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Abstract

For a given nonzero bounded linear operator A on a Banach space X, we show that if A or A∗ has an
eigenvalue then, except when the dimension of X is equal to two and the trace of A is zero, there exists
a bounded linear operator B on X such that (i) AB + BA is of rank one, and (ii) I + f (A)B is invertible
for every function f analytic in a neighborhood of the spectrum of A. This result was motivated by the
operator method used by Carl et al. [H. Aden, B. Carl, On realizations of solutions of the KdV equation
by determinants on operator ideals, J. Math. Phys. 37 (1996) 1833–1857; H. Blohm, Solution of nonlinear
equations by trace methods, Nonlinearity 13 (2000) 1925–1964; B. Carl, C. Schiebold, Nonlinear equations
in soliton physics and operator ideals, Nonlinearity 12 (1999) 333–364; B. Carl, S.-Z. Huang, On realizations
of solutions of the KdV equation by the C0-semigroup method, Amer. J. Math. 122 (2000) 403–438; S.-Z.
Huang, An operator method for finding exact solutions to vector Korteweg–de Vries equations, J. Math.
Phys. 44 (2003) 1357–1388] to solve nonlinear partial differential equations such as the Korteweg–deVries
(KdV), modified KdV, and Kadomtsev–Petviashvili equations.
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1. Introduction

In [1], Aden and Carl used a method known as operator method to find solutions to the
scalar KdV equation vt = vxxx + 3v2

x . A similar method was also used by Blohm in [2], Carl
and Schiebold in [3], Carl and Huang in [4], and Huang in [5] to solve some other PDEs
such as the modified KdV equation, Kadomtsev–Petviashvili equation, and the sine-Gordon
equation. The main idea behind the operator method can be described as follows. Given a
nonlinear PDE and a specific scalar solution to the equation, the first step in finding other
solutions is to translate the given nonlinear equation to an operator equation. Using the specific
scalar solution as an aid, one then searches for a family of operator solutions to the operator
equation. Having obtained the operator solutions, the second step is to transfer the operator-
valued solutions into scalar solutions by using a suitable scalarization technique. The first step
is the most important one in the above operator method. In order to accomplish this step,
one often needs to know the following: given an operator A on the complex sequence space
�2 consisting of square summable sequences, is it possible to find an operator B on �2 such
that

1. AB + BA is of rank one, and
2. the operator I + L is invertible, where L := ep(A)B, for a polynomial p. (The expression

of L usually appears in the literature in the form exP (A)+tQ(A)B for polynomials P and Q
and real numbers x and t .)

In this paper, we investigate the above question for a bounded linear operator on a Banach
space. As a matter of fact, if a bounded linear operator A on a Banach space X (except when the
dimension of X is two and the trace A is zero) has an eigenvalue, then there exists a bounded
linear operator B on X such that (i) AB + BA is of rank one, and (ii) I + f (A)B is invertible
for every function f analytic in a neighborhood of the spectrum of A.

We now fix some notation and terminology. The linear span of a subset S of a vector space is
denotes by span(S). If T is a bounded operator on a Banach space, then T ∗ denotes the adjoint
of T . That is, T ∗ is the linear operator defined on the dual space X′ by (T ∗φ)(x) = φ(T x) for
each x ∈ X and φ ∈ X′. A linear operator T : E → F , where E and F are Banach spaces, is
said to be of rank one if the dimension of the range of T is one. It is straightforward to verify
that a bounded operator T is of rank one if and only if there exists φ ∈ E′ (dual of E) and y ∈ F
such that T = φ ⊗ y, where (φ ⊗ y)x := φ(x)y, for every x ∈ E. It is obvious that the map
(φ, x) �→ φ ⊗ x is a bilinear map. It is also easy to verify that for every x, y ∈ E; φ, ψ ∈ E′ and
a bounded operator T on E, we have

(a) T · φ ⊗ x = φ ⊗ T x,
(b) φ ⊗ x · T = T ∗φ ⊗ x, in particular,
(c) (φ ⊗ x) · (ψ ⊗ y) = ψ ⊗ φ(y)x.

2. Main results

Theorem 2.1. LetAbe a nonzero bounded linear operator on a Banach spaceX,where dim(X) �
3. If the point spectrum of A or of A∗ is nonempty, then there exists a bounded linear operator B
such that



790 R.V. Garimella et al. / Linear Algebra and its Applications 418 (2006) 788–792

(i) AB + BA is of rank one, and
(ii) I + f (A)B is invertible for every function f, which is analytic in a neighborhood of the

spectrum of A.

Remark 1. If X is a finite dimensional space then the spectrum of any linear operator on X is
precisely the point spectrum and is obviously nonempty.

Remark 2. The second condition in the above theorem is equivalent to f (A)B being a quasinil-
potent operator on X.

Proof. First, assume that the point spectrum of A is nonempty. Let v be an eigenvector of A
corresponding to an eigenvalue λ. We divide the proof into two cases.

Case I. Suppose that Range(A+ λI) � span{v}. By the Hahn–Banach Theorem there exists
a bounded linear functional φ on X such that φ(v) = 0 but φ(Range(A+ λI)) /= {0}. The latter
inequality implies that (A∗ + λI)φ /= 0 (by [6, Theorem 4.12] or [7, III; Eq. (3.2)]). We claim
that B := φ ⊗ v satisfies conditions (i) and (ii).

Indeed,

AB + BA= A(φ ⊗ v)+ (φ ⊗ v)A

= φ ⊗ Av + A∗φ ⊗ v

= φ ⊗ λv + A∗φ ⊗ v

= (A∗ + λI)φ ⊗ v.

This proves that AB + BA is of rank one.
Let f be an analytic function on an open set containing the spectrum of A. It follows that

f (z) = ∑∞
n=0

f (n)(λ)
n! (z− λ)n for every z in a neighborhood of λ. Then

f (A)v =
∞∑
n=0

f (n)(λ)

n! (A− λI)n(v) = f (λ)v

and

f (A)B = f (A)(φ ⊗ v)

= φ ⊗ f (A)v

= φ ⊗ f (λ)v.

Since φ(v) = 0, it is obvious that (f (A)B)2 = 0. Hence I + f (A)B is invertible. This proves
the claim.

Case II. Range(A+ λI) ⊆ span{v}. We consider two subcases according to whether λ is zero
or not.

If λ /= 0, we note that Range(A+ λI) /= {0} since (A+ λI)v = 2λv. Therefore Range(A+
λI) = span{v}, i.e., A+ λI has rank one, hence Null(A+ λI) is a subspace of codimension
1. This implies that not only is −λ an eigenvalue of A but the corresponding eigenspace has
dimension at least two. We choose an eigenvector w corresponding to the eigenvalue −λ. Since
Null(A+ λI) ⊆ Range(A− λI), we have that dim(Range(A− λI)) � 2, and so Range(A−
λI) � span{w}. The proof now proceeds as in Case I with B = ψ ⊗ w, for a linear functional ψ
vanishing on w but not on Range(A− λI).
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If λ = 0, then we have Range(A) ⊆ span{v} and since A /= 0, we have Range(A) = span{v}.
Thus A = φ ⊗ v for some φ ∈ X′. Since Av = 0, we have φ(v) = 0. Since dimX � 3, we have
that dim(Null(φ)) � 2. Let x be a vector in Null(φ) that is linearly independent of v. By the Hahn–
Banach Theorem, there exists a linear functional ψ ∈ X′ such that ψ(v) = 1 and ψ(x) = 0. We
will show that B := ψ ⊗ x satisfies conditions (i) and (ii).

We have AB = 0 since φ(x) = 0 and BA = φ ⊗ x since ψ(v) = 1. Therefore AB + BA =
φ ⊗ x, a rank one operator.

Assume that f is analytic in a neighborhood of {0}, the spectrum ofA. SinceA2 = 0, we have
f (A) = f (0)I + f ′(0)A and hence f (A)B = f (0)B + f ′(0)AB = f (0)B which is nilpotent.
Thus I + f (A)B is invertible. This ends the proof under the assumption that the point spectrum
of A is nonempty.

Now assume that the point spectrum of A∗ is nonempty and take an eigenvector φ ∈ X′
corresponding to an eigenvalue λ. We shall make use of the weak∗ topology on X′. Recall that
this is a locally convex topology and that every weak∗-continuous linear functional on X′ is of
the form ψ �→ ψ(x) for some x ∈ X (see [6, Chapter 4]). We denote this linear functional on
X′ by x̂. If we assume, as in case I above, that Range(A∗ + λI) � span{φ} then we may apply
the Hahn–Banach Theorem for locally convex spaces ([6, Theorem 3.4]) to find a vector x ∈ X
such that x̂(φ) = φ(x) = 0 but x̂(Range(A∗ + λI)) /= 0. Again, by ([6, Theorem 4.12]) or ([7,
III; Eq. (3.3)]), we have (A+ λI)x /= 0. We take B = ψ ⊗ x. The proof now proceeds exactly
as before.

When Range(A∗ + λI) ⊆ span{φ}, then as in case (II) above, we may either replace λ by −λ
reducing to case (I) again or conclude that A∗ has rank one. In the latter case, it is well-known,
that A itself is of rank one; hence the conclusion follows from the first part of the proof. �

Remark 3. The proof for the case whenA is rank one nilpotent may be illustrated by the following
matrix construction. Let n � 3 and let A be an n× n matrix which is nilpotent of rank one.
Without loss of generality, we may assume that A has 1 in the first row and second column and
zeros elsewhere. Let B be the n× nmatrix which has 1 in the last row and first column and zeros
elsewhere. Clearly AB = 0, B2 = 0, and BA is of rank one. If f is analytic in a neighborhood
of zero, then f (A)B = (f (0)I + f ′(0)A)B = f (0)B which is nilpotent. Hence I + f (A)B is
invertible.

Next we consider the case when X is of dimension 2. We will show that, when the trace of
A is nonzero, there exists an operator B satisfying the conclusion of Theorem 2.1. When A has
zero trace, we show that no matrix B satisfies conditions (i) and (ii) even if in condition (ii) we
consider only the restricted class of analytic functions (exponentials of polynomials) that appear in
solutions to the KdV equation, i.e., condition (2) in Section 1. As this class of functions is invariant
under multiplications by nonzero complex numbers, we conclude as before that condition (2) is
equivalent to the quasi-nilpotentce of ep(A)B.

Theorem 2.2. Let A be a nonzero 2 × 2 complex matrix. Then there exists a matrix B satisfying
conditions (i) and (ii) of Theorem 2.1 if and only if trace(A) /= 0.

Proof. First assume that trace(A) /= 0. Then A has a nonzero eigenvalue λ. Let v be a corre-
sponding eigenvector. Since the trace of A is not zero, −λ is not an eigenvalue, so A+ λI is
surjective and so Range(A+ λI) � span{v}. The proof now proceeds as the proof of Theorem
2.1 (Case I).
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Next assume that trace(A) = 0. We consider two cases according to whether A has nonzero
eigenvalues or not.

If zero is the only eigenvalue of A, then without loss of generality, we may assume that

A =
[

0 1
0 0

]
. Let f be a function analytic in a neighborhood of zero. Since A2 = 0 it follows

that f (A) = f (0)I + f ′(0)A. In particular, ecA = I + cA =
[

1 c

0 1

]
for every c ∈ C. If B = [bij ]

satisfies condition (ii) for these exponentials, then ecAB is nilpotent for every c. But

ecAB =
[
b11 + cb21 b12 + cb22

b21 b22

]
.

This matrix must then have zero trace and determinant for every complex number c. It is straightfor-
ward to conclude that b11 = b21 = b22 = 0. But then we would haveAB = BA = 0 contradicting
condition (i).

If A has a nonzero eigenvalue and zero trace, then we may assume, with no loss of generality,

that A =
[
λ 0
0 −λ

]
where λ /= 0. For every nonzero complex numbers α and γ , there exists a

polynomialp such thatDαγ :=
[
α 0
0 γ

]
= ep(A). Indeed using Lagrange interpolation polynomials,

one can find a polynomial p that satisfies p(λ) = logα and p(−λ) = log γ where log is a branch
of the logarithm. If condition (ii) is satisfied for a matrix B = [bij ] and every f which is an

exponential of a polynomial, then we must have thatDαγB nilpotent. That is
[
αb11 αb12
γ b21 γ b22

]
has zero

trace and determinant for every nonzero α and γ . This easily implies that b11 = b22 = 0 and that
b12 or b21 is also zero. But then AB + BA = 0 contradicting condition (i). �
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