ALGEBRA II 2006 ACTM REGIONAL CONTEST

- 1. If $x \neq 0$, then $x^0 =$
 - a) 0 b) 1 c) $\frac{1}{x}$ d) undefined

2. What number must be added to $x^2 + 5x$ to complete the square?

a)
$$\frac{5}{2}$$
 b) $\frac{5}{4}$ c) $\frac{25}{4}$ d) 25

- 3. The equation of the line parallel to the line x = 3y 2 and through the point (7, 1) is
 - a) $y-1 = \frac{1}{3}(x-7)$ b) y-1 = 2(x-7)c) y-1 = -2(x-7)d) y-1 = 3(x-7)

4. If
$$i = \sqrt{-1}$$
 then $i^{15} =$
a) $-i$ b) i c) -1 d) 1
5. The determinant of $\begin{bmatrix} 3 & 4 \\ -2 & 7 \end{bmatrix}$ is
a) 8 b) 12 c) 13 d) 29
6. $2^{\log_2 8} =$
a) 6 b) 8 c) 16 d) 256

7.
$$\frac{3}{x-2} - \frac{1}{2-x} =$$

a) $\frac{2}{0}$ b) $\frac{2}{x^2-4}$ c) $\frac{2}{x-4}$ d) $\frac{4}{x-2}$

8.
$$\frac{3}{3-\sqrt{2}} =$$

a) $\frac{1}{1-\sqrt{2}}$ b) $-(1+\sqrt{2})$ c) $3(3+\sqrt{2})$ d) $\frac{3}{7}(3+\sqrt{2})$

- 9. Let $f(x) = \frac{x+2}{x-4}$. The domain of the function f is a) $(-\infty, -2) \cup (-2, \infty)$ b) $(-\infty, 4) \cup (4, \infty)$
 - c) $(-\infty, -2) \cup (-2, 4) \cup (4, \infty)$ d) $(-\infty, \infty)$
- 10. Solve x, |3x 2| < 1
 - a) $(-\infty, \frac{1}{3}) \cup (1, \infty)$ b) $(\frac{1}{3}, 1)$
 - c) $(-\infty, \frac{1}{3})$ d) $(1, \infty)$

11. Which of the following describes the "end behavior" of the graph of $y = -3x^{24} + 14x^{11} - 12x^4 + 73?$

- a) rises on both the left and right b) falls on both the left and right
- c) rises on the left and falls on the right d) falls on the left and rises on the right
- 12. The function $D(x) = .056057x^2 + 1.06657x$ models the distance, D(x), (in feet) it takes a car traveling x mph to stop. Approximately how fast is a car traveling that takes 300 feet to stop?

	a) 64 mph	b) 67 mph	c) 70 mph	d) 75 mph
--	-----------	-----------	-----------	-----------

13.	The function f is defined by the table			x	0	1	2	3
	$f^{-1}(1) =$			f(x)	1	3	- 1	-4
	a) 0	b) $\frac{1}{3}$	c) 1			d) 3		

I	r	2	3	4
	X	Z	3	4
	f(x)	1	4	6
	g(x)	3	2	1
_				
1		b) 2	2	

14. Use the following chart to compute $(f \circ g)$ (3).

15. The range of the function $f(x) = 3 - 2^x$ is

a) $(-\infty, 3)$ b) $(-\infty, 3]$ c) $(3, \infty)$ d) $(-\infty, \infty)$

16. If x and y are positive then $\ln \frac{3x^4}{5y^2} =$

a)
$$\frac{\ln 3 + \ln x^4}{\ln 5 + \ln y^2}$$
 b) $4\ln 3x - 2\ln 5y$

c) $\ln 3 + 4 \ln x - \ln 5 + 2 \ln y$ d) $\ln 3 + 4 \ln x - \ln 5 - 2 \ln y$

17. If
$$\log_{b} 2 = .41$$
 and $\log_{b} 3 = .64$, then $\log_{b} 12 =$
a) 0.52 b) 1.46 c) 1.69 d) 2.10

18. If $f(x) = \frac{1}{x}$ and $g(x) = \frac{1}{x-4}$ then the graph of g is the same as the graph of f shifted 4 units a) to the right b) to the left c) lower d) raised

- 19. Suppose the equation $A(t) = 981e^{0.3t}$ models how much money (dollars) students spend for leisure activities during the high school years where t = 0 corresponds to the freshman year. Based on this model, how much would you expect a high school junior to spend on leisure activities?
 - a) \$588.60 b) \$1787.50 c) \$1599.98 d) \$2412.87

- For a specific area code, how many different phone numbers are possible for a given 3-digit prefix? 20. [Assume that there are no restrictions on the digits following a given prefix.] a) 3024 b) 5040 c) 6561 d) 10,000 If $ax^2 + 3x + 1 = 0$ has exactly 1 distinct solution then a =21. a) $\frac{9}{4}$ b) 3 c) 6 d) this equation never has only one distinct solution For what values of x is it true that $\sqrt[3]{x} > x^2$ 22.
 - a) None b) (-1, 0) c) (0, 1) d) (-1, 1)

23.
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}^{-1} =$$

a)
$$\begin{bmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{4} \end{bmatrix}$$
 b)
$$\begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix}$$
 c)
$$\begin{bmatrix} 1 & \frac{3}{2} \\ -2 & -\frac{1}{2} \end{bmatrix}$$
 d)
$$\begin{bmatrix} 0 & -1 \\ -3 & -3 \end{bmatrix}$$

24. What is the value if \$3000 is invested at 4% compounded continuously for 5 years?

a) \$3199.48 b) \$3600 c) \$22,167.17 d) \$3664.21

25. If
$$f(x) = \begin{cases} x+3 & \text{if } x < 4 \\ x-5 & \text{if } x \ge 4 \end{cases}$$
 then for how many pairs of numbers (a, b) is it true that $f(a) = f(b)$?
a) None b) 1 c) 2 d) an infinite number

ALGEBRA II (Tie breakers) Name

2006 ACTM REGIONAL CONTEST School

Instructions: Work the following problems *in order*. Show all your work.

1. Average daily temperatures (T) in the state of Arkansas range from 26° F to 94°F. Write this fact as a single absolute value inequality.

2. Write a polynomial function of <u>least</u> degree and in the form $y = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ whose graph has *x*-intercepts (-2, 0), (1, 0) and (3, 0) and *y*-intercept (0, 5). 3. A person's body mass index (BMI) is directly proportional to his/her weight in pounds and inversely proportional to the square of his/her height in inches. If a 6-ft tall person weighing 177 pounds has a BMI of 24, find the BMI (to the nearest whole number) of a person 5 ft 4 in tall who weighs 120 pounds.

ALGEBRA II ANSWER KEY

- 1. b
- 2. c
- 3. a
- 4. a
- 5. d
- 6. b
- 7. d
- 8. d
- 9. b
- 10. b
- 11. b
- 12. a
- 13. a
- 14. a
- 15. a
- 16. d
- 17. b
- 18. a
- 19. b
- 20. d
- 21. a
- 22. c
- 23. b
- 24. d
- 25. d

ALGEBRA II (Tie breakers) ANSWER KEY

1. $|T - 60| \le 34$

2.
$$y = a(x+2)(x-1)(x-3)$$

 $y = a(x^3 - 2x^2 - 5x + 6)$
Let $x = 0$ and $y = 5$ and we get
 $5 = a$ (6)
 $a = \frac{5}{6}$
 $y = \frac{5}{6}(x^3 - 2x^2 - 5x + 6)$
 $\therefore y = \frac{5}{6}x^3 - \frac{5}{3}x^2 - \frac{25}{6}x + 5$

3. BMI =
$$\frac{kW}{H^2}$$

 $24 = \frac{k(177)}{(72)^2}$
 $k = 702.9$
 \therefore BMI = $\frac{(702.9)(120)}{(64)^2} = 20.6 \sim 21$