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1. Introduction

Cross-validation has a rich history starting with ordinary cross-validation (Stone, 1974;
Geisser, 1975). The original method works by withholding a single data point at a time
while using the rest of the data to predict the withheld response. In the context of model
selection, the model with the smallest cross-validated squared error is then declared to be
the best one. Ordinary cross-validation is not consistent for model selection, but v-fold
cross-validation addresses this issue by randomly partitioning the data into training and
test sets where models are fit using training sets and assessed using test sets. Both of these
methods assume independent errors.

Subsequent papers extended cross-validation for correlated data. One known as h-block
cross-validation (Burman et al., 1994) did so by withholding blocks of data when estimating
parameters and using the full dataset for model assessment. Racine (2000) combined h-
block and v-fold cross-validation to arrive at a consistent method, hv-block cross-validation.
Hart & Yi (1998) proposed one-sided cross-validation, which omits the data either to the
left or right of the point of estimation, including the point, and then assesses squared
error performance. While initially intended for independent errors, Hart & Lee (2005)
demonstrated that the method is robust in the presence of low to moderately correlated
errors. Finally, Carmack et al. (2009) proposed a method similar to h-block cross-validation
known as far casting cross-validation (FCCV). Their method uses the full dataset to esti-
mate model parameters while omitting certain neighbors for model assessment purposes.

Craven & Wahba (1979) proposed a single-pass consistent method for independent data
known as generalized cross-validation (GCV). Their ingenious use of degrees of freedom
makes this possible and is a concept that we extend to correlated data. We motivate the
extension, generalized correlated cross-validation (GCCV), from a nonparametric perspec-
tive, but conclude with some interesting connections to a parametric setting.

2. Theoretical Foundation of Cross-Validation

Suppose yi = f(xi) + εi, i = 1, . . . , n, where f(·) is a function, and εi is stochastic with
E[εi] = 0, Var[εi] = σ2 < ∞, and n × n covariance matrix given by (Σ)ij = σ2(C)ij =
σ2cor(εi, εj) = σ2rij , C 6= J , (J)ij = 1 ∀ i, j. As will be seen, the last condition that C 6= J

is necessary to avoid a degenerate criteria. We are interested in finding f̂(·) to estimate

f(·), which we assume takes the form of a linear smoother. That is, f̂(x) =
∑n

i=1wiyi,
where the weights, w1, . . . , wn, are a function of x and a vector of tuning parameters, θ,
with

∑n
i=1wi = 1. Many cross-validation techniques are commonly used to estimate such

tuning parameters by

θ̂ = argmin
θ

CV (θ) =
1

n

n∑

k=1

(
f̂cv (xk | θ)− yk

)2
,
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where θ̂ is the vector of tuning parameters that minimizes the cross-validation error surface
(assuming a unique minimum exists) and f̂cv(xk|θ) is estimated on some portion of the

data, which usually excludes (xk, yk) and possibly other data points. The final fit, f̂(·|θ̂),

is then given by using θ̂ in conjunction with the full dataset. In the interest of compact
notation, f̂cv and f̂ ’s dependency on θ will be omitted henceforth. Carmack et al. (2009)
developed a cross-validation method that specifically deals with correlated errors. They
derive the following expression for a single term in the CV(·) function.

E

[(
f̂cv (xk)− yk

)2]
= E

[(
f̂ (xk)− f (xk)

)2]
+ σ2 −Var

[
f̂ (xk)

]
+ Var

[
f̂cv (xk)

]

+ E
[
f̂cv (xk)− f̂ (xk)

] (
E
[
f̂cv (xk) + f̂ (xk)

]
− 2f (xk)

)
− 2Cov

[
f̂cv (xk) , yk

]
, (1)

where f̂cv(xk) is the hold-out estimate of f(xk), while f̂(xk) is the estimate of f(xk) using

all the data. If one allows f̂cv(·) = f̂(·), as is the case for GCV, this expression simplifies
to

E

[(
f̂ (xk)− yk

)2]
= E

[(
f̂ (xk)− f (xk)

)2]
+ σ2 − 2Cov

[
f̂ (xk) , yk

]
, (2)

which shows that the expectation of a single cross-validation term is the true squared error
(a desirable property) along with the other two terms. Since σ2 is a constant, it plays no
role in minimizing the cross-validation error curve in expectation. However, the covariance
term turns out to be crucial. Its role has been well recognized (Hastie et al., 2009). This is
the primary reason that ordinary cross-validation performs well in independent data since
the covariance term is identically zero in that case for (1). In such cases, GCV successfully
accommodates the shift from (1) to (2) by penalizing the fit for the covariance term using
a particular definition for residual degrees of freedom. However, once data are correlated,
withholding (xk, yk) to estimate f(xk) is no longer sufficient to eliminate the covariance

between the estimate, f̂cv(xk), and the data in ordinary cross-validation. The same is true

of GCV since it only accounts for the covariance between f̂(xk) and yk under independence.
Further expansion of (2) reveals how to properly handle the correlated case, specifically
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E

[(
f̂ (xk)− yk

)2]
= E

[(
f̂ (xk)− f (xk)

)2]
+ σ2 − 2Cov

[
f̂ (xk) , yk

]

=

(
n∑

i=1

wif (xi)− f (xk)

)2

+ Var
[
f̂ (xk)

]
+ σ2 − 2Cov

[
f̂ (xk) , yk

]

=

(
n∑

i=1

wif (xi)− f (xk)

)2

+ σ2 +

n∑

i=1

n∑

j=1

wiwjσij − 2

n∑

i=1

wiσik

=

(
n∑

i=1

wif (xi)− f (xk)

)2

+ σ2


1 +

n∑

i=1

n∑

j=1

wiwjrij − 2
n∑

i=1

wirik


 .

Letting f̂(x) = Sy, where (S)ij = wij , y
′ = [y1, . . . , yn], µk =

∑n
i=1wkif(xi)− f(xk), and

Rk` = rk` +
∑n

i=1

∑n
j=1wkiw`jrij −

∑n
i=1wkir`i −

∑n
i=1w`irki, one can now show that

E

[
n∑

k=1

(
f̂ (xk)− yk

)2
]

=
n∑

k=1

µ2k + σ2
n∑

k=1

Rkk

=
n∑

k=1

µ2k + σ2tr
[
C + SCS′ − 2SC

]

=
n∑

k−1
µ2k + σ2tr [V ] , (3)

where V = C + SCS′ − SC − CS′. Provided that C = I and the smoother matrix S is
symmetric and idempotent, as is the case for many linear fitting techniques, the trace term
reduces to n− tr[S], which is proportional to the square root of the familiar denominator
in GCV.

Assuming that the third and fourth moments exist, the variance is given by

Var

[
n∑

k=1

(
f̂ (xk)− yk

)2
]

=

n∑

k=1

n∑

l=1

Cov

[(
f̂ (xk)− yk

)2
,
(
f̂ (xl)− yl

)2]
,
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where

Cov

[(
f̂ (xk)− yk

)2
,
(
f̂ (xl)− yl

)2]
= 4σ2µkµlRkl

+ 2µkE

[(
f̂ (xk)− yk − µk

)(
f̂ (xl)− yl − µl

)2]

+ 2µlE

[(
f̂ (xk)− yk − µk

)2 (
f̂ (xl)− yl − µl

)]

+ E

[(
f̂ (xk)− yk − µk

)2 (
f̂ (xl)− yl − µl

)2]

− σ4RkkRll

Assuming that the odd moments above vanish and the underlying error distribution is
mesokurtic, this simplifies to

Cov

[(
f̂ (xk)− yk

)2
,
(
f̂ (xl)− yl

)2]
= 4σ2µkµlRkl + 2σ4R2

kl,

which yields the following variance expression:

Var

[
n∑

k=1

(
f̂ (xk)− yk

)2
]

= 4σ2
n∑

k=1

n∑

l=1

µkµlRkl + 2σ4
n∑

k=1

n∑

l=1

R2
kl

= 4σ2
n∑

k=1

n∑

l=1

µkµlRkl + 2σ4tr
[
V 2
]
. (4)

As with GCV in the independent case, we will propose using a scaled version of (tr [V ])2 as
the denominator in our cross-validation criteria instead of (4). One will note that if λi, i =

1, . . . , n, are the eigenvalues of V , then tr
[
V 2
]

=
∑n

i=1 λ
2
i and (tr [V ])2 = (

∑n
i=1 λi)

2.

Hence, tr
[
V 2
]
≤ (tr [V ])2, which implies that using (tr [V ])2 as a denominator yields more

parsimonious fits. Parsimony aside, further justification can be seen by assuming that the
errors are distributed multivariate normal, ε ∼ N(0, σ2C). In that case, V will follow a non-
central Wishart distribution whose variance is V ⊗ V when the non-centrality parameters
are zero. This leads to the observation that tr [V ⊗ V ] = (tr [V ])2. Hence, our proposed
criteria will account for the variance of all the entries of V and not just the diagonal ones.
More generally, this is the appropriate approach for multivariate error distributions that
give rise to a Kronecker product covariance structure of the form V ⊗ V .

3. Proposed Methodology

Historically, there are three major contenders for defining residual degrees of freedom
under independence in the context of linear smoothers (Buja et al., 1989). These are all
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equivalent for S idempotent and symmetric, namely

tr
[
I −

(
2S − SS′

)]
, (5)

tr [I − S] , and (6)

tr
[
I − SS′

]
. (7)

In light of the preceding discussion, we propose the following definition for residual degrees
of freedom:

tr
[
C + SCS′ − 2SC

]
= n− tr

[
2SC − SCS′

]
, (8)

which is the analogue of (5) when taking correlation into account. One can show that
0 ≤ tr[I−(2S−SS′)] ≤ tr[I−S] ≤ tr[I−SS′] ≤ n provided 0 ≤ λi ≤ 1 using von Neumann’s
trace inequality (Mirsky, 1975) to show that tr[SS′] ≤ tr[S], where λi, i = 1, . . . , n, are
the eigenvalues of S. Similarly, (8) is the most stringent of the correlated analogues of
(5), (6), and (7) since one can show that tr[SCS′] ≤ tr[SC] again using von Neumann’s
inequality in conjunction with the eigenvalues of S and SC. It is interesting to note that
(8) is equivalent to (5) in the independent case, and so differs from (6) employed by GCV.
Adopting (8) as our definition of degrees of freedom leads us to define the generalized
cross-validation for correlated data surface as

GCCV1 (θ) =
1

n

∑n
k=1

(
yk − f̂ (xk)

)2

(1− tr [2SC − SCS′] /n)2
, (9)

with θ̂ as its minimizer. An application with a two-dimensional tuning parameter appears
in Section 5.

4. Simulations of Kernel Smoothers

The simulation study here is similar to that of Carmack et al. (2009), where FCCV was
shown to perform as well as or better than other methods such as ordinary cross-validation,
one-sided cross-validation, and plugin, in correlated data. We are interested in assessing
the performance of these proposed methods whose task is to select a global bandwidth, one-
dimensional θ = h, for local linear regression (Fan, 1992) with serially correlated additive
errors. The local linear regression estimate is given by

f̂ (xk | h) =

∑n
i=1wi (xk | h) yi∑n
i=1wi (xk | h)

, where

wi (x | h) = K

(
x− xi
h

)
(tn,2 − (x− xi) tn,1) , and

tn,j (x | h) =
n∑

i=1

K

(
x− xi
h

)
(x− xi)j , j = 1, 2.

The tricube kernel, K(u) = 35/32(1− |u|3)3, |u| ≤ 1, was used because it performs well in
a variety of settings. The following four functions were selected for the variety of structure
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(Fig. 1 in the Supplemental Figures):

f1 (x) = x3 (1− x)3 ,

f2 (x) = (x/2)3 (1− x/2)2 ,

f3 (x) = 1.741 ·
[
2x10 (1− x)2 + x2 (1− x)10

]
, and

f4 (x) =

{
0.0212 · exp (x− 1/3) , x < 1/3
0.0212 · exp (−2 (x− 1/3))) , x ≥ 1/3

.

Each function, f(·) = f1(·), f2(·), f3(·), or f4(·), was sampled at either n = 75 or n = 150
equally spaced design points in the interval [0, 1] with xi = (i − 0.5)/n, i = 1, . . . , n. A
vector of serially correlated errors, εi, i = 1, . . . , n, was generated using arima.sim in R

(R Development Core Team, 2011) from a first-order autoregressive process (AR(1)) with
coefficient φ = 0.0, 0.3, 0.6, or 0.9, which ranges from independent to heavily correlated,
and standard deviation σ = 2−11, 2−9, or 2−7, which ranges from low to high variance.
Each realization results in a dataset (xi, f(xi)+εi), i = 1, . . . , n, which was repeated 10,000
times for each combination of f(·), n, φ, and σ. We designed this simulation with fMRI
data in mind. Hence our primary interest is in n = 150.

For comparison, we include FCCV along with the following:

GCCV2 (θ) =
1

n

∑n
k=1

(
yk − f̂ (xk)

)2

(1− tr [SC] /n)2
, and (10)

GCCV3 (θ) =
1

n

∑n
k=1

(
yk − f̂ (xk)

)2

(1− tr [SCS′] /n)2
, (11)

whose denominators are proportional to the squares of the correlated analogues of (6) and
(7), respectively.

For each realization, one bandwidth was estimated as the minimizer of (9), (10), (11), or
the FCCV error curve with the withholding neighborhood d set to the recommended value
of 3/n. The function optimize in R was used for all four methods with 0 ≤ h ≤ 1. For
the three GCCV criteria, the correlation matrix C was either assumed known or estimated
using the first five lags of the empirical semivariogram of the detrended data fit using a
nonparametric semivariogram estimator. Detrending was accomplished using loess in R

with a span of 0.75 for n = 75, and 0.75/2 for n = 150 to remove gross mean trend. This
value of 0.75 is the default value in loess, while 0.75/2 was selected for n = 150 since the
sampling rate is twice that of n = 75 in the unit interval. The empirical semivariogram for
a time series at lag k is γ̃k =

∑
|i−j|=k(ri − rj)2/2(n− k) with the nonparametric fit given

by γ̂(k) =
∑m

i=1[1−Ωκ(kti)]pi, where ri = yi− ŷi is the ith residual where ŷi is the LOESS
estimate of f (xi), κ is the order of the basis set to 11 for our purposes, and pi, i = 1, . . . ,m,
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is the nonnegative least squares minimizer of
∑5

k=1(γ̃k−γ̂(k))2. See Cherry et al. (1996) for
further details concerning the nonparametric semivariogram estimator. One should note
that γ̃k is a biased estimate of the semivariance at lag k since the residuals likely contain
mean structure, which is why the nonparametric semivariogram is fit using the first five
lags of the empirical semivariogram. The nonparametric semivariogram is then used to
estimate C as

(
Ĉ
)
ij

= 1− γ̂ (|i− j|)∑m
i=1 pi

,

where
∑m

i=1 pi is the sill estimate, which represents the variance of observations far apart.

Once each of the four methods yielded an estimate of bandwidth, ĥ, for each iteration,
the average squared error was calculated as

ASE
(
ĥ
)

=
1

n

n∑

i=1

(
f (xi)− f̂

(
xi | ĥ

))2
,

which is our basis for comparison. Additionally, the bandwidth, h0, for each iteration and
associated ASE, ASE0, using full knowledge of the underlying function was estimated to
serve as a baseline. Fig. 1 shows a sample realization along with the fits produced by the
three GCCV criteria. Although not included below, we also recorded the results using or-
dinary and generalized cross-validation, which are known to perform poorly when data are
correlated. Their results were omitted from the following summaries since their ASE was
often several times higher than the other included methods. One should also remember
that GCV is equivalent to GCCV2 when C = I.

Figs. 2 and 3 for function f1(·) (Figs. 2–7 for functions f2(·) – f4(·) in the Supplemental
Figures), which have been Bonferroni corrected at the 0.01 level of significance on a per
figure basis, demonstrate that GCCV1 generally dominates both GCCV2 and GCCV3 in
terms of mean ASE ratio relative to ASE0. One can visualize GCCV1 as the winner in all
six combinations in Fig. 2 (n = 150) since the blue triangles are the smallest values of ASE,
often statistically so. The non-overlapping plotting symbols are significantly different at
the corrected level within each figure.

Only when the correlation structure is estimated, the error variance is low, and using
the smaller sample size did GCCV2 and GCCV3 outperform GCCV1. An investigation
revealed that positive bias due to the LOESS residuals in the empirical semivariogram was
the culprit. This leads to overestimating the correlation structure, which GCCV1 punishes
more heavily than the other two (Fig. 5 in the Supplemental Figures). This in turn leads
to GCCV1 over smoothing (Figs. 8-11 in the Supplemental Figures) the data resulting in
significantly higher mean ASE ratios.

Figs. 2 and 3 (Figs. 2–7 in the Supplemental Figures) also suggest that the three GCCV
methods generally perform similarly when φ = 0.9. As φ→ 1, C → J , which implies that
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all three definitions of residual degrees of freedom approach 0 regardless of S. Hence, their
similarity at φ = 0.9 is not surprising. However, the differences in their performances for
lower values of φ merely indicates that the three definitions approach 0 at different rates.
For example,

1 +
∑n

i=1

∑n
j=1wiwjrij − 2

∑n
i=1wirik

1−
∑n

i=1wirik
= 1 +

∑n
i=1

∑n
j=1wiwjrij −

∑n
i=1wirik

1−
∑n

i=1wirik
,

is approximately 1 provided
∑n

i=1

∑n
j=1wiwjrij ≈

∑n
i=1wirik (i.e., the weighted mean of

C is approximately the weighted mean of one of its rows). Similarly,

1 +
∑n

i=1

∑n
j=1wiwjrij − 2

∑n
i=1wirik

1−
∑n

i=1

∑n
j=1wiwjrij

= 1 +
2
(∑n

i=1

∑n
j=1wiwjrij −

∑n
i=1wirik

)

1−
∑n

i=1

∑n
j=1wiwjrij

,

which is again approximately 1 under the same conditions. In the context of local linear
regression, this means that GCCV1, GCCV2, and GCCV3 are roughly equivalent where
the approximation generally holds for higher bandwidths and/or lower values of φ, but not
at lower bandwidths and/or higher values of φ.

FCCV performed well, often besting GCCV3 and occasionally GCCV2 in terms of mean
ASE ratio. The same is occasionally true of GCCV1 when the variance is low and C
is estimated. This is somewhat surprising given FCCV’s simplistic approach of omitting
neighborhoods about the point of estimation. In cases where the correlation structure
proves difficult to estimate, FCCV is a viable alternative to GCCV. Similar conclusions
may be reached from the results for functions f2(·), f3(·), and f4(·).

5. Application to Spatial Semivariograms

Although the covariance matrix for an empirical semivariogram is heteroscedastic, there
is an intimate relationship between the covariance structure of the semivariogram and the
semivariogram itself that can be accommodated by our proposed method. Parametric
semivariograms are frequently fit using weighted least squares (Cressie, 1985) by

θ̂ = argmin
θ

∑̀

i=1

Nsi

γ̂ (si | θ)2
(γ̃ (si)− γ̂ (si | θ))2

= argmin
θ

∑̀

i=1

Nsi

(
γ̃ (si)

γ̂ (si | θ)
− 1

)2

, (12)

since Var[γ̃(s)] ≈ 2(γ(s))2/Ns, where γ(·) is the true semivariogram, γ̃(·) is the empirical
semivariogram calculated from data, γ̂(·|θ) is a parametric semivariogram fit, Ns is the
number of spatial locations s units apart, and ` is the number of lags used in the fitting
process. Since each empirical semivariogram value has been divided by an estimate of its
standard deviation, the covariance matrix of the ratios can now be treated as a correlation
matrix. Furthermore, the semivariogram provides an estimate of the covariance of the data
used to calculate the empirical semivariogram, which allows us to estimate the correlation
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matrix of the ratios γ̃(si)/γ̂(si|θ), i = 1, . . . , ` (Genton, 1998).

In the application that follows, we fit a semiparametric semivariogram based on the
method presented by Carmack et al. (2011) replacing their fitting criterion using a modi-
fied version of (12). Specifically,

θ̂ = argmin
θ

∑̀

i=1

Nsi




γ̃(si)
γ̂(si|θ) − 1

1− tr
[
2SĈ − SĈS′

]
/`




2

, (13)

where Ĉ is the estimated correlation matrix of γ̃(si)/γ̂(si|θ), i = 1, . . . , `, using a pilot
estimate for γ̂(·|θ), and θ′ = [κ, α]. The parameter κ is the order of the basis with lower
orders being more flexible, while α controls how the basis approaches the origin, which
has an important impact on nugget estimation. The pilot fit used κ = 11, and α = 1. In
their paper, Carmack et al. (2011) estimated α using a custom fitting criterion, but fixed
κ = 11 due to difficulties with establishing an objective function that could satisfactorily
accommodate κ and α simultaneously, which is likely due to the strong correlation inherent
in the empirical semivariogram.

Our primary interest is analyzing brain imaging data for which we routinely use spatial
modeling (kriging) for statistical inference (Spence et al., 2007). The particular example
here deals with functional magnetic resonance imaging (fMRI) where a subject is placed in
a magnet to perform an experiment. The magnet records changes in blood oxygen level de-
pendent (BOLD) signals at thousands of locations across the brain with three dimensional
volumes captured every few seconds. The temporal aspect of the data is usually removed
through a variety of statistical modeling methods (Lindquist, 2008) where practioners are
commonly interested in estimating the hemodynamic response function (HRF) to identify
locations associated with the experimental protocol or in extracting features of the HRF
at active locations.

The experiment in this application had the subject silently repeat nonsense words dis-
played on a monitor above their head for a total of 152 scans spaced 2 seconds apart.
We then estimated a 13 parameter finite impulse response function (FIR) under a linear
convolution invariance assumption with the parameters spaced 2 sec. apart to match the
temporal resolution of the scans and the maximum duration of the HRF after a stimulus is
applied (26 sec.). These were fit at 1,557 spatial locations that comprise the left superior
temporal gyrus, a portion of the brain thought to be associated with the protocol. For a
healthy subject, the peak in the HRF generally occurs approximately 6 sec. after a stimu-
lus. Hence, we will concern ourselves with the third FIR parameter at these 1,557 locations.

As Fig. 4 shows, the empirical semivariogram of the third FIR parameter exhibits spatial
correlation to approximately 9 mm. Our experienced view of the empirical semivariogram
suggests a linear approach to the origin is reasonable with the exponential or spherical
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parametric models being natural choices given their linear behavior towards the origin.
This semiparametric fit is estimated using (13) with optim in R with boundary conditions
3 ≤ κ ≤ 25, and 0 ≤ α ≤ 1. The lower bound on κ is necessary since this is a three
dimensional spatial process, while the upper limit is set at 25 since the basis does not
substantially change beyond that value. The bounds on α are established in Carmack et al.
(2011). The optimization yields κ̂ = 20.6 and α̂ = 0.709 with the resulting semiparametric
fit along with the parametric exponential and spherical fits shown in Fig. 4. The nugget
estimate, which plays a critical role in kriging, is 15% of the estimated sill compared to the
nugget estimated at 9% of the estimated sill in Carmack et al. (2011). The exponential
and spherical fits produced nugget estimates of 0% and 20% of their respective estimated
sills. The exponential is clearly a poor fit overshooting the early lags and failing to level
out at later lags. While the spherical arguably does better at the early lags, it appears to
overestimate the range.

6. Discussion

As the theory section established, a natural definition for residual degrees of free-
dom is tr[C + SCS′ − 2SC], which leads to defining GCCV1 for correlated data with
(tr[C + SCS′ − 2SC])2 as the denominator. Historical consideration of three competing
definitions for residual degrees of freedom in the independent case and their correlated
counterparts led us to consider GCCV2 and GCCV3. As the simulation study showed,
GCCV1 tends to dominate the other two. However, this is not universally the case when
estimating correlation at smaller sample sizes with low variance. In that case, GCCV1 can
lead to over smoothing since the bias due to the underlying function in the empirical semi-
variogram becomes large relative to the variance, which leads to overinflated correlation
estimates and over smoothing. But, for all the other cases, the first still tends to dominate
the other two leading us to conclude that GCCV1 is the best choice for most situations.
As such, we will refer to GCCV1 more simply as GCCV for the rest of the discussion.

Given its surprisingly simplistic approach, FCCV performed fairly well and should still
be considered, particularly if the correlation structure is difficult to estimate. Finally, the
fMRI application demonstrated how GCCV can be applied in a heteroscedastic setting
where an intimate link exists between the function being estimated and the correlation in
the context of spatial modeling.

It is important to note that we do not use a general covariance structure. In theory, one
could develop a method similar to the one presented in the application for heteroscedastic
errors by rescaling the data so that the resulting covariance matrix is a correlation matrix
by using a criterion like (13). In practice, this presents a difficult challenge since σ2k has to
be estimated at each location in the presence of an unknown mean structure and correlated
errors. This task is not to be taken lightly given the difficulty of doing so even when errors
are independent. Even so, we intend to continue researching this difficult problem in the
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hopes of obtaining a viable solution in the future.

Interestingly, from a parametric point-of-view under a multivariate normality assump-
tion, the characteristic function of

∑n
k=1(f̂(xk)− yk)2 when all the non-centrality param-

eters are zero is given by (Krishnaiah, 1961)

ψ (t) = Πn
j=1

(
1− it2σ2λj

)− 1
2 .

This is a convolution of gammas with common shape parameter α = −1/2 and scale param-
eters βj = 2σ2λj , j = 1, . . . , n, which is a generalization of the χ2. Several methods exist for
computing the distribution of convolutions of gammas with truncated series or Monte Carlo
methods, but a more simplistic approach in the spirit of Satterthwaite is an approxima-
tion by a single gamma with α = (

∑n
j=1 λj)

2/(2
∑n

j=1 λ
2
j ) and β = 2σ2

∑n
j=1 λ

2
j/
∑n

j=1 λj
(Stewart et al., 2007), which we found to work well with low to moderately correlated data
with adequate sample sizes. In this framework, our proposed cross-validation criterion may
be viewed as estimating θ via maximum likelihood. We opted not to present this approach
at this time since we desire to make the present method as nonparametric as possible, but
this remains a promising avenue of research that we intend to pursue.
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Figure 1. Three local linear regression fits with bandwidths estimated
by the three GCCV criteria using the known correlation structure. ĥ was
estimated to be 0.251, 0.067, and 0.058 for GCCV1, GCCV2, and GCCV3,
respectively. The sample was generated using f(·) = f1(·), n = 150, φ = 0.6,
and σ = 1/128.
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Figure 2. Plots of the mean ASE ratios versus the AR(1) coefficient, φ,
for the simulations using f1(·) and n = 150 for the methods indicated in
the legends. The means were formed by taking the average of the ratio of
each method’s ASE over the optimal ASE for each of the 10,000 realiza-
tions. The rows are arranged by variance from low to high, top to bottom.
The columns indicate whether the known correlation matrix, C, was used,

or its nonparametric semivariogram estimate, Ĉ. The magenta circles in-
dicate pairs that are not significantly different at 0.01 level of significance
Bonferroni corrected for the 144 comparisons in the figure.
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Figure 3. Plots of the mean ASE ratios versus the AR(1) coefficient, φ,
for the simulations using f1(·) and n = 75 for the methods indicated in
the legends. The means were formed by taking the average of the ratio of
each method’s ASE over the optimal ASE for each of the 10,000 realiza-
tions. The rows are arranged by variance from low to high, top to bottom.
The columns indicate whether the known correlation matrix, C, was used,

or its nonparametric semivariogram estimate, Ĉ. The magenta circles in-
dicate pairs that are not significantly different at 0.01 level of significance
Bonferroni corrected for the 144 comparisons in the figure.
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Figure 2. Plots of the mean ASE ratios versus the AR(1) coefficient, φ,
for the simulations using f2(·) and n = 150 for the methods indicated in
the legends. The means were formed by taking the average of the ratio of
each method’s ASE over the optimal ASE for each of the 10,000 realiza-
tions. The rows are arranged by variance from low to high, top to bottom.
The columns indicate whether the known correlation matrix, C, was used,

or its nonparametric semivariogram estimate, Ĉ. The magenta circles in-
dicate pairs that are not significantly different at 0.01 level of significance
Bonferroni corrected for the 144 comparisons in the figure.
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Figure 3. Plots of the mean ASE ratios versus the AR(1) coefficient, φ,
for the simulations using f3(·) and n = 150 for the methods indicated in
the legends. The means were formed by taking the average of the ratio of
each method’s ASE over the optimal ASE for each of the 10,000 realiza-
tions. The rows are arranged by variance from low to high, top to bottom.
The columns indicate whether the known correlation matrix, C, was used,

or its nonparametric semivariogram estimate, Ĉ. The magenta circles in-
dicate pairs that are not significantly different at 0.01 level of significance
Bonferroni corrected for the 144 comparisons in the figure.
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Figure 4. Plots of the mean ASE ratios versus the AR(1) coefficient, φ,
for the simulations using f4(·) and n = 150 for the methods indicated in
the legends. The means were formed by taking the average of the ratio of
each method’s ASE over the optimal ASE for each of the 10,000 realiza-
tions. The rows are arranged by variance from low to high, top to bottom.
The columns indicate whether the known correlation matrix, C, was used,

or its nonparametric semivariogram estimate, Ĉ. The magenta circles in-
dicate pairs that are not significantly different at 0.01 level of significance
Bonferroni corrected for the 144 comparisons in the figure.
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Figure 5. Plots of the mean ASE ratios versus the AR(1) coefficient, φ,
for the simulations using f2(·) and n = 75 for the methods indicated in
the legends. The means were formed by taking the average of the ratio of
each method’s ASE over the optimal ASE for each of the 10,000 realiza-
tions. The rows are arranged by variance from low to high, top to bottom.
The columns indicate whether the known correlation matrix, C, was used,

or its nonparametric semivariogram estimate, Ĉ. The magenta circles in-
dicate pairs that are not significantly different at 0.01 level of significance
Bonferroni corrected for the 144 comparisons in the figure.
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Figure 6. Plots of the mean ASE ratios versus the AR(1) coefficient, φ,
for the simulations using f3(·) and n = 75 for the methods indicated in
the legends. The means were formed by taking the average of the ratio of
each method’s ASE over the optimal ASE for each of the 10,000 realiza-
tions. The rows are arranged by variance from low to high, top to bottom.
The columns indicate whether the known correlation matrix, C, was used,

or its nonparametric semivariogram estimate, Ĉ. The magenta circles in-
dicate pairs that are not significantly different at 0.01 level of significance
Bonferroni corrected for the 144 comparisons in the figure.
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Figure 7. Plots of the mean ASE ratios versus the AR(1) coefficient, φ,
for the simulations using f4(·) and n = 75 for the methods indicated in
the legends. The means were formed by taking the average of the ratio of
each method’s ASE over the optimal ASE for each of the 10,000 realiza-
tions. The rows are arranged by variance from low to high, top to bottom.
The columns indicate whether the known correlation matrix, C, was used,

or its nonparametric semivariogram estimate, Ĉ. The magenta circles in-
dicate pairs that are not significantly different at 0.01 level of significance
Bonferroni corrected for the 144 comparisons in the figure.



GENERALIZED CORRELATED CROSS-VALIDATION (GCCV) 27

0.0 0.2 0.4 0.6 0.8

0.
8

1.
0

1.
2

1.
4

1.
6

f1( ⋅ )

φ

ĥ
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Figure 8. Plot of mean bandwidth ratios, ĥ/h0, for the four methods for

f1(·), n = 75, φ = 1/2048, and Ĉ. This corresponds to the upper right
panel of Fig. 3.
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Figure 9. Plot of mean bandwidth ratios, ĥ/h0, for the four methods for

f2(·), n = 75, φ = 1/2048, and Ĉ. This corresponds to the upper right
panel of Fig. 5.
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Figure 10. Plot of mean bandwidth ratios, ĥ/h0, for the four methods for

f3(·), n = 75, φ = 1/2048, and Ĉ. This corresponds to the upper right
panel of Fig. 6.
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Figure 11. Plot of mean bandwidth ratios, ĥ/h0, for the four methods for

f4(·), n = 75, φ = 1/2048, and Ĉ. This corresponds to the upper right
panel of Fig. 7.
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