ACTM State Math Contest Calculus March 6, 2010

1. Find h(2) such that the function h(x) =
$$\frac{x^2 + 3x - 10}{x - 2}$$
 is continuous at x = 2.

- a. 0 b. 2 c. 7 d. Not possible e. None of the above

$$\lim_{x \to 0} \frac{a^x - b^x}{x}$$
 2. Evaluate

- a. 0 b. 1 c. In (a/b) d. does not exist e. none of the above

3. The function
$$f(x) = \begin{cases} \frac{7 |x| + 5x}{7 |x| - 5x} & \text{if } x \neq 0 \\ 6 & \text{if } x = 0 \end{cases}$$
 is

- a. continuous at x = 0
- b. right continuous at x = 0
- c. left continuous at x = 0
- d. does not exists
- e. none of the above

4.
$$\lim_{x \to \pi/4} \frac{\sin^2 x - 1/2}{x - \pi/4}$$
 is equal to

- a. -1 b. 0 c. 1 d. does not exist e. none of the above

5. Evaluate
$$\lim_{x \to 0^+} \frac{\sqrt{x}}{\sqrt{16 + \sqrt{x}} - 4}$$

- c. 8
- d. does not exist e. none of the above

- 6. Let $f(x) = |7 6x x^2|$. Which one of the following statements is true?
 - a. f(x) is nowhere differentiable on the number line
 - b. f(x) is differentiable at every point on the number line
 - c. f(x) is differentiable at every point of the number line except for x = 1
 - d. f(x) is differentiable at every point of the number line except for x = -7
 - e. none of the above
- 7. The function $y = \frac{\ln x}{x}$ is increasing on the interval

- a. $(0, \infty)$ b. $(1, \infty)$ c. (e, ∞) d. It is never increasing e. none of the above

- 8. If $y = \sin^2(\cos 2x)$, find $\frac{dy}{dx}$ when $x = \pi/8$.

 - a. $\sqrt{2}\cos{(\sqrt{2})}$ b. $-\sqrt{2}\sin{(\sqrt{2})}$ c. $\sqrt{2}\sin{(\sqrt{2})}$ d. $-\sqrt{2}\cos{(\sqrt{2})}$ e. none of the above

- 9. Find the equation of the tangent line to the graph of $x^2y + xy^2 = 6$ at (2,1).
 - a. 5x 8y = 18 b. 5x 8y = -18 c. 5x + 8y = -18 d. 5x + 8y = 18

- e. none of the above
- 10. Let y be a function of x which satisfies $\ln (x+y) e^{2xy} + 1 = 0$. Find y'(0).
 - a. -1
- b. -1/2 c. 0

- d. 1 e. none of the above
- 11. Find equation of the tangent line to the circle $x^2 + y^2 + 2x + 6y = 0$ at the point (-2,0).
 - a. x 3y 2 = 0
 - b. x+3y+2=0
 - c. x+3y-2=0
 - d. x 3y + 2 = 0
 - e. None of the above

12. Find the limit of the Riemann sum
$$\frac{1}{n} \left[\frac{1}{n^2} + \frac{4}{n^2} + ... + \frac{(n-1)^2}{n^2} + 1 \right]$$
 as n tends to ∞ .

- a. 1/3
- b. 2/3
- c. 1
- d. does not exist
- e. None of the above

13. Find the 31 st derivative of the function $f(x) = \sin 2x$

- a. $-2^{31}\cos 2x$ b. $2^{31}\cos 2x$ c. $2^{31}\sin 2x$ d. $-2^{31}\sin 2x$

e. None of the above

14. The voltage V (volts), current I (amperes) and resistance R (Ohms) of an electric circuit is related by the equation V = IR. Suppose that V is increasing at the rate of 1 volt/sec while I is decreasing at the rate of 1/3 amp/sec. Let t denote the time in seconds. Find the rate at which R is changing when V = 12 volts and I = 2 amp.

- a. -3/2 b. --1 c. 3/2 d. 5/3 e. none of the above

15. The tangent to the function y = f(x) forms an angle $\pi/6$ at x =1 and an angle $\pi/4$ at x =3 with the X-axis. Then $\int\limits_{3}^{3}f'(x)\ f''(x)\ dx$ equals a. 1/3 b. $\frac{3+\sqrt{3}}{3}$ c. $\frac{3-\sqrt{3}}{3}$ d. 3 e. none of the above

16. Find f(4) if $\int_{0}^{x^{2}} f(t) dt = x \cos \pi x$.

- a. -1/2 b. 1/4 c. 1/2 d. 1 e. None of the above

17. Evaluate $\int_{0}^{5} |x^2 - 5x + 4| dx$.

- a. 2/3 b. 9/2 c. 22/6 d. 49/6 e. None of the above.

18. $\int_{0}^{\pi/2} \sin^6 x \cos^3 x \, dx$ is

- a. 0 b. 1/28 c. 1/63 d.2/63 e. None of the above

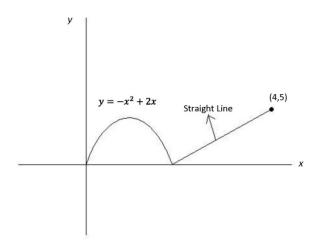
19. Evaluate
$$\int \frac{\cos 2x}{(\cos x - \sin x)^2} dx$$

a.
$$-\frac{1}{2} \ln |\cos x + \sin x| + c$$

c.
$$-\frac{1}{2} \ln |\cos x - \sin x| + c$$

d.
$$-\frac{1}{2} \ln |1 - \sin 2x| + c$$

- e. None of the above
- 20. The maximum value of the function $y = x^3 3x$ on [0,2] is
 - a. 0
- b. -2
- c. 1
- d. 2
- e. None of the above
- 21. Find the average value of the function shown in the figure.



- a. 19/12
- b. 19/6
- c. 7/4
- d. 5/2
- e. None of the above
- 22. The position function of a particle at a time t (in seconds) is given by $s = 4t^3 18t^2 15$ measured in feet. Find the velocity (ft/sec) when the acceleration is zero.
 - a. -27
- b. -25
- c. 25
- d. 27
- e. None of the above
- 23. The area bounded between the curves $y = x^2$ and $y = x^3$ is :
 - a. 1/6
- b. 1/12
- c. 1
- d. 2
- e. None of the above

- 24. Find all numbers c for the function $f(x) = \ln(x-1)$ on [2,4] that satisfy the conclusion of the Mean Value Theorem.

- a. $\ln (3/2)$ b. $\frac{3}{\ln (3/2)}$ c. $\frac{2 + \ln (3)}{\ln (3)}$ d. 3 e. None of the above
- 25. Two sides of a triangle are 3 meters and 4meters in length and the angle between them is increasing at a rate of 0.03 radians per second. Find the rate at which the area of the triangle is increasing when the angle between the sides of fixed length is $\frac{\pi}{3}$.
- a. 0.09 sq meters/sec
- b. 0.625 square meters/sec
- c. 0.18 square meters/sec
- d. 0.15 square meters/sec
- e. none of the above

Tie	Brea	ker	#1
-----	------	-----	----

Name:

For what values of a and b will f(x) = $\begin{cases} ax & if \quad x < 2 \\ ax^2 - bx + 3 & if \quad x \ge 2 \end{cases}$

be differentiable for all values of x?

Solution: Since f has to be continuous at x = 2, the left limit of f at x = 2 must be equal to the right limit of f at x = 2. This means, 2a = 4a - 2b + 3 or

$$2a - 2b + 3 = 0$$
 (1)

Since f has to be differentiable at x = 2, the left derivative at x = 2 must be equal to the right derivative at x = 2. This means, a = 4a - b or

$$3a - b = 0$$
 (2).

Solving the above system of equations (1) and (2) gives us a = 3/4 and b = 9/4.

Tie Breaker #2

Name:

Find f($\pi/2$) from the following information.

- a. f(x) is a positive continuous function
- b. The area under the curve y = f(x) from x = 0 to x = a is $\frac{a^2}{2} + \frac{a}{2} \sin a + \frac{\pi}{2} \cos a$.

Solution: By (a) and (b), we have

$$\int_{0}^{x} f(t) dt = \frac{x^{2}}{2} + \frac{x}{2} \sin x + \frac{\pi}{2} \cos x$$

By differentiating both sides of the above equation, we get

$$f(x) = x + (\sin x)/2 + (x \cos x)/2 - ((pi)/2) \sin x$$

Therefore

$$f(\pi/2) = \frac{1}{2}$$
.

Tie Breaker #3	Namo:
He Breaker #3	Name:

Let
$$f(x) = \begin{cases} x & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$$

Show that f is continuous only at x = 0.

Solution: If x is no-zero rational number, by selecting a sequence of irrational number converging to x, we see that f is not continuous at x. On the other hand, if x is an irrational number, by selecting a sequence of rational numbers converging to x, we see that f is not continuous at x. Finally, if a sequence $\{x_n\}$ converges to zero, then it is obvious that $f(x_n)$ will also converge to zero. Therefore, f is continuous only at x = 0.

Key – ACTN Regional Math Contest (Calculus Exam)

1. C	9. D	17. D	
2. C	10. D	18. D	
3. B	11. D	19. D	
4. C	12. A	20. D	
5. C	13. A	21. A	
6 E	14. C	22. A	
7. E	15. A	23. B	
8 B	16. B	24. C	

25 A