Es;, respectively, preventing them from converting any
Py to P1s and Ps5. In the real biological situations, these end-products also inhibit the
enzyme F, but such inhibition is very weak and negligible. In this way, the cell keeps from
synthesizing excessive amounts of the end-products, and keeps P; ; available for use in other
pathways. This sort of inhibition, whereby a metabolic reaction is blocked by its product,
is called feedback inhibition, and it is one of the most important mechanisms that regulate
metabolism.

Here we have introduced a hypothetical intermediate R. We first mathematically ana-
lyzed the branched pathway without the introduction of R and found that the system has a
zero eigenvalues and then it is unstable. However, in the real biological situations, the path-
way system should be stable. Thus we guess that there might be a kind of communicator in
the pathway, which communcates between two branches. Without this communicator, any
excess product could not be reversed and used by other branches. The intermediate R could
be also possible if the product of an enzyme-inhibitor complex were to suffer an appropriate
structural change.

The aim of this paper is to develop a formula to calculate the feedback inhibition rates.
We here consider the competitive inhibition. So the series of enzymatic reactions in a



branched metabolic pathway can be described by the following diagram
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where S denotes an initial substrate, £; ; the enzymes, F; ; the intermediate metabolites or
the final product, C;; the complexes formed from S, P, ; and E;;, W; the complex formed
from the final product P, ,,11 (or P, ,4+1) and E;; (the letter W is used because the enzyme-
ligand complex is a kind of waste that neutralizes the regulatory enzyme), R the intermediate
metabolite produced from one branch that can be used by the other branch, and k;l the
reaction constants. The competitive feedback inhibition rates k. (the subscript ic means
competitive inhibition) and k2, are defined by
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To solve our problem, we model the metabolic pathway (1.1) with a system of nonlinear
ordinary differential equations using the law of mass action [10, 22]. In our model, we do not



make the usual quasi-steady state assumptions employed in most enzyme catalyzed models.
We then develop the following formula of computing competitive feedback inhibition rates
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In the above equations, S°, E?j denote the initial concentrations of the substrate S and the
enzymes [;; and the bar = denotes an equilibrium. Since the end-products and enzymes
at equilibrium can be measured, this formula provide a practical method to calculate the
inhibition rates.

The effects of product inhibition in unbranched metabolic pathways have been analyzed in
the literature 3, 4, 5, 7, 10, 13, 14, 15, 18, 19, 22, 25, 26]. Depending on different assumptions
like the quasi-steady state assumption, different mathematical models for such pathways
were established, including the Michaelis-Menten system [8, 13], the Haldane equation [17],
and nonlinear reaction-diffusion equations [25]. Sen and Schulz [15] showed that product
inhibition may be considered an alternative mechanism to end-product inhibition by reducing
the overall logarithmic gain of an unregulated pathway. Product inhibition can exert a
stabilizing influence that competes with the destabilizing effect of end-product inhibition
in controlling the dynamics behavior. Stantillin and Zeron [14] developed a mathematical
model for the tryptophan operon and showed that product inhibition can increase the operon
stability. Using the theory of cooperative and competitive systems, Sanchez [13] studied the
dynamical behavior of the modified Michaelis-Menten system and derived conditions for
convergence to equilibria of stable closed orbits. Instability caused by time lag was analyzed
in [8]. Using the decomposition method, Sonnad and Goudar [17] presented an explicit
solution to the Haldane equation as a recursive series. Effects of periodic input on the quasi-
steady state assumptions were examined in [19]. Metabolic control coefficients and elasticities
were calculated symbolically in [2]. Using directed graphs, the sign pattern of the control
coeflicients of the enzymes in abstract linear metabolic pathways was analyzed [7]. Sufficient



and necessary conditions for asymptotic stability of the steady state in general unbranched
pathways with a single feedback loop were established in [3]. Strategies for representing
metabolic pathways within biochemical systems theory were developed in [18, 23] and two
most common strategies for generating an S-system (for synergistic and saturable systems)
were clearly distinguished. However, to our knowledge, it seems that the mathematical
determination of feedback inhibition rates like (1.2) and (1.3) has not yet been seen in the
literature.

The paper is organized as follows. Employing the law of mass action, we first model the
pathways by a system of differential equations in Section 2. Through an equilibrium analysis,
we then derive the competitive feedback inhibition rates (1.2) and (1.3) in Section 3. To
show that the feedback inhibition rates are effecitve, we need to prove that the equilibrium
of the system is asymptotically stable. Since we could not construct a Lyapunov function
to address the global stability of the system, we instead consider its local linear stability in
Section 4, showing that the real parts of all eigenvalues of the linearized system are negative
using Routh’s stability criterion. Finally, we present numerical examples and applications
in Section 5 to further verify the feasibility of mathematically determined inhibition rates.

2 Mathematical Models

In real biological situations, concentrations of molecules in a cell may vary in different lo-
cations, and so may not be homogeneous. However, for simplicity, we here assume that the
concentrations are same everywhere. Therefore, by the law of mass action [10, 22|, the dy-
namics of the metabolic pathway (1.1) can be modeled by the following system of nonlinear
ordinary differential equations

ds
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¢5(0) = py(0) = w,(0) = 0, 7(0) = 0, (2.19)

where ¢; j,€;5,pi 5,7, 5, w; denote the concentrations of C;;, E; ;, P, j, R, S, W;, respectively,
and S°, Eg ; are the initial concentrations of the substrate S and the enzyme F; ;, respectively.
Adding the respective rate equations, we can readily derive that

d
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d
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These conservative equations are just the reflection of the enzyme conservation. In the same
respect, adding the equations (2.1), (2.3), (2.10), (2.9), (2.16), (2.17), and (2.18), the right
hand side is equal to —kJc + k! ;¢ + k23¢9, which can be canceled by the right hand side
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This conservative equation reflects the conservation of substrate. It then follows that
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where E%,EO, SO are the initial concentrations. Due to these conservative equations, the
system (2.1)-(2.19) can be simplified to
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pij<0) = U)Z(O) = 0,7’(0) =0, (2'34)

where ¢;;, ¢, and e are given by the conservative equations (2.20) through (2.24).

3 Feedback Inhibition Rates

To determine the feedback inhibition rates k., k2, we look at the equilibrium of the system
(2.25)-(2.34), which can be found by setting all the derivatives to zero. Hereafter the bar ~
denotes the equilibrium state. Keeping the zero derivatives in mind, we add the equations

(2.31) - (2.33) and then obtain



Since we are considering the system in a biological situation, the enzymes should satisfies
that e;; < E?j and then at equilibrium

S5 . 10

i=1,2, j=morn. (3.1)
From (2.27) and (2.30), it follows that
Ky g(BY iy —eijo1) = KWy(E) —é&5), i=1,2, j=3,--- ,norm,
which, combining with (3.1), implies that
e =FEy, i=12 j=2,-- norm. (3.2)
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pij=0, 1=1,2,j=2,--- ,norm. (3.3)
Using this result, we deduce from (2.29) that
EY —é1—w=0 i=1,2. (3.4)
Using this result and adding (2.26) to (2.32), we derive that
p1n = 0.
We can take the values we have just discovered and apply them to (2.28) and obtain
0.
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Since € is nonzero, it then follows from (2.25) that
0. (3.5)
Finally we deduce from (2.24), (2.31) and (2.32) that
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For simplicity, we here have set py,,4+1 = p1 and Do 41 = Pa. Solving equations (3.6)-(3.9),
we obtain
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Substituting these equations into (3.10) gives

_ K1 2BL 4T k127,+1,2E3,1f T fikp 10 Ff2k721+1,2 So. (3.11)
Fhiig T Wil Kipa T RaT Rnpabis Kaakas
We now prove that the equation (3.11) has only one positive solution.
Lemma 3.1. The equation (3.11) has only one positive solution.
Proof. Consider the function
fr)=r+ krln+1,2E?,1r ki+1,2E3,17” rflkrln+1,2 Tf2k7721+1,2 _ 5.

ki1t kmaror kst Raor Knpiiknas Kieikais
We can readily show that f is strictly increasing on [0, 00) and

f(0)=—5,<0, lim f(r)= oc.

r—00

So by the intermediate value theorem, there exist a unique 7 > 0 such that f(7) = 0 and
then the equation (3.11) has only one positive solution. O]

We now summarize these results in the following theorem.

Theorem 3.1. The system (2.25)-(2.34) has the following equilibrium state

5 = 0, (3.12)
py = 0, 1=12,j=1,---,morn, (3.13)
Tflkrln+12
Pimtr = 71 (3.14)
K11 Fmi s
_ 7 foks,
Poni1 = gt (3.15)

2 7
kn+1,1kn+1,3
1 0
K1 3BT
1 T o
kmi1s + Kpgr ol

2 0
kn+1,3E2 1

1 = —, (3.17)
kit ko of

& = B, i=12j=2,-- ,morn, (3.18)

w; = EY —éq, i=1,2, (3.19)

where the equilibrium T is the positive real solution of (3.11). Then the feedback inhibition
rates are given by

ol €11P1 9
A — L T 21
w (B — é21) (3:21)
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Figure 3: Inhibition rates k.. and k2 exhibit a nonlinearly increasing relation to their end-

product levels.

The feedback inhibition rates k). and k2 are plotted against the end-prodcut levels py
and p» in Figure 3. This figure shows that the rates increase as respective end-product level
increases and they are not linearly related to the level.

Note that the feedback inhibition rates kL., k2, are independent of the intermediate metabo-
lites, enzymes and reaction constants. Also the inhibition rate of one branch depends on
the other branch through the intermediate metabolite R, which serves as a communicator

between two branches.

4 Linear Stability

To show that the feedback inhibition rates k.., k% determined mathematically through (3.20)
and (3.21) are effective, we need to prove that the equilibrium (3.12)-(3.19) of the system
(2.25)-(2.34) is asymptotically stable. Since we could not construct a Lyapunov function to
address the global stability of the system, we consider here its local linear stability.

We note that all quantities like p;; and e;; are nonnegative in accord with biological
situations.

The linearized system of the nonlinear system (2.25)-(2.34) at the equilibrium (3.12)-

(3.19) is given by

CCZZ_); = J2m+2n+5x7 (41)
where
x = (21, ,$2m+2n+5)T
= (S, €1,1,P1,1,€1,2,P1,2, " " 5 €1,m> P1,m> P1,m+1, W1, €21,€22,P22, ** , €2n, P2.n5 P1,n+1, W2, T)T
— (5,€1,1,P1.15€1,2, D12, * » €1ms Dl Dlomt1, W1, €21, €2.2, D225 * * » €amy D2ny Plnt1, W, T)
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and Jo,,10,45 denotes the Jacobian matrix

991 B -/}
Ox1 0T2m+2n+5
Jomionts = : :
992m+2n+5 .. O992m42n45
ox1 ax2m+2n+5

at the equilibrium (3.12)-(3.19) with g; denoting the functions of the right hand side of the
system (2.25)-(2.34) corresponding to x;. For a situation where m = n = 2, Jacobian matrix
is equal to

[ —KVE — kY kS —k
0 _k%,z - ki:& - k?l),lﬁl - k:zl,,zf _k%,léﬂ
—k3 kg — kiy —kiyi — k3 — ki éa
0 0 0
0 —ki 0
0 —k3 11 0
Jiz = 0 kg D1 + k3 oT 0
0 0 —k3 | €as
0 0 0
0 0 0
0 0 0
0 0 0
i 0 —ky T 0
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kY K K

0 0 —k3 1611
k9 —KS —K
MKy —kbED, 0
My KL E, 0
—k3 0 —k3 111
0 0 k3 €11
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 k9 k9
kb, — kb4 S+ kL 0 0
~kl, K — k2, K
0 0 0
_k%,s 0 0
fi 0 0
—fi = k35 0 0
0 —kiy — kg — k3 D2 — k3,7 0
0 0 K, — K,
0 2y 2,
0 _kg,ﬂ% —k:§73
0 k3 1Ps + k3 o7 0
Ly K 0
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— K — kY 0 —k3
0 0 0 —k39€11
KK k2, kg
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 k:é’2 €11 ,
0 _k§,1é21 _k%,z - k’is + fo+ k%,?, _k?%,zé.?l
—kg,lEgQ 0 0 0
—k3 By, 0 —ki s 0
0 —k3 | €as fo 0
0 k3 1 €a1 —f2— k33 k3 5821
0 0 k3 5 —kl3961; — k3,62 |

where E = E° + E} | + E) | + 7 4 p1 + P2 — €11 — €21 — S? > 0 because of (2.24).

Theorem 4.1. (i) For m,n < 2, the characteristic polynomials of the Jacobian matriz
Jomionts are equal to

det(AI — Jomionss) = Py(A\) X Po(N) x (A + (kS + kS + KVE)X + KSKVE)

3

X [/\2 + (k?zlz + kil,?; + E?,ikil,l))‘ + E?zkzllkzlii}

2

(2

—.

I
[\

[N+ (k) + kls + B9 k2N + E9 k2 k) (4.2)

where
Pc(/\) = N+ (k%?, + k%g + kiz + ki:& + kiléll + kiléﬂ) A2
(ki ye11ki 5 + kT gkt o + kT @1k g + k7 gk @0 + K ki en
FRT ok o + KT gkt g + KT oY (@01 + kT @anky 5 + KT ok 5)A
k3 gk 1earky o + KT gkt @11k g + kT okt jE11ky 5 + kT gk €1y 5, (4.3)
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Py(N) = N (kg + ko P+ fr + kT + kg g + eatkd, + kg en
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+é2léllk§,1k%,1 + 521]{%72]32‘%%’1 + flkg,ﬂ: + kg,:),fl + f2k5,3 + fofi + kg,sk%,:%
teon Pk k3 o + Ky oTky €11 + Ky p11kyy P+ €11k 1 k3 57N
+(Ea1811ky 5k sk | + €11 foky Tk
+éllf2k%,3k5,l + é21k§,2flp2dk§,1 + kgzké,lfk%gélléll
+eneiiks ky k3 oF + €a1€11k3 1 kg Thy 5 + €11 Pk PikS ks
+en Plkyy foky o + €1 Py k3 o fo + €1611Kk3 ok sk | + €11611k3 sk 1k
+enenkssks kyy + €61 Plky k3 ky o + €nky  Pik3 Thy 5 + €801k 5 f1k3
+é11f2f1k’%,2 + 521kg,:sk%gk%,lfk;,géméll + éQlk/g,gk;zkil + éllk%,iiké,lpgkg,l
+enieiiks oky 1 PSkyy + €1k o foft + €11k k3 077k o + Ev1enky Pk (k3
+e11 fiks )Tk 2,2 + x5 k3 5Tk 5 + En1€11801 kS 1 k12, 2891811 4 €11k gkiy 1 K3 5T
e ky sk o sk | + €11 Pl ky k3 sk o + €811 f1k3 kg o + €11k gk ks
+eo1ks 3 f1ks 1 + €11821E21k3 o k5 1Ky g + €181k ok 5k + Ea1k3 PikS TS
+E11811faky 1Ky o + €181 Plky 1 k3 ok3 | + Ea1k gk k3 T + Ea1k3 y Pok Tk |
Fenks s fiks o + e f1Ps ks kY o + E21811k5 5k (ks o + €01k o foT ks
Fe11ks sky Thy o + E21€11k3 o fak g + €11 Pk 1 k3 5Tk o + E01k3 5 foks 5
+E91 f1k3 1 K3 T + €1 Pk 1 K3 5k3 1) A
+e11821801k5 ok 5k kg ) + exerky gk Ky K T
+k3 ok3 1y Tk 811811801 + Ea1811K5 gk (kb Th 5 + €611k gk3 ok Poks
+enenkoky  Piky Thy o + En1en@a ki sk ky k) 5 + Enenks s fik3 1 ky
k3 ok Ky 1Tk 0811821821 + E21811K3 o ok skyy + Eane11kd 1Ky 1 k3 077k
+é2léllkg,3k%,3kg,1ki1 + éZléllflkg,lkg,ka%,Q + é2léllpflk%,1kg,3k§,1k%,2

= = 2 1.1 =7.1 = = dr.l 1.2 1.2 =711

(ii) For m,n < 2, the real parts of all eigenvalues of the Jacobian matriz Jom, onys are
negative. Hence the system (2.25)-(2.34) is locally exponentially stable.

Proof. (i) The characteristic polynomial (4.2) is verified by using Maple software. The Maple
codes for this are available upon request.
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(ii) Since it is easy to see that all the quadratic polynomials have real negative roots, it
suffices to show that the real parts of the roots of the cubic and quartic polynomials (4.3)
and (4.4) are negative. These cubic and quartic equations are both solvable exactly, but the
size of their solutions are huge and it is difficult to tell whether their real parts are negative.
So we use Routh’s stability criterion [12].

All the symbolic computations below were done using the Maple software. The Maple
codes are available upon request.

The Routh’s array for the cubic polynomial is as follows:

)\3 . 1, as
A2 :oay, ag
)\1 . b1
)\0 L
where
a1 = kis+kig+ ki, + ki €11+ ki e + ks,

_ 12 gl 2 1.2 2 2 11 2 1.1 2 11 2 2 71
ay = kygkys+ kighi €1 + ki €a1ky g + K1 kg 3 + ki shy o + kT 1€o1ky
2 1 2 71 2 7.1 1 5 g1
+ki sky 1811 + k1 oky 1811 + kY ok o + Ky g e11kg 3,

12 12 = 11 2 12 = 11 2 71 = 11 2 11 = 11
as = k1,3]‘71,1€21k1,2 + k1,3k1,162lk1,3 + k1,3k1,1611k1,3 + k1,2k1,1€11k1,3=
a1G2 — ag
by = ——=
a1

= = (21{5%,3]‘331521]{5%,2 + 21{5%3]‘331521]{5%,3 + 21{5%3]‘3},1511[?%,3
"‘Qkizkiléllkis + Qkizki?)kiléﬂ + 2k%,3k%,2kiléll
kT gk @k o + 2K7 (@ark) oky 5 4 2K7 (€01 Ky okT o
+2k3 gkt jE11kT o 4 287 ki @11k o + i @11k sk,
+ki3k%,3ki3 + k%,?)ki?,ki,g + k%ﬂ“isk%:& + kiQkiZkii% + ki:akigkiléﬂ
kT gk kY eneo + K (KT jenenky o + kY Enky ok o + kY jEnky sk g
kT RS @k g+ K (KT kL en 4 K gk Ky enen + Kok oki jen
R oky kygenen + by ek gk g 4 kiR enenk g + 257 gk gkT
F2KT 5k gkt o 4 287 okt gkt o + 2k7 5k ok
+2k3 g7 1@k en + K @nky ok 11 + ki gk gki o
RT3k okt o + KT okT okt o + KT ok ok o + 2kT 1821 Ky 3R en
‘H{?izkiléllk%@éﬂ)/(ki:a + kis + kiQ + kiléll + k%gém + k%g)?

aszb; —ag x 0
cq = —— =as.

by

Since all terms in the above expressions are positive, the first column of Routh’s array is all
positive and then all the real part of the root of the cubic polynomial are negative.
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Routh’s array for the quratic polynomial is given by

Ml ag, ay
Aoar, ag

)\2 : bl, bg
)\1 . C1, Cg
)\0 . dl, d2

where

ay = 521]6%,1 + @71511 + kig + fo+ k:;:,) + fi
+Enkdy + Ky gfur + ko + Ko7 + Ky P+ Pk

ay = kyyPiks, + ko fi + ank3ofo + [k o + foTky s + en foky
Py k5 + k30T ka o + Ky ey + Earky sk ) 4 kygky 5T + ek sky
FPky y fo + @ ik ) + Ky oka @nnen + kyo fren + @nenks ok ) + [Pk,
+e11k3 gk + €11 faky o + k5 5Thy o + €21k3 5k3 1 + €21k3 5k 5 + foks 5
kg gk g+ €1 Plky K3 o + fofu + Pilhg K3 o + @nenikd kg + Ky ks €01
Venky Paks y + Pk Thy p + €11k ki oF + ek, Paks y + Piky  Piks
a1 Pilky k3 ) + kg pfiiky Py + @ik k3 o7 + K o7k 0801 + k3 5Tky 511
Vg fi e Pk (kg + ek oky ) 4 Bk Ty, + €811k ky s,

az = ek sky ks +enen foky kay +enki s fiky s +enénky, PkS ks
Fenky ha, Pk ) + eneneaky ky kyo + a1kl frPyky, + exéinky ks ks
ok ky  Thy o + Ea1kg 5k k3 o + a1ky 5k, PakS ) + €1k k3 57Ky
o€k sk ko + K3 oka 1 Thy o811 + €11 Piky k) sk o + €181 f1k5 g
ok ky k3o + ks Piky Tk o + €21811K; 5k3 Ky o + E21801 Piky 1 k3 0K5
+eneakyy fiks, + €k sky ks + € foky shyy + €211k oky sk + €1k o foky
ook s ik, + eakdy fofi + ek, Pakd Thyy + k3 K3 o7k 081801 + E21801K3 5 ok
Ven Pk, Pk ky o + ea1 Piky k3 o fo + €viky Pk Thy o + enky k3 072k
en Piky  fokyy + 1 Piky k3 o7k o + €11k shy K oF + €1 fiks 1k o7 + €11 foky 1 7hy
g K ks 2801811 + 11018013 ok) gy + €218k oky  Po ks, + v fLPRkS ks
remen Piky k3 Ky + €1 Piky k3 5kd  + okl s forka g + K3 ks Ty penien
Fenky gy Thy o + e ikl ks o + ekl ok sky ) + €1 Plky k3, Piks

~ 29 192 -1 ~ 1 ~ ~ 192 71 71
+621k72,3k2,17"k272 + 611f2f1k2,2 + ellellk’z,skz,lkzz»
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ay = enennkyoky ks ko + o181y fok ok 1 Thy o + Enne11kd ok Poks Tk
+k§,2kg,lké,lfk%,zélléﬂéﬂ + éQléllk%ﬁflkg,lk%,Q + é2léllk§,3k5,3k§,1ki1
k3 k3 kg 1 Thy se11enear + Enen Plky k3 5k3 1 ky o + eaennkd k3 kg 1 7ks
ek gk K k2T + Er1enearkd ok kS kY o + EaenkE kh k2 70k
+emen Plky k3 k3 oTky 5 + €161 f1k2’1k272fk2’2 + 91611 k3 5 foks 5ky
+eneiiky sk ks Poks 4,
bija; = ajas —as

= 26y €11 ki gky k1o + 265 11 k3 1k Thloo 4+ 2€1 P] ky k3 Tk o + 2 €11 fik3 o7k
+291 &11 ki ok gk ) + 2801 P kg k3o P kS + 285, k5, f1k5 ) + 21 foky ks
+2en f2f1k%,2 +2 é%1k'g,3k’%,1k%,2 +2en k§,3flk2,2 +2exn kQszk%,g +2 é%lfzk%ﬂfl
+2éx k§,2f2f1 +2eén k%,:')k%,:sk%,l +2éy kg,e;flkg,l tek k;,:}kil
+2e91 K5 sky ks + 2 P33y fofi +2 Py kg k) sk s + 2 Py ki foky s + 2 Pg k3 1K) 5 fr
VPR P k2 + 2 PIKS Py fi + 2 PE RS Ceon kg + 2 PR P3RS, + PERE Pen ks
+PLRS PRy + PEURS e kb, + PYURE e kS,Q + P§2k§,1 fk%,z ko TPk 5P
hd o o0 k2 ) A 2 kL oThS sk s+ 2 kL oT fokd 5+ 2 kb, Ten k2 4 4+ 2k, e fa
+2 kb 72k 3k272 + koo T fien + 2k QZW 2182+ 2 kb, T2 e + kL, TRk e
Fhlo P PEES | 4+ ke k2T 4+ 2k " ey P o+ 2k e P k2,4
2811 P{ kg PS kS kg + 2801 k3o foTky + 2801 P kg ko fo + 2801 €11 ik kg
2811 kg PY kS Thy o + 20 P ks fokyo + 280 k3o 1P k) + 2 €] kg  PS kS ks
+2 801 E11 k3 kg1 K3 o + 221 k3 | PJ ky Tk 5 + 2 €91 €11 k3 5K3 1 k3
+285, P ky k3 ok221 + 2851 k3 o Py k3 17kl 00 + 2 k3 k3 oTky 5851 + 221 €11 k3 ok 1 P k3 4
+2én f1P§ k3 kYo + 280 €11 Pf k1 k201ky o + 2851 P{ ky k3 5k3 | + 2 k3 )k Tk 485
+2 k3 1 k3 oTk1 52801 €11 4 281 €11 k5 5k 1 kg g + 23 ok 1 Ths 4821 €11 + 211 €5, k5 ok 134
+2 89 ky 3k2 k3 o + 26 f1k2’1k272r +2en fzk%’l'fkiz +2é9 en k§,2f2k;,1
+2e11 ky 1k 0T kg + 2 €91 k3 5k \Thy o + 2 €11 kS gky Ty o + 2 €11 k1o 3k k3 T
+26é9 k2’3k2’2Pd k: L 2801 k3 k3 57 ky o + 2€1 kysky  PS kS 4 283 801 k3 kS 1Ky
+2 &5 P} k; 1k’§ o+ fofi? + K 3f1 + R A+ f22]€ + 2f2k§, k’l + f12P§ k‘Q + €21 k§,2f12
+h 227“+€21f1 k’21+k22f1 611+P52k‘§,1 f1+P52k§712k%7 k3 ? k3 5 + ky o R 1,
ks, Tk + a1 k2o fo? + PLEL fo? + en fokb o + En o2k, + fo2kL, + k?% 126§1k§,3

) 125%1f2 + ks 126?1]‘35,2 + ky 126%1@,3 + k;,12pzd2f2 + k;%712P1d2k + klag k2 ol

g kL g k2 4 kL, PERE A klan@in kb e k2 oKL+ kL, € k2og 4 Ky R fo
Fhyo B+ Ky Ekyy R T RSy Pk 4 K5 TRy, 4 11 K3y Ry + e kS5 Ky
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8 K35 Ky + kg Thiy + 2 PY k2 211 kb K3 o7 + 2 P k2, o1 T

+2 PY k3 en1 Ky gky o + 2 P k3811 k3 gk ) + 2 P kS 1801 k3 o fo + 2 P K3 Pl Ky fo

+2 PY kS ik o + 2 P k3 k3 o7k o + 2 P3 k3 €11 foks o + 2 P§ k3 en foks

+2 P kglk:%gkgj +2 P§ kglfsz Y Qer;Q +2PJ k3, P k) k3

P KRS e k27 4+ 2 PR EE e P;f kb + 2 PERS Pear en Ky + 2 PE K2 K2 7KL e

12 PE kS Cen e kb, + 2 PR KR PEk k27 4+ 2k o7 PL KL fo + 2 kb yren k1o gk2,

+2 k3 oTky 3PS K3y + 2 ky oTky €11 ky 5 + 2 ky o7 PY kg1 k3 5 + 2 Ky 501 k3 ok

V2 kb greo PEEL K2, + 2k, Fear en k2, + 2kl gorén PLEL K2, + 2 kyoT P ky PS kS

2 kb, Ten PEEZ 4 klog? e ki Pl + 2k P PE kL K2, + k2 3k: S fokd st Rk

232fl + kl 125%135 k%,l + k%fé?z €21 k 1+ kl 2,1 enkl 2f + k 2,1 611621 k222

+2 k;,12é%1k%,2pf + 2]{55,1}7;1 k%,zakf‘%,?) + Qk' Pd f2k%3 2,1 Pzd €11 k?2,3 k2,1 Pzdzém kg,l

k) P e Ky + kL P PIES R, Pd2k22 e + ks P PERS 7 4 ko 8 80 K2
k?% 226%1162 ol + k%,2272 Pd k'2 k?% 226%1@ 1Pd + kz 2 e k/’2 112 k2 2 7"2]‘52 2621

+2 k3 0Tk sk 5 + 2 k3 ffk;ggfl k2, e fo + 2K2, e fi + 2 K272 ki

+2 k2 227763116 + 2 k2 2 fégl k‘g st k‘272 7289, kQ 1+ k24 52 2T k2 9€11

N S frk; o ek PR e kS T PIEL, + &k e kL,

+521k21 en k? 1+ 621k2 2 7"/{2 2t 3%1’“%2 P k2,1 621k§,22pg k2,1 + 621k272 en k2,1

+2 flen k2,kdy + 2k Cen e PERZ + 2kL e e PR, + 2kL "en PEPEZ,

+2kL Jen PR T 4 2k, PY k;gkﬁz?’ +2k151 P] e kysky | + 2Ky, Pf ky s PS kS

2 kb P e k2 ok s+ kL P kL gren + kb o e k2 e + 2kd 0811 a1 k2o fo

+2 k511 1 k3 o f1 + 2 kg 0811 E31k5 k5 1 + Ky 0811 €01 k3 ok 5 + 2Ky 5811 €1 Py k1 k3

+2k} o811 €21 k3 o PS k3 + 2 k3 083,91 k3 ok + 2 k3 yTenn k3 gk + 2 k3 yTe11 k3 gky

+2 k2 2r621 k2 4k3, + 2 k2,7 Py k; (K342 k2 ) e PLEL, + kgff% PakZ,

+2k3 2 7“321 €11 kz , + P k2,1k2,3 621k2,1 k2,3 + e21k§,12fl é21k2,1 kls3+ 631k§,12k§,2

"'621]{3; 22f2 + 621 2 2 fl 7%1]{35,22]53,1 + églk;;ké,:& +2fi k22,3k%,3 +2 f1f2k%,3

2 fokZ o fi 4 Ea1 k2 o811 K2kl + e k3, TR jen + 2 fren kK2 0T + 2 fukE 7KL em

+2 f1E0 k2517ky o + 2 f1P{ k) fo + 2 f1k3 5Tk 5 + 2 frEn fokyy + 2 fiky 5k oT

+2 fiea1 kysks 1 + 2 fifaTkyo + 2 fikyoky €51 + 2 fiky s PS kS + fiky €11 kg

+2 f1k2 27”2]{5% o+ 2 flPd k; 1k§3 + 2 fiex k k%,s + 2 faénr k%,gk;,z + 2 faen kg,Sk%,l

+2 fofiks 50T + f2€21 k3 3k2 1+ 2 faks 3Tk12 2+ 2 faea f1]€§ 1 +2 f?k’%,:’ﬁ;z?7 + 2 faen ké,3k§,1

+2 fof31 k3 ok | + 2 fok3 4T ky o 4 2 fo P k11K 5 + 2 k) 4811 k3 sky o + 2 Ky 511 foky

+k273k2,2f1€11 +2 k2,3k2,2k% 185+ k2,3€21 k272f2 + 2 k2,3e21 k2,2fl +2 k%Ségle,Qk%,l

+2 kg,?,é?l kg,zk%,:a +2 fién k?,lpg k%,l + 2 fiéa1 P} k%,lk%,l + 2 fréa1 €11 k2,1k271

+2 freo P{ky kS o +2 fLP] klo1PS k3, Y9f1k] 57 k1o 80 + 2 fLP§ k3 Tk,



+2 fr891 €11 k3 okd 1 + 2 fiky o811k P+ 2 [1 P ky k3 oF + 2 fofry k1K o7
+2 fobo1 k3 \Thy o + falor k31 k3 o + 2 foba1 P{ ky k3, +2 faeey €11 k3 1k

+2 fokd yTky o811 + 2 fobor €11 k221ky 1 4 2 foP{ k1 k20T + 2 ky 4891 €11 k3 1K 4
+2 kg 5k 5Tk o811 + 2 kg 5811 PY k3 Ky o + kg gk 0811 kg PY + 2 k3 3k3 5T ky 0821

+2 k3 4891 P{ ky k3 o + K3 5821 k3 o PS k31 + 2 k3 5891 €11 k3 5k5 1 > 0, (4.5)
by = G194 = a4 > O, (46)
a1
biasz — aib
e = 0103 — 102 0, (4.7)
by
bycy — by % 0
d = 2T, — > 0. (4.8)
C1

Because the expression of ¢; is over 200 pages long, it is impractical to include it here. Using
the Maple software, we checked a number of times and found that all terms in the expression
are positive. Therefore the first column of Routh’s array is all positive and then all the real
parts of the roots of the quartic polynomial are negative. O

Although we could not prove that the characteristic polynomial (4.2) is true for generic
m and n, we guess so since we verified it for a number of combinations of m and n with
m,n < 3 using the Maple software. For large m and n, it takes long long time (weeks or
months) for the Maple to compute the polynomial.

5 Numerical Examples and Applications

We now further numerically test that the feedback inhibition rates k. and k2, determined

mathematically through (3.20) and (3.21) are working effectively in regulating products. We
first use random data with no biological relevance. So we take the initial enzyme E° = 400,
all the other subsequent initial enzymes Egj = 1000, the initial substrate S° = 50, the
reaction constants k% = [0.000002, 0.0000045, 0.000023],

0.00001 0.03 0.05
0.000003  0.02 0.03
0.0006 0.005 0.007
0.00004 0.002 0.008
k' = 0.000013 0.0012 0.005
0.000026  0.00345 0.0057
0.000201  0.0803  0.00125
0.000013  0.0012  0.005
0.0000043 0.0302  0.00013
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Figure 4: Regulation of products by competitive feedback inhibition.

0.00001 0.03 0.05
0.000003 0.02 0.03
0.0006 0.005 0.007

0.00004 0.002 0.008
0.000013 0.0012 0.005
0.000026 0.00345  0.0057
0.000201 0.0803 0.00125
0.000013 0.0012 0.005
0.0000043  0.00302  0.0013
0.000036 0.0065 0.0097
0.0000021  0.00603  0.00805
0.000026 0.00345  0.0057
0.00000467 0.000572 0.05763
0.0456 0.0575 0.0000397

Using the ode45 from MATLAB, we numerically solve the system (2.25)-(2.34) and plot
these numerical solutions in Figure 4. This figure clearly indicates that the end-products
are regulated to the given levels 10 and 20, respectively. The feedback inhibition causes the
regulatory enzymes E;; and Es; to stop producing excess amounts of the products, which
is how the products converge to the desired concentrations.

We next consider a well known example of regulatory feedback inhibition which oc-
curs in the Purine Metabolism, specifically the biosynthesis of adenosine 5’-monophosphate
(AMP) and guanosine 5’-monophosphate (GMP) [21, 24]. In this metabolic pathway inosine
monophosphate (IMP) is the initial metabolite and the regulatory enzymes A; and G; are
the first branched steps that compete for IMP as seen in Figure 1.

The Purine Biosynthesis metabolic pathway serves as crucial role in DNA and RNA
synthesis, intermediates in biosynthetic reactions, energy storage and metabolic regulators.
Enzymes pertaining purine biosynthetic pathways have been linked to noteworthy disorders
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Figure 5: Regulation of IMP and AMP to desire product levels

such as Down’s syndrome, Lesh-Nyhan syndrome[20], immunodeficiencies [11] and cancer[20].
For simplification purposes, we have excluded secondary regulatory controls such as ATP,
GDP and GTP inhibitive concentrations[24], as well as the other mixed inhibitions within
the metabolic network. We assume that the system is in appropriate ph, temperature,
and other conditions so that all enzyme activity can be depicted through their respective
Michaelis-Menten Constants k‘fm shown in Figure 1, which are defined by

7 7
Kio+ K
'L’ ]
ki

k= where i = 1,2 and j = 1..m or n (5.1)
Although Michaelis-Menten Constants k:inj are available from experiments, the reaction con-
stants k%o, k%5, k%, are usually difficult to be determined in experiments. So we randomly
generate the constants k7, k74 and then get k7, through the equation (5.1). With these
reaction constants and the inhibition rates determined mathematically through (3.20) and
(3.21), we use the MATLAB to numerically solve the system (2.25)-(2.34) again. Figure 5
shows that the products are successfully regulated to the given levels 400umol for GMP and
320pumol for AMP, respectively.

The numeric analysis of these simplified metabolic examples reveals that the feedback
inhibition rates determined mathematically through (3.20) and (3.21) can be utilized for
better understanding of competitive feedback inhibition of products in cell metabolism.
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