Arkansas Council of Teachers of Mathematics 2013 Regional Exam Algebra II

For questions 1 through 25, mark your answer choice on the answer sheet provided. After completing items 1 through 25, answer each of the tiebreaker items in sequential order (do #1 first, followed by #2, and then #3 last). Be sure that your name is printed on each of the tiebreaker pages.

1) A toy company uses the linear model y = -3x + 571 to predict the decline in sales of a toy after it has been on the market more than one year. If x is the number of months after the first year and y is the number of toys sold in hundreds during that month, how many toys will be sold 13 months after the first year?

- A) 61,000
- B) -18,600
- C) -170,000
- D) 53,200
- E) None of These

2) Your home state uses a linear model y = 22(x - 70) + 4338 to predict the number of vacationers (y) as compared to the average temperature for that week (x). Find the number of vacationers predicted for a week with an average temperature of 68 degrees.

- A) 95,392
- B) 7374
- C) 4294
- D) 5764
- E) None of These

3) Find the quotient. Write the answer in standard form: $\frac{6+2i}{4-7i}$

- A) $-\frac{2}{33} + \frac{10}{33}i$ B) $\frac{2}{13} + \frac{10}{13}i$ C) $\frac{38}{13} + \frac{34}{13}i$ D) $-\frac{38}{13} + \frac{34}{13}i$ E) None of These

4) Solve the equation $\sqrt{x+3} = x-3$

- A) {1, 6}
- B) {6, 13}
- C) {1, 13}
- D) {6}
- E) None of These

5) Solve the equation $(x+7)^{\frac{3}{2}} = 8$

- A) {11}
- B) {- 5}
- C) $\{-3\}$
- D) $\left\{\sqrt[3]{2}, -7\right\}$ E) None of These

- 6) The temperatures in Cryostat storage in degrees Celsius roughly satisfy the inequality $|C + 95| \le 53$. What range of temperatures corresponds to this inequality?
- A) [- 148°C, 148°C] B) [- 42°C, 42°C] C) [- 148°C, 42°C] D) [- 42°C, 148°C]

- E) None
- 7) Find the equation of the line passing through the points (5, 5) and (8, 4). Write your answer in slopeintercept form.
- A) $y = -\frac{1}{3}x + \frac{20}{3}$ B) $y = x + \frac{20}{3}$ C) $y = \frac{1}{3}x + \frac{20}{3}$ D) $y = -\frac{1}{3}(x-5)$ E) None

- 8) Find f(-4) for $f(x) = \begin{cases} 2x, & \text{if } x \le 1 \\ x-2, & \text{if } x > 1 \end{cases}$
- A) 8
- B) 2

- C) 6
- D) 8
- E) None of These
- 9) Describe how the graph of the equation $f(x) = -(x+9)^2$ relates to the graph of $y = x^2$
- A) a translation 9 units to the right and a reflection across the x-axis
- B) a translation 9 units to the left and a reflection across the x-axis
- C) a translation 9 units up and a reflection across the x-axis
- D) a translation 9 units to the right and a reflection across the y-axis
- E) None of These
- 10) For the given functions f(x) = 7x + 14 and g(x) = 4x 1, find $(f \circ g)(x)$
- A) 28x + 21
- B) 28x + 7 C) 28x + 13 D) 28x + 55
- E) None of These

11) If an object is propelled upward from a height of 144 feet at an initial velocity of 128 feet per second, then its height after t seconds is given by the equation $h(t) = -16t^2 + 128t + 144$. After how many seconds does the object hit the ground?

A) 9

- B) 4.5
- C) 8.0
- D) 11
- E) None of These

12) John owns a hotdog stand. He has found that his profit is represented by the equation $P(x) = -x^2 + 60x + 71$, with P being profits and x the number of hotdogs sold. How many hotdogs must he sell to earn the most profit?

- A) 31 hotdogs
- B) 30 hotdogs
- C) 20 hotdogs
- D) 41 hotdogs
- E) None of These

13) Determine the remainder $(2x^3-5x^2-4x+17) \div (x+3)$

- A) 6
- B) 94
- C) 38
- D) 70
- E) None of These

14) Find all rational zeros for $f(x) = x^3 + 6x^2 - 9x - 54$

- A) 3, 6, 3
- B) 4, 6, 6 C) 4, 6, 6
- D) 3, 6, 3 E) None of These

15) Find the correct end behavior diagram for the given polynomial function $P(x) = 6x^3 + 3x^2 - 3x + 8$

- A) Rises to the left, rises to the right
- B) Falls to the left, falls to the right
- C) Falls to the left, rises to the right
- D) Rises to the left, falls to the right

- 16) Find an equation for the inverse of the function f(x) = 7x 4

- A) $f^{-1}(x) = \frac{x+4}{7}$ B) $f^{-1}(x) = \frac{x}{7} + 4$ C) $f^{-1}(x) = \frac{x-4}{7}$ D) Not a one-to-one function
- 17) Suppose that \$5000 is invested at an interest rate of 9% compounded continuously. What is the balance after 6 years.
- A) \$7700.00
- B) \$8580.03
- C) \$8385.50
- D) \$8680.03
- E) None of These
- 18) Suppose $f(x) = 30.7 + 1.4 \log(x+1)$ models salinity of ocean water to depths of 1000 meters at a certain latitude. x is the depth in meters and f(x) is the salinity. Approximate the salinity (to the nearest hundredth) when the depth is 688 meters.
- A) 85.73
- B) -26.73
- C) 34.67
- D) 88.53
- E) None of These

- 19) Find the value of log₇ 24.10 to four decimal places
- A) 3.4429
- B) 0.6115
- C) 1.3820
- D) 1.6353
- E) None of These

- 20) Solve the equation $\log_6(x-3) = 2$ for x
- A) {61}
- B) {39}
- C) {33}
- D) {67}
- E) None of These
- 21) The growth in population of a city can be seen using the formula $p(t) = 7858e^{0.002t}$, where t is the number of years since 1970. According to this formula, in how many years will the population reach 11,787? Round to the nearest tenth of a year.
- A) 202.7 years
- B) 152.0 years
- C) 405.5 years
- D) 101.4 years E) None of These

Find the indicated matrix.

22) Let
$$A = \begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & 4 \\ -1 & 6 \end{bmatrix}$. Find $4A + B$.

- A) $\begin{bmatrix} 4 & 7 \\ 7 & 11 \end{bmatrix}$ B) $\begin{bmatrix} 4 & 16 \\ 1 & 11 \end{bmatrix}$ C) $\begin{bmatrix} 4 & 16 \\ 7 & 26 \end{bmatrix}$ D) $\begin{bmatrix} 4 & 28 \\ 4 & 44 \end{bmatrix}$ E) None of These
- 23) Find the value of the determinant of $\begin{bmatrix} -5 & -2 \\ 8 & -3 \end{bmatrix}$.
- A) -31
- B) 31

C) -1

- D) 34
- E) None of These

$$2x+4y+z=6$$
24) Solve the system for x:
$$5x-3y-z=-30$$

$$5x+y+5z=-26$$

A)
$$\begin{vmatrix} 2 & 4 & 6 \\ 5 & -3 & -30 \\ 5 & 1 & -26 \end{vmatrix}$$
$$\begin{vmatrix} 2 & 4 & 1 \\ 5 & -3 & -1 \\ 5 & 1 & 5 \end{vmatrix}$$

- 25) Solve the equation $x^2 10x + 41 = 0$ for x.
- A) {10 ± 8i}
- B) {- 5 ± 4i}
- C) {5 ± 4i}
- D) {9, 1} E) None of These

Name	 		
Tie Breaker #1			

The whispering gallery at the Museum of Science and Industry in Chicago has an elliptical cross section 13 feet 6 inches by 47 feet 4 inches. Write an equation to model this ellipse if it is centered at the origin and has foci on the x axis.

Name	 	
Tie Breaker #2		

Three cards are drawn from a standard deck of cards without replacement. Find the probability of drawing a diamond, a club and another diamond in that order.

Name	 		
Tie Breaker #3			

A kennel owner has 164 feet of fencing with which to enclose a rectangular region. He wants to subdivide this region into three smaller rectangles of equal length. If the total area to be enclosed is to be 576 ft², find the dimensions of the entire enclosed region.

Algebra II Solutions:

- 1) D
- 2) C
- 3) B
- 4) D
- 5) C
- 6) C
- 7) A
- 8) A
- 9) B
- 10) B
- 11) A
- 12) B
- 13) D
- 14) D
- 15) C
- 16) A
- 17) B
- 18) C
- 19) D
- 20) B 21) A
- 22) C
- 23) B 24) C
- 25) C

Tie Breaker #1:
$$\frac{x^2}{\left(\frac{71}{3}\right)^2} + \frac{y^2}{\left(\frac{27}{4}\right)^2} = 1$$

Tie Breaker #2:
$$\frac{13}{850} = 0.015$$

Tie Breaker #3: 18 ft by 32 ft or 64 ft by 9 ft